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Abstract. We describe the architecture of the OBDA systemOntop and
analyse its performance in a series of experiments. We demonstrate that,
for standard ontologies, queries and data stored in relational databases,
Ontop is fast, efficient and produces SQL rewritings of high quality.

1 Introduction

In this paper, we report on a series of experiments designed to test the perfor-
mance of the ontology-based data access (OBDA) system Ontop1 implemented
at the Free University of Bozen-Bolzano. Our main concern was the quality of
the query rewritings produced automatically by Ontop when given some stan-
dard queries, ontologies, databases and mappings from the database schemas to
the ontologies.

Recall [4] that, in the OBDA paradigm, an ontology defines a high-level global
schema of (already existing) data sources and provides a vocabulary for user
queries. An OBDA system rewrites such queries into the vocabulary of the data
sources and then delegates query evaluation to a relational database management
system (RDBMS). The existing query rewriting systems include QuOnto [19],
Nyaya [9], Rapid [7], Requiem [17]/Blackout [18], Clipper [8], Prexto [22] and
the system of [14] (some of which use datalog engines rather than RDBMSs).

To illustrate how an OBDA system works, we take a simplified IMDb database
(www.imdb.com/interfaces), whose schema contains relations title[m, t, y] with in-
formation about movies (ID, title, production year), and castinfo[p,m, r] with
information about movie casts (person ID, movie ID, person role). The users are
not supposed to know the structure of the database. Instead, they are given an
ontology, say MO (www.movieontology.org), describing the application domain
in terms of concepts (classes), such as mo:Movie and mo:Person, and roles and
attributes (object and datatype properties), such as mo:cast and mo:year:

mo:Movie ≡ ∃mo:title, mo:Movie ⊑ ∃mo:year,

mo:Movie ≡ ∃mo:cast, ∃mo:cast− ⊑ mo:Person

(we use the description logic parlance of OWL2QL). The user can query the
data in terms of concepts and roles of the ontology; for example,

q(t, y) ← mo:Movie(m), mo:title(m, t), mo:year(m, y), (y > 2010)

1 http://ontop.inf.unibz.it



is a query asking for the titles of recent movies with their production year. To
rewrite it to an SQL query over the data source, the OBDA system requires a
mapping that relates the ontology terms to the database schema; for example:

mo:Movie(m), mo:title(m, t), mo:year(m, y) ← title(m, t, y),

mo:cast(m, p), mo:Person(p) ← castinfo(p,m, r).

By evaluating this mapping over a data instance with, say,

title

m t y

728 ‘Django Unchained’ 2012

castinfo

p m r

n37 728 1
n38 728 1

we obtain the ground atoms

mo:Movie(728), mo:title(728, ‘Django Unchained’),mo:year(728, 2012),

mo:Person(n37), mo:cast(728, n37), mo:Person(n38), mo:cast(728, n38)

that can be thought of as the ABox over which we can execute the query q(t, y)
taking account of the consequences implied by the MO ontology. Such an ABox
is not materialised and called virtual [21].

Thus, the OBDA system is facing three tasks: it has to (i) rewrite the original
query to a query over the virtual ABox, (ii) unfold the rewriting, using the map-
ping, into an SQL query, and then (iii) evaluate it over the data instance using
an RDBMS. The idea of OBDA stems from the empirical fact that answering
conjunctive queries (CQs) in RDBMSs is very efficient in practice. So one can
expect task (iii) to be smooth provided that the rewriting (i) and unfolding (ii)
are reasonably small and standard.

However, the available experimental data (see, e.g., [20, 3]) as well as the
recent complexity-theoretic analysis of rewritings show that they can be pro-
hibitively large or complex. First, there exist CQs and ontologies for which
any (first-order or datalog) rewriting results in an exponential blowup [12]; the
polynomial datalog rewriting of [10] hides this blowup behind the existential
quantification over special constants. Second, even for simple and natural on-
tologies and CQs, rewritings (i) become exponential when presented as (most
suitable for RDBMSs) unions of CQs (UCQs) because they must include all
sub-concepts/roles of each atom in the query induced by the ontology.

In Ontop, this bottleneck is tackled by making use of

– the tree-witness rewriting [13] that separates the topology of the CQ from
the taxonomy defined by the ontology;

– an extended mapping (called a T -mapping [21]) that takes account of the
taxonomy and can be optimised using database integrity constraints and
SQL features;

– an unfolding algorithm that employs the semantic query optimisation tech-
nique with database integrity constraints to produce small and efficient SQL
queries.



For example, a rewriting of the query q(t, y) above can be split into the CQ

q′(t, y) ← ext:Movie(m), mo:title(m, t), mo:year(m, y), (y > 2010)

and the datalog rules for the ext:Movie predicate:

ext:Movie(m) ← mo:Movie(m), (1)

ext:Movie(m) ← mo:cast(m, p), (2)

ext:Movie(m) ← mo:title(m, t). (3)

The former inherits the topology of the original CQ, while the latter repre-
sents the taxonomy defined by the ontology. In theory, the topological part can
contain exponentially many rules (reflecting possible matches in the canonical
models) [12], but this never happens in practice, and usually there are very few
of them (see the experiments below). The taxonomical component is indepen-
dent from the CQ and combines with the mapping into a T -mapping [21], which
can then be drastically simplified using the database integrity constraints. For
example, since castinfo has a foreign key (its movie ID attribute references ID in
title), every virtual ABox of IMDb will satisfy the axiom ∃mo:cast ⊑ mo:Movie,
making (2) redundant; moreover, (3) and (1) give rise to the same rule, result-
ing in a T -mapping with a single rule for mo:Movie. Thus, a rewriting over
IMDb ABoxes will be a single CQ. In contrast, any UCQ rewriting over arbi-
trary ABoxes contains three CQs which simply duplicate the answers because
the data respects the integrity constraints (a query with a few more atoms may
give rise to a UCQ rewriting with thousands CQs).

By straightforwardly applying the unfolding algorithm to q′ and the T -
mappingM above, we obtain the query

q′′
0(t, y) ← title(m, t0, y0), title(m, t, y1), title(m, t2, y), (y > 2010),

which requires two (potentially) expensive Join operations. However, if we use
the fact that the ID attribute is a primary key of title (uniquely defining the
title and production year), then q′ can be unfolded into a much simpler

q′′(t, y) ← title(m, t, y), (y > 2010).

In fact, such multiple Joins are very typical in OBDA because n-ary relations
of data sources are reified by ontologies into binary roles and attributes.

The aim of this paper is to (i) present the rewriting and optimisation tech-
niques that allow Ontop to produce optimised queries as discussed above, and
(ii) evaluate the performance of Ontop using three use cases. We demonstrate
that—at least in these cases—Ontop produces query rewritings of reasonably
high quality and its performance is comparable to that of traditional RDBMSs.

2 OWL2QL and Databases

The language of OWL2QL contains individual names ai, concept names Ai,
and role names Pi (i ≥ 1). Roles R and basic concepts B are defined by

R ::= Pi | P−
i , B ::= ⊥ | Ai | ∃R.



A TBox (or an ontology), T , is a finite set of inclusions of the form

B1 ⊑ B2, B1 ⊑ ∃R.B2, B1 ⊓B2 ⊑ ⊥, R1 ⊑ R2, R1 ⊓R2 ⊑ ⊥.

An ABox, A, is a set of atoms of the form Ak(ai) or Pk(ai, aj). The semantics for
OWL2QL is defined in the usual way based on interpretations I = (∆I , ·I) [2].
The set of individual names in A is denoted by ind(A).

A conjunctive query q(x) is a first-order formula ∃y φ(x,y), where φ is a
conjunction of atoms of the form Ak(t1) or Pk(t1, t2), and each ti is a term (an
individual or a variable in x or y). We use the datalog notation for CQs, writing
q(x)← φ(x,y) (without existential quantifiers), and call q the head and φ the
body of the rule. A tuple a ⊆ ind(A) is a certain answer to q(x) over (T ,A) if
I |= q(a) for all models I of (T ,A); in this case we write (T ,A) |= q(a).

We assume that the data comes from a relational database rather than an
ABox. We view databases [1] as triples (R, Σ, I), where R is a database schema,
containing predicate symbols for both stored database relations and views (to-
gether with their definitions in terms of stored relations), Σ is a set of integrity
constraints over R (in the form of inclusion and functional dependencies), and
I is a data instance over R (satisfying Σ). The vocabularies of R and T are
linked together by means of mappings. A mapping,M, from R to T is a set of
(GAV) rules of the form

S(x)← φ(x, z),

where S is a concept or role name in T and φ(x, z) a conjunction of atoms with
stored relations and views from R and a filter, that is, a Boolean combination
of built-in predicates such as = and <. (Note that, by including views in the
schema, we can express any SQL query in mappings.) Given a mapping M,
the atoms S(a), for S(x) ← φ(x, z) in M and I |= ∃z φ(a,z), comprise the
ABox, AI,M, which is called the virtual ABox forM over I. We can now define
certain answers to a CQ q over a TBox T linked by a mappingM to a database
(R, Σ, I) as certain answers to q over (T ,AI,M).

3 The Architecture of Ontop

We now briefly describe the main ingredients of Ontop: the tree-witness rewriting
over complete ABoxes, T -mappings and the unfolding algorithm. Suppose we are
given a CQ q over an ontology T and a mappingM from a database schema R
to T . The tree-witness rewriting of q and T , denoted qtw, presupposes that the
underlying ABox A is H-complete with respect to T in the sense that

S(a) ∈ A whenever S′(a) ∈ A and T |= S′ ⊑ S,

for all concept names S and basic concepts S′ and for all role names S and
roles S′ (we identify P−(b, a) and P (a, b) in ABoxes and assume ∃R(a) ∈ A if
R(a, b) ∈ A, for some b). An obvious way to define H-complete ABoxes is to



take the compositionMT ofM and the inclusions in T given by

A(x)← φ(x,z), if A′(x)← φ(x, z) ∈M and T |= A′ ⊑ A,
A(x)← φ(x, y, z), if R(x, y)← φ(x, y, z) ∈M and T |= ∃R ⊑ A,

P (x, y)← φ(x, y, z), if R(x, y)← φ(x, y, z) ∈M and T |= R ⊑ P.

(We identify P−(y, x) with P (x, y) in the heads of the mapping rules.) Thus, to
compute answers to q over T withM and a database instance I, it suffices to
evaluate the rewriting qtw over AI,MT :

(T ,AI,M) |= q(a) iff AI,MT |= qtw(a), for any I and a ⊆ ind(AI,M).

..

H-complete
ABox

. virtual
ABox

. database
instance

. mapping.

completion

.

T -mapping

.

UCQ

.

tw-rewriting

.standard
rewritings

OBDA systems such as QuOnto [19] and Prexto [22] first construct rewritings
over arbitrary ABoxes and only then unfold them, using mappings, into UCQs
which are evaluated by an RDBMS (dashed lines above). The same result can be
obtained by unfolding rewritings over H-complete ABoxes with the help of the
composition MT (solid lines above). However, in practice the resulting UCQs
very often turn out to be too large [20].

InOntop, we also start withMT . But before applying it to unfold qtw, we first
simplify and reduce the size of the mapping by exploiting the database integrity
constraints. Following [21], a mapping M from R to T is called a T -mapping
over integrity constraints Σ if the virtual ABox AI,M is H-complete w.r.t. T ,
for any data instance I satisfying Σ. (The composition MT is a T -mapping
over any Σ.) Ontop transforms MT to a much simpler T -mapping by taking
account of database integrity constraints (dependencies), and SQL features such
as disjunctions in filter conditions.

3.1 Tree-Witness Rewriting

We explain the essence of the tree-witness rewriting using an example. Consider
an ontology T with the axioms

RA ⊑ ∃worksOn.Project, Project ⊑ ∃isManagedBy.Prof, (4)

worksOn− ⊑ involves, isManagedBy ⊑ involves (5)

and the CQ asking to find those who work with professors:

q(x) ← worksOn(x, y), involves(y, z), Prof(z).

Observe that if a model I of (T ,A), for some A, contains individuals a ∈ RAI

and b ∈ ProjectI , then I must also contain the following fragments:



...
a

.

RA

..

Project

.
u

.. Prof.
v

.. worksOn.
involves−

..
isManagedBy

.
involves

..
b

.

Project

.. Prof.
w

..
isManagedBy

.
involves

Here the points ◦ are not necessarily named individuals from the ABox, but
can be generated by the axioms (4) as (anonymous) witnesses for the existential
quantifiers. It follows then that a is an answer to q(x) if a ∈ RAI , in which case
the atoms of q are mapped to the fragment generated by a as follows:

...q(x) .
x
..

y
.. Prof.

z
.. worksOn.. involves..

a

.

RA

..

Project

.

u

..

Prof

.

v

..

worksOn, involves−

..

isManagedBy, involves

Alternatively, if a is in both RAI and Prof I , then we obtain the following match:

...q(x) .
x

..
y

..

Prof

.

z

..
worksOn

.

involves

..

a

.

RA

..

Project

.

u

..

Prof

.

v

..

worksOn, involves−

..

isManagedBy, involves

Another option is to map x and y to ABox individuals, a and b, and if b is in
ProjectI , then the last two atoms of q can be mapped to the anonymous part:

...q(x) .
x
..

y
.. Prof.

z
.. worksOn.. involves..

b

.

Project

..

Prof

.

w

..

isManagedBy, involves

Finally, all the atoms of q can be mapped to ABox individuals. The possible ways
of mapping parts of the CQ to the anonymous part of the model are called tree
witnesses. The tree witnesses for q found above give the following tree-witness
rewriting qtw of q and T over H-complete ABoxes:

qtw(x)← worksOn(x, y), involves(y, z),Prof(z), (6)

qtw(x)← RA(x), (7)

qtw(x)← RA(x),Prof(x), (8)

qtw(x)← worksOn(x, y),Project(y). (9)

(Note that qtw is not a rewriting over arbitrary ABoxes.)

In theory, the size of the rewriting qtw can be large [12]: there exists a se-
quence of qn and Tn generating exponentially many (in |qn|) tree witnesses, and
any rewriting of qn and Tn is of exponential size (unless it employs |qn|-many ad-
ditional existentially quantified variables [10]). Our experiments (see Section 4)
demonstrate, however, that in practice, real-world ontologies and CQs generate
small and simple tree-witness rewritings.

There are two ways to simplify tree-witness rewritings further. First, we can
use a subsumption algorithm to remove redundant CQs from the union: for
example, (7) subsumes (8), which can be safely removed. Second, we can reduce
the size of the individual CQs in the union using the following observation: for



any CQ q (viewed as a set of atoms),

q ∪ {A(x), A′(x)} ≡c q ∪ {A(x)}, if T |= A ⊑ A′,

q ∪ {A(x), R(x, y)} ≡c q ∪ {R(x, y)}, if T |= ∃R ⊑ A,
q ∪ {P (x, y), R(x, y)} ≡c q ∪ {R(x, y)}, if T |= R ⊑ P,

where ≡c reads ‘has the same certain answers over H-complete ABoxes’ (we
again identify P−(y, x) with P (x, y)). Surprisingly, such a simple optimisa-
tion, especially for the domain/range constraints, makes rewritings substantially
shorter [23, 9].

3.2 Optimising T -mappings

Suppose M ∪ {S(x) ← ψ1(x,z)} is a T -mapping over Σ. If there is a more
specific rule than S(x)← ψ1(x, z) inM, thenM itself is also a T -mapping. To
discover such ‘more specific’ rules, we run the standard query containment check
(see, e.g., [1]), but taking account of the inclusion dependencies. For example,
since T |= ∃mo:cast ⊑ mo:Movie, the compositionMMO of the mapping in the
introduction and MO contains the following rules for mo:Movie:

mo:Movie(m) ← title(m, t, y),

mo:Movie(m) ← castinfo(p,m, r).

The latter rule is redundant since IMDb contains the foreign key

∀m
(
∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)

)
.

Another way to reduce the size of a T -mapping is to identify pairs of rules
whose bodies are equivalent up to filters w.r.t. constant values. For example, the
mappingM for IMDb and MO contains 6 rules for sub-concepts of mo:Person:

mo:Actor(p)← castinfo(c, p,m, r), (r = 1),

· · ·
mo:Editor(p)← castinfo(c, p,m, r), (r = 6).

So, the composition MMO contains six rules for mo:Person that differ only in
the last condition (r = k), for 1 ≤ k ≤ 6. These can be reduced to a single rule:

mo:Person(p)← castinfo(c, p,m, r), (r = 1) ∨ · · · ∨ (r = 6).

Note that such disjunctions lend themselves to efficient evaluation by RDBMSs.

3.3 Unfolding with Semantic Query Optimisation (SQO)

The unfolding procedure [19] applies SLD-resolution to qtw and the T -mapping,
and returns those rules whose bodies contain only database atoms (cf. partial



evaluation in [15]). Ontop applies SQO [6] to rules obtained at the intermedi-
ate steps of unfolding. In particular, this eliminates redundant Join operations
caused by reification of database relations by means of concepts and roles. We
saw in the introduction that the primary key m of title, i.e., following two func-
tional dependencies with determinant m:

∀m
(
∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
,

∀m
(
∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
,

remove the two Join operations in title(m, t0, y0), title(m, t, y1), title(m, t2, y),
resulting in a single atom title(m, t, y). Note that these two Join operations were
introduced to reconstruct the ternary relation from its reification by means of
roles mo:title and mo:year.

The role of SQO in OBDA systems appears to be much more prominent
than in conventional RDBMSs, where it was initially proposed to optimise SQL
queries. While some of SQO techniques reached industrial RDBMSs, it never
had a strong impact on the database community because it is costly compared
to statistics- and heuristics-based methods, and because most SQL queries are
written by highly-skilled experts (and so are nearly optimal anyway). In OBDA
scenarios, in contrast, SQL queries are generated automatically, and so SQO
becomes the only tool to avoid redundancy.

4 Experiments

We illustrate the performance of Ontop by three use cases. All experiments were
run on Ubuntu 12.04 64-bit with an Intel Core i5 650, 4 cores@3.20GHz, 16 GB
RAM and 1 TB@7200 rpm HD. We used a Java 7 virtual machine for Ontop
with MySQL 5.5 for Cases 1 and 3, and with PostgreSQL 9.1 for Case 2. Full
details of the experiments are available at obda.inf.unibz.it/data/owled13.

Case 1 is a simulation of a railway network for cargo delivery developed
by the University of Genoa with the industrial partner Intermodal Logistics [5].
The ILog ontology, mapping and queries are used to monitor the status of the
network. The case includes an ontology with 70 concepts and roles, a mapping
with 43 rules and 11 queries (www.mind-lab.it/~gcicala/isf2012). For our ex-
periments, we generated data for 30 days.

Case 2 uses the Movie Ontology (MO) over the real data from the Internet
Movie Database (IMDb) with a mapping created by the Ontop development
team. We use nine complex, yet natural queries, e.g.,

SELECT DISTINCT ?x ?title ?actor name ?prod year ?rating
WHERE {

?m a mo:Movie;
mo:title ?title;
mo:imdbrating ?rating;
dbpedia:productionStartYear ?prod year;
mo:hasActor ?x;
mo:hasDirector ?x .

?x dbpedia:birthName ?actor name .
FILTER ( ?rating > ’7.0’ && ?prod year >= 2000 && ?prod year <= 2010 )

}
ORDER BY desc(?rating) ?prod year
LIMIT 25



(full details are available at the URL above). Most queries are of high selectivity
and go beyond CQs, using inequalities, ORDER BY/LIMIT and DISTINCT op-
erators. Both the SQL database and the ontology were developed independently
by third parties (IMDb and the University of Zurich) for purposes different from
benchmarking.

Case 3 is based on the Lehigh University Benchmark (LUBM, swat.cse.
lehigh.edu/projects/lubm), which comes with an OWL ontology, 14 simple CQs
of varying degree of selectivity and a data generator. We approximated the
ontology in OWL2QL and created a database schema to store the data for 200
universities (1 university ≈ 130K assertions). Note that although the data has
some degree of randomness, it is not arbitrary and follows what can be regarded
as a natural pattern: each university has 15–25 departments, each department
has 7–10 full professors, every person has a name, etc. These considerations were
taken into account to produce a normalised database schema with relations of
appropriate arity together with primary and foreign keys (instead of the standard
universal tables storing RDF triples).

case ontology rules in assertions in
predicates inclusions mapping virtual ABox

ILog 45 70 43 1m
IMDb-MO 137 157 271 42m
LUBM 75 93 79 26m

The tables below give the results of the experiments with ILog and IMDb-MO.

ILog

IMDb

no optimisations with optimisations
query rewriting unfolding rewriting unfolding SQL execution

CQs time CQs time CQs time CQs time time answer size
Q1 1 0.005 1 0.004 1 0.000 1 0.004 0.008 582
Q2 1 0.001 4 0.004 1 0.000 1 0.001 0.900 41,594
Q3 1 0.003 1 0.002 1 0.000 1 0.002 0.015 6,710
Q4 1 0.004 1 0.004 1 0.000 1 0.003 0.660 41,000
Q5 1 0.001 2 0.004 1 0.000 2 0.004 0.008 7
Q6 1 0.007 1 0.002 1 0.000 1 0.001 0.009 170
Q7 2 0.001 2 0.002 2 0.000 2 0.001 0.080 269
Q8 1 0.000 1 0.001 1 0.000 1 0.001 0.008 621
Q9 2 0.001 2 0.007 2 0.000 2 0.007 0.009 94

Q10 1 0.004 1 0.001 1 0.000 1 0.002 1.000 22,666

Q1 1 0.008 2 0.003 1 0.010 1 0.003 1.652 25
Q2 1 0.001 2 0.004 1 0.001 1 0.003 3.371 53,400
Q3 1 0.004 7 0.012 1 0.004 1 0.000 1.316 10,681
Q4 1 0.000 2 0.002 1 0.001 1 0.001 0.219 25
Q5 2 0.010 126 0.037 2 0.016 3 0.006 1.335 327
Q6 1 0.001 2 0.000 1 0.000 1 0.000 0.085 69
Q7 1 0.001 4 0.001 1 0.000 1 0.001 0.070 4
Q8 1 0.000 156 0.026 1 0.000 1 0.003 4.144 3
Q9 1 0.001 1 0.001 1 0.001 1 0.001 0.365 37

We start with a few observations on the performance of query rewriting and
unfolding. The size of the produced SQL queries is given in the column CQs
under ‘unfolding.’ We can see that the Ontop optimisations produce very few
Select-Project-Join queries in the union, quite often only one. In contrast,
when the optimisations are disabled, the size of the union is in line with QuOnto,
Rapid and Requiem and can grow considerably, in particular, when large hierar-
chies are involved (cf. Q5 and Q8 in IMDb-MO where the union contains > 100
queries). To explain this behaviour, we observe first that almost all of the queries



in ILog and IMDb-MO have no tree witnesses, and so the rewriting returns the
original query (note that Q7, Q9 of ILog have a union in the original query).
The only exception is Q5 in IMDb-MO with one tree witness, which generates
two CQs in the rewriting. Second, the ratio of the number of rules in a map-
ping per concept/role in both scenarios is very low when our optimisations are
applied: most have at most one rule (even in the case of large hierarchies with
many domain/range axioms). So, the unfolding with such a mapping produces
a small number of Select-Project-Join queries in the union. These observa-
tions support our claim that, in practice, there are few tree witnesses and that
our T -mapping optimisations can handle efficiently concept and role hierarchies,
domain and range constraints.

The time required for query rewriting and optimisation is negligible and stays
within 4ms. In contrast, the time required to generate queries without optimi-
sations is higher, especially for queries involving large hierarchies (≥ 25ms): in
particular, Q5 and Q8 in IMDb-MO, where our optimisations reduce the time
of unfolding from 37/26ms to 3/6ms. Similarly to other systems, Ontop applies
CQ containment (CQC) checks to reduce the number of Select-Project-Join
queries, and these checks prove to be costly on large unfoldings without opti-
misations. Although few milliseconds might seem negligible, the performance of
such systems as RDF triple stores and DBs is measured in queries per second
and is usually expected to be in thousands. With such requirements, an overhead
of 20–30ms per query is not acceptable.

The execution time for SQL queries produced by Ontop, in MySQL or Post-
gres, is within 100ms for simple, high selectivity queries (with few results). Al-
though Q2, Q4 and Q10 in ILog and Q1, Q2, Q3, Q5 and Q8 in IMDb-MO take
up to 4s to execute, their SQL rewritings are optimal (in the sense that they
coincide with hand-crafted queries), and their relatively long execution time is
due to DISTINCT/ORDER BY over large relations.

LUBM

no optimisations with optimisations
query rewriting unfolding rewriting unfolding SQL execution

CQs time CQs time CQs time CQs time time answer size
Q1 1 0.014 1 0.003 1 0.021 1 0.003 0.009 4
Q2 1 0.001 13 0.018 1 0.001 1 0.002 0.012 499
Q3 1 0.000 1 0.001 1 0.000 1 0.001 0.009 6
Q4 1 0.001 14 0.017 1 0.001 10 0.015 0.010 306
Q5 1 0.000 7 0.001 1 0.000 7 0.001 0.011 720
Q6 1 0.000 2 0.000 1 0.000 2 0.000 10.805 2,088,195
Q7 1 0.000 8 0.006 1 0.000 2 0.001 0.008 67
Q8 1 0.000 2 0.003 1 0.000 2 0.003 0.086 7790
Q9 1 0.001 128 0.115 1 0.000 6 0.006 17.419 54,285

Q10 1 0.000 1 0.000 1 0.000 1 0.000 0.008 4
Q11 1 0.002 1 0.001 1 0.001 1 0.000 0.010 224
Q12 1 0.000 2 0.001 1 0.001 2 0.001 0.007 12
Q13 1 0.001 31 0.015 1 0.000 13 0.001 0.009 917
Q14 1 0.000 1 0.000 1 0.000 1 0.000 4.494 1,584,743

In the LUBM case, the queries have no tree witnesses, which results in tree-
witness rewritings that coincide with the original queries. LUBM is, however, the
only case where Ontop generated unions with hundreds Select-Project-Join
queries, which is due to a higher ratio of mappings per concept/role. This is a
consequence of the database structure and the way in which mappings construct



object URIs from integers and strings in the database (known as impedance
mismatch [19]). The generated SQL queries are still optimal in the sense that
they correspond to human-generated queries for the given database schema.

Query execution appears to be optimal for all queries (but Q6, Q9 and Q14),
with response times under 12ms even for queries with Join and filter operations
over large tables. This corresponds to the expected performance of an optimised
RDBMS, in which most operations can be performed using in-memory indexes
(provided that SQL queries have the right structure for the query planner). Q6,
Q9 and Q14 have low selectivity (large number of results) and the execution
time is dominated by disk access.

It is to be noted that although we used an OWL2QL approximation of
LUBM, most queries return the same results as for the original LUBM ontology.
The only exceptions are Q11 and Q12: all answers to Q11 are recovered with an
extra mappings simulating transitivity (up to a predefined depth) by means of
self-Joins on the transitive property; similarly, for all answers to Q12, we include
an extra mapping rule expressing ∃R.B ⊑ A on the elements of the virtual ABox.
The execution times in the table are given for the extensions described above,
which ensure completeness (w.r.t. the original LUBM) of the returned answers.

Finally, by comparing the performance of Ontop (see ontop.inf.unibz.it)
with that of other open-source or commercial systems [11, 16], we see that On-
top is much faster than Sesame or Jena (open-source), and similar to OWLIM
(commercial), but does not pay the heavy price for inference materialisation,
which can take days or hours.

5 Conclusions

To conclude, we believe this paper shows that—despite the negative theoretical
results on the worst-case OWL2QL query rewriting and sometimes disappoint-
ing experiences of the first OBDA systems—high-performance OBDA is achiev-
able in practice when applied to standard ontologies, queries and data stored in
relational databases. In such cases, query rewriting together with SQO and SQL
optimisations are fast, efficient and produce SQL queries of high quality.
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