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Introduction
Topological logics are a family of languages for represent-
ing and reasoning about topological data. The non-logical
primitives of these languages stand for various topological
relations and operations, and their valid formulas encode our
knowledge about those relations and operations. Consider,
for example, the six relations illustrated in Fig. 1. By em-
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NTTP(X,Y ) TTP(X,Y ) EQ(X,Y ) PO(X,Y ) DC(X,Y )EC(X,Y )

X Y X and Y

Figure 1: RCC8-relations over disc-homeomorphs in R2.

ploying the binary predicates DC (disconnection), EC (exter-
nal contact), PO (partial overlap), EQ (equality), TPP (tan-
gential proper parthood) and NTPP (non-tangential proper
parthood) to stand for these relations, the formula

TPP(r1, r2) ∧ NTPP(r1, r3)→
PO(r2, r3) ∨ TPP(r2, r3) ∨ NTPP(r2, r3) (1)

makes the intuitively reasonable assertion that, if region
r1 externally contacts region r2 and is a non-tangential
proper part of region r3, then r2 either partially overlaps,
or else is a proper part (tangential or non-tangential) of
r3. This particular topological logic, known as RCC8, has
been intensively analysed in the literature on qualitative
spatial reasoning; see e.g., (Egenhofer and Franzosa 1991;
Randell, Cui, and Cohn 1992; Renz and Nebel 1999).

We referred to r1, r2 and r3 above as ‘regions,’ and de-
picted them as discs in the plane. But a moment’s thought
shows that the set of valid formulas of any topological
logic depends on the precise collection of regions we have
in mind. For instance, there are RCC8-formulas that are
valid as long as regions are taken to be discs in the plane,
but invalid when regions are allowed to be disconnected
(i.e. to consist of more than one ‘piece’). Thus, an im-
portant semantic issue for a topological logic like RCC8
is to identify the intended models. In this paper, we show
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how even relatively inexpressive topological logics are sen-
sitive both to the spaces they are interpreted over and—more
particularly—to the subsets of those spaces over which their
variables are allowed to range. We identify the crucial notion
of tameness, and chart the surprising patterns of sensitivity
to the presence of non-tame regions exhibited by a range of
topological logics in low-dimensional Euclidean spaces.

Historically,RCC8 has typically been interpreted over the
regular closed sets of arbitrary topological spaces. (A set
is regular closed if it is the topological closure of an open
set.) This very general interpretation is prima facie sur-
prising: after all, in qualitative spatial reasoning, it is the
low-dimensional Euclidean spaces R, R2 and R3 that inter-
est us—not the arbitrary topological spaces found in mathe-
matics textbooks! The answer to this objection is that if an
RCC8-formula is valid over regular closed subsets of Rn for
some n ≥ 1, then it is valid in all topological spaces what-
soever (Renz 1998). Put another way: the language RCC8
is almost totally insensitive to the underlying space.

However, this insensitivity disappears when we increase
the expressive resources at our command. To illustrate, con-
sider the effect of adding a unary predicate c, where c(r)
means ‘r is connected.’ We call the resulting language
RCC8c. Thus, theRCC8c-formula∧

1≤i≤3

c(ri) →
∨

1≤i<j≤3

¬EC(ri, rj) (2)

states that no three connected regions r1, r2 and r3 can ex-
ternally contact each other. In R2 (or in R3), this formula is
clearly invalid. However, (2) is valid when interpreted over
R, since the non-empty connected regular closed subsets of
R are simply the (non-empty) closed intervals.

Actually, the standard notion of connectedness may be in-
appropriate for many applications of qualitative spatial rea-
soning, particularly in the context of geographical informa-
tion systems (GIS). Consider, for example, the (closed) re-
gion formed by two triangles touching externally at a com-
mon vertex. Mathematically speaking, this set is connected;
yet we are loath to take it to represent, say, a connected plot
of land on a map. Accordingly, we introduce the unary pred-
icate c◦, where c◦(r) means ‘the topological interior of r is
connected,’ and denote byRCC8c◦ the result of adding c◦ to
RCC8. Again, one can show that RCC8c◦, like RCC8c, is
sensitive to the topological space in which it is interpreted.



lang. R R2 R3 RC
RCP RC RCP RC RCP RC

RCC8c◦ NP 6= NP NP
Th. 6, 9 NP

RCC8c Th. 2 NP
Th. 6, 9 Th. 12

Bc◦ NP ≥ EXPTIME
Th. 11

6=
Th. 7 ? EXPTIME

Th. 15
6=

Th. 14 ? ? NP
Th. 16

Bc Th. 3 ≥ EXPTIME
Th. 10

6=
Th. 8

≥ EXPTIME
Th. 10 ≥ EXPTIME ? ≥ EXPTIME ? EXPTIME

Cc◦ PSPACE 6= PSPACE ≥ EXPTIME
Th. 10

6=
Th. 7

≥ EXPTIME
Th. 10 ≥ EXPTIME 6=

Th. 14 ≥ EXPTIME 6=
Th. 13 EXPTIME

Cc Th. 2 ≥ EXPTIME
Th. 10

6=
Th. 8

≥ EXPTIME
Th. 10 ≥ EXPTIME ? ≥ EXPTIME ? EXPTIME

Figure 2: Summary of the expressiveness and complexity results.

Another way to increase the expressive power ofRCC8 is
to provide the means to talk about combinations of regions.
Thus, in the language known as BooleanRCC8 (Wolter and
Zakharyaschev 2000), we use r1 + r2, r1 · r2 and −r for the
regular closures of r1∪ r2, r1∩ r2 and the complement of r,
respectively. We denote this extension of RCC8 by C (this
nomenclature will be justified in the sequel). By extending C
with either of the predicates c or c◦, we obtain the languages
Cc and Cc◦. For example, the Cc◦-formula

c◦(−r1)∧c◦(−r2)∧¬c◦(−(r1 +r2))→ ¬DC(r1, r2) (3)

can be shown to be valid for regular closed sets in Euclidean
space of any dimension (Theorem 13); yet it is invalid in
other topological spaces—for example, the torus (Fig. 3).

r1

r2

Figure 3: Invalidating (3) in the torus.

Once we have connectedness predicates at our disposal,
two further topological languages suggest themselves. We
denote by Bc the language featuring the Boolean function
symbols +, · and −, together with the equality predicate
= and the connectedness predicate c; the language Bc◦ is
defined similarly, but with c replaced by c◦.

The language Bc◦ nicely illustrates a subtle but impor-
tant semantic issue which is often neglected in discussions of
topological logics. Consider the Bc◦-formulas (for m ≥ 3):∧

1≤i≤m

c◦(ri) ∧ c◦
(∑
1≤i≤m

ri
)
→

∨
2≤i≤m

c◦(r1 + ri). (4)

Interpreted over the regular closed subsets of R2, these for-
mulas are invalid: Fig. 4 shows a counterexample (with
m = 3) in which the boundary between r2 and r3 is formed
by the curve sin(1/x) over the interval (0, 1]. Yet r2 and
r3 are hardly plausible models of, for instance, regions oc-
cupied by physical objects resting on a surface, or plots of
land in a cadastre. Crucially, it can be shown (Lemma 1)
that (4) becomes valid as soon as we restrict attention to
‘well-behaved’ (as we shall say: tame) subsets of Rn—in

r1

r2

r3

Figure 4: Three regular closed sets in R2 satisfying (4).

particular, to polyhedra (or polygons). Therefore, in decid-
ing how to interpret topological logics for spatial representa-
tion and reasoning, it is not sufficient merely to fix the topo-
logical space in question: we must also specify which sub-
sets of that space we wish to count as bona fide regions.

This paper undertakes the kind of semantic analysis of
topological logics we have just argued for. We consider the
six languages introduced above, and interpret them in R, R2

and R3. We show that the dimensionality of the space is im-
portant for all of our languages, but that, in addition, these
languages exhibit varying patterns of sensitivity to tameness
in different dimensions. It turns out that only RCC8c and
RCC8c◦ are insensitive to tameness in R2 and R3, while—
surprisingly—Bc and Bc◦ do not feel it in R; in all these
cases reasoning (satisfiability) proves to be NP-complete.
Reasoning with Bc, Bc◦, Cc and Cc◦ in Rn, for n ≥ 2, is
shown to be generally EXPTIME-hard (apart from two cases
that are still open). A matching upper bound is obtained for
Bc◦ over polyhedra in Rn, n ≥ 3. The obtained results are
collected in Fig. 2. The proofs of these results are occasion-
ally intricate, and can only be sketched here. Full details can
be found at http://www.dcs.bbk.ac.uk/˜roman.

Preliminaries
Let T be a topological space. We denote the closure of any
X ⊆ T by X− , its interior by X◦ and its boundary by
δX = X− \ X◦ . We call X regular closed if X = X◦− ,
and denote by RC(T ) the set of all regular closed subsets of
T . It is known that RC(T ) forms a Boolean algebra under
the operations r1 + r2 = r1 ∪ r2, r1 · r2 = (r1 ∪ r2)◦− and
−r1 = (T \ r1)− . A subset X ⊆ T is connected if it can-
not be covered by the union of two non-empty and disjoint
subsets which are open in the subspace topology on X . We
say that X is interior-connected if X◦ is connected.



By a topological language we mean a language featuring
an infinite set of variables, a fixed non-logical signature of
function symbols and predicates (with standard meanings as
topological operations and relations), and the usual connec-
tives of propositional logic. If L is a topological language, a
frame for L is a collection F of subsets of some topological
space T ; and a model for L over F is a pair (F, σ), where
σ is a function from variables to elements of F. Thus, for
any topological space T , RC(T ) is a frame for any of our
topological languages; we denote by RC the class of all such
frames. In this paper, we shall be concerned exclusively with
frames which form subsets of RC(T ) for some T . Restrict-
ing attention to regular closed sets is regarded as a conve-
nient means of ignoring the boundaries of spatial regions.

Since the meanings of the non-logical primitives of L are
fixed, any model defines a notion of truth for L-formulas in
the obvious way. If F is a frame and ϕ an L-formula, we
say that ϕ is satisfiable over F if ϕ is true in some model
over F. If K is a class of frames, we say that ϕ is satisfiable
over K if ϕ is satisfiable over some frame in K; and we say
that ϕ is valid over K if ¬ϕ is not satisfiable over K. Thus,
satisfiability and validity are dual notions in the usual sense.
A topological logic is a pair (L,K) where L is a topological
language and K a class of frames for L. The satisfiability
problem for (L,K) is denoted by Sat(L,K).

For regular closed sets, the RCC8-predicates are stan-
dardly interpreted as follows:

DC(r1, r2) iff r1 ∩ r2 = ∅,
EC(r1, r2) iff r1 ∩ r2 6= ∅ but r◦1 ∩ r

◦
2 = ∅,

PO(r1, r2) iff r◦1 ∩ r
◦
2 , r

◦
1 \ r2, r

◦
2 \ r1 6= ∅

EQ(r1, r2) iff r1 = r2,
TPP(r1, r2) iff r1 ⊆ r2 but r1 6⊆ r◦2 and r2 6⊆ r1,

NTPP(r1, r2) iff r1 ⊆ r◦2 but r2 6⊆ r1.

The unary predicates c and c◦ are interpreted as the prop-
erties of connectedness and interior-connectedness, respec-
tively. The function symbols +, ·, − and constants 0 and 1
are interpreted as the corresponding operations and elements
in RC(T ). The contact predicate C holds between regions
r1 and r2 if and only if r1∩r2 6= ∅. Thus,C(r1, r2) is equiv-
alent to ¬DC(r1, r2). In the presence of the Boolean func-
tions, all the RCC8-predicates can be expressed in terms of
C and = (i.e., EQ), and vice versa (Kontchakov et al. 2009);
hence the name C for the Boolean extension ofRCC8.

Fixing n ≥ 1, any (n − 1)-dimensional hyperplane in
Rn bounds two regions in RC(Rn); let us call these regions
half-spaces. We denote by RCP(Rn) the Boolean subalge-
bra of RC(Rn) generated by the half-spaces. We call the
elements of RCP(Rn) polyhedra in Rn, and the elements of
RCP(R2) polygons. We have: (i) every polyhedron is the
union of finitely many connected polyhedra; and (ii) every
polyhedron satisfies the curve-selection lemma (Bochnak et
al. 1998, p. 38). (The regions r2 and r3 of Fig. 4 lack curve-
selection.) We call any collection of (regular closed) sets
satisfying these two properties tame. Tame regions are re-
garded as well-behaved.

More generally, a subset of Rn is semi-algebraic if it is
definable by a formula with n free variables in the first-order
language of fields; we denote the collection of regular closed

semi-algebraic subsets of Rn by RCS(Rn). Semi-algebraic
sets are certainly representationally adequate for all practical
purposes, yet they are tame in the above sense. Since, how-
ever, even very expressive topological languages standardly
cannot distinguish between semi-algebraic sets and polyhe-
dra, we may as well, for the purpose of restricting attention
to tame regions, focus on polyhedra; and that is what we do
in the sequel. Note also that, in GISs, regions are usually
represented as polygons.

One-dimensional Euclidean space
First we consider the logics (L,RC(R)) and (L,RCP(R)),
where L is any of topological languages introduced above.
The one-dimensional case is simple to analyse, yet illus-
trates well the kinds of phenomena that will occupy us at
greater length when we come to the 2D and 3D cases.

Over R, the notions of connectedness and interior-
connectedness coincide; hence, we have only the languages
RCC8c, Bc and Cc to consider. We begin by observing that
the dimensionality of the space is significant.
Theorem 1. For any L ∈ {RCC8c,Bc, Cc} and n ≥ 2,
Sat(L,RC(R)) $ Sat(L,RC(Rn)).
Proof. The inclusion holds because any tuple in RC(R) can
easily be cylindrified to form a tuple in RC(Rn), n ≥ 2,
satisfying the same L-formulas. To see that it is proper, we
observed above that (2) is invalid over RC(Rn) for n ≥ 2;
but it is valid over RC(R). For Bc, consider

∧
1≤i≤3

(
c(ri)∧

(ri 6= 0)
)
→
∨

1≤i<j≤3 ¬
(
(ri · rj = 0) ∧ c(ri + rj)

)
.

Next, we consider the issue of tameness. Over R, the lan-
guages RCC8c and Cc are sensitive to the presence of non-
tame regions:
Theorem 2. Sat(RCC8c,RCP(R)) $ Sat(RCC8c,RC(R))
and Sat(Cc,RCP(R)) $ Sat(Cc,RC(R)).
Proof. The inclusions are trivial. To show that they are
proper, the RCC8c-formula c(r1) ∧

∧
1≤i<j≤4 EC(ri, rj) is

satisfiable over RC(R), but not over RCP(R); see Fig. 5.

r1 r3 r4r2r4

r2 r3

r4

Figure 5: Subsets of R used in the proof of Theorem 2.

The language Bc, by contrast, is not sensitive to tameness:
Theorem 3. Sat(Bc,RC(R)) = Sat(Bc,RCP(R)).
Proof. See http://www.dcs.bbk.ac.uk/˜roman.

Turning now to complexity, it is already known that
Sat(Bc,RC(R)) is NP-complete (Kontchakov et al. 2009),
and Sat(Cc,RC(R)) is PSPACE-complete (Kontchakov et al.
2008). The picture is completed by the following results:
Theorem 4. The problems Sat(RCC8c,RC(R)) and
Sat(RCC8c,RCP(R)) are both NP-complete; the problem
Sat(Cc,RCP(R)) is PSPACE-complete.
Proof. See http://www.dcs.bbk.ac.uk/˜roman.



Two-dimensional Euclidean space
We first observe that, for the languages we consider, confin-
ing attention to the space R2 is significant for satisfiability.

Theorem 5. For any of the languages L considered in this
paper, and any n ≥ 3, Sat(L,RC(R2)) $ Sat(L,RC(Rn)).

Proof. Again, inclusion follows by cylindrification.
To show that it is proper, let ri (1 ≤ i ≤ 5) and ri,j

(1 ≤ i < j ≤ 5) be variables, let ϕ be theRCC8c-formula∧
1≤i<j≤5

c(ri,j) ∧
∧

{i,j}∩{k,`}=∅

DC(ri,j , rk,`) ∧
∧

i∈{j,k}

TPP(ri, rj,k),

and let ϕ◦ be theRCC8c◦-formula obtained by replacing all
occurrences of c by c◦. Thus, ϕ◦ entails ϕ. A simple ar-
gument based on the non-planarity of the graph K5 shows
that ϕ (and hence ϕ◦) is not satisfiable over RC(R2). On the
other hand, ϕ◦ (and hence ϕ) is satisfiable over RC(Rn) for
n ≥ 3. This deals withRCC8c,RCC8c◦, C and Cc◦. For Bc,
replace DC(ri,j , rk,`) by ¬c(ri,j + rk,`) and TPP(ri, rj,k)
by (ri · rj,k = ri) ∧ (ri 6= 0). For Bc◦, use the formula∧

1≤i≤5
(
c◦(ri) ∧ (ri 6= 0)

)
∧
∧

1≤i<j≤5
(
c◦(rj + rj) ∧

(ri · rj = 0)
)
.

We now proceed to show (Theorems 6–8) that, over R2,
our topological languages exhibit a different pattern of sen-
sitivity to tameness to that which we observed over R.

Theorem 6. If an RCC8c- or RCC8c◦-formula is satisfi-
able over RC(R2), then it can be satisfied over the frame of
bounded regular closed polygons. In consequence:

Sat(RCC8c,RC(R2)) = Sat(RCC8c,RCP(R2)),

Sat(RCC8c◦,RC(R2)) = Sat(RCC8c◦,RCP(R2)).

Proof. For the first statement, it suffices to construct,
for any tuple r1, . . . , rn in RC(R2), a corresponding tuple
p1, . . . , pn in RCP(R2) satisfying exactly the same atomic
RCC8c-formulas. We may assume that the ri are distinct
and non-empty. By reordering the variables if necessary,
we can ensure that ri ⊆ rj implies i ≤ j. For all i, j
(1 ≤ i < j ≤ n), let Rij ∈ {DC,EC,PO,TPP,NTPP} be
the unique relation such that Rij(ri, rj).

First, we construct regular closed sets r+1 , . . . , r
+
n such

that rj ⊆ (r+j )◦ , (r+j )◦ is connected whenever rj is con-
nected, and r+j ∩ r

+
j′ = ∅ whenever rj ∩rj′ = ∅, for all j, j′.

This is possible because R2 is a normal, locally connected
topological space and the ri are regular closed subsets of R2.
For all i, j (1 ≤ i < j ≤ n), pick points o, o′, o′′ satisfy-
ing the conditions: (i) if Rij = EC, then o ∈ δri ∩ δrj ;
(ii) if Rij = PO, then o ∈ r◦i ∩ r

◦
j , o′ ∈ r◦i \ rj , and

o′′ ∈ r◦j \ ri; (iii) if Rij = TPP, then o ∈ δri ∩ δrj and
o′ ∈ r◦j \ ri; (iv) if Rij = NTPP, then o ∈ r◦j \ ri. And
for all i (1 ≤ i ≤ n), pick points o, o′ satisfying the condi-
tion that, if ri is not connected, then o and o′ lie in different
components of ri. Enumerate the chosen (distinct) points as
o1, . . . , om: we call them witness points. We can draw dis-
joint closed disks d1, . . . , dm, centred on the respective wit-
ness points ok, such that, for all j ≤ n and k ≤ m: ok ∈ r◦j

implies dk ⊆ r◦j ; and ok ∈ (r+j )◦ implies dk ⊆ (r+j )◦ .
Indeed, we can ensure that none of the sets (r+j )◦ is discon-
nected by (simultaneous) removal of d1, . . . , dm.

We now begin the construction of the p1, . . . , pn. First,
for each set rj and each witness point ok, we select a poly-
gon wk,j inside dk. We refer to the wk,j as wedges: for
each j ≤ n, and each k ≤ m we will ensure below that
wk,j ⊆ pj . Wedges are selected as follows. (i) If ok ∈ δrj ,
pick a point qk,j ∈ δdk ⊆ (r+j )◦ , and let wk,j be a lozenge
with wk,j ⊆ dk and ok, qk,j ∈ δwk,j ; see Fig. 6a. We may
pick the qk,j to be distinct, and construct the wk,j so that no
two such wk,j have intersecting interiors. (ii) If ok ∈ r◦j ,
pick a point qk,j ∈ δdk ⊆ r◦j , and let wk,j be a lozenge
such that wk,j ⊆ dk, ok ∈ (wk,j)

◦ and qk,j ∈ δwk,j .
Again, we may pick the qk,j to be distinct from each other
and from the qk,j selected in (i); see Fig. 6b. (iii) Other-
wise, i.e., if ok 6∈ rj , let wk,j = ∅. The wedges wk,j
will ensure that p1, . . . , pn contain certain witness points
required for the satisfaction of the relevant atomic RCC8c-
formulas. For example, if PO(ri, rj), there will exist a wit-
ness point ok ∈ r◦i ∩ r

◦
j ; but then ok ∈ w◦k,i ∩ w

◦
k,j , whence

ok ∈ p◦i ∩ p
◦
j , which is required to ensure that PO(pi, pj).

a) ok ∈ δrj b) ok ∈ r◦j

ok
okwk,j

wk,jqk,j ∈ (r+
j )
◦

qk,j ∈ r◦j

Figure 6: Wedges involving the witness point ok.

Fix any j ≤ n. If rj is connected, we need to con-
nect up the various wedges wk,j so as to ensure that pj is
connected. Specifically, we construct a connected, regular
closed polygon aj ⊆ (r+j )◦ such that aj is externally con-
nected to all the non-empty wk,j (with k varying). The con-
struction is quite elaborate, but the basic technique is illus-
trated in Fig. 7. The crucial point is that the aj need only be
connected—they need not have connected interiors; hence
they may be crossed by regions aj′ (j′ 6= j) as long as we do
not have DC(rj , rj′). The polygon aj illustrated in Fig. 7 is
crossed twice in this way. If rj is not connected, set aj = 0.
For all j ≤ n, define bj = aj +

∑
1≤k≤m wk,j . Then bj will

be connected if and only if rj is.
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ok′ajaj ajok

Figure 7: Connecting together wedges wk,j and wk′,j .



Using the polygons b1, . . . , bn, we construct the desired
polygons p1, . . . , pn, relying on the fact that we earlier en-
sured that ri ⊆ rj implies i ≤ j. Start by setting p1 = b1,
and let p+1 be a polygon containing p1 in its interior, but
which is ‘close’ to p1 (specifically: p+1 does not intersect
any polygon involved in this construction that p1 does not
intersect). For 2 ≤ j ≤ n, set

pj = bj +
∑

TPP(ri,rj)

pi +
∑

NTPP(ri,rj)

p+i

and again let p+j be a polygon containing pj in its interior,
and ‘close’ to pj . This ensures that ri ⊆ rj implies pi ⊆
pj , and ri ⊆ r◦j implies pi ⊆ p◦j . We can then show that
p1, . . . , pn satisfy exactly the same atomicRCC8c-formulas
as the r1, . . . , rn.

A similar (but not identical) construction can be carried
out for the case ofRCC8c◦.

An analogous result to Theorem 6 for a more expressive
spatial logic can be found in (Davis et al. 1991, Sec. 8.1).

For the language Bc, however, tameness does make a dif-
ference in two dimensions, both for connectedness and for
interior-connectedness. The latter is easily dealt with:

Lemma 1. The Bc◦-formula (4) is valid in RCP(Rn) for all
m > n ≥ 1.

Proof. The case n = 1 is trivial. See (Pratt-Hartmann 2007,
p. 40) for the case n = 2; the proof applies almost unaltered
to higher dimensions.

Theorem 7. Sat(Bc◦,RCP(R2)) $ Sat(Bc◦,RC(R2)) and
Sat(Cc◦,RCP(R2)) $ Sat(Cc◦,RC(R2)).

Proof. We need only show that the inclusions are proper. As
observed above, (4) is invalid over RC(R2); but it is valid
over RC(R2) by Lemma 1.

For ordinary connectedness, much more work is required.

Theorem 8. Sat(Cc,RCP(R2)) $ Sat(Cc,RC(R2)). In
fact, Sat(Bc,RCP(R2)) $ Sat(Bc,RC(R2)).

Proof. Again, we need only show that the inclusions are
proper. We begin with the language Cc; the second state-
ment of the theorem will follow by an easy adaptation. Let
V be the set of variables {v, h, s, t, t0, r0, r1, r2, r3, r4, r5}
and, for any x ∈ V , let x̂ be a fresh variable. Consider the
assignment of elements of RC(R2) to these variables shown
in Fig. 8. Here, the regions v and h are unbounded, con-
nected polygons, the regions s, t and t0 are bounded, con-
nected polygons, and the regions ri (0 ≤ i < 6) are all un-
bounded and have infinitely many components (and hence
are not polygons). Also, for all x ∈ V , the region x̂ is a
slightly ‘enlarged’ version of x, with x lying in the interior
of x̂. (In Fig. 8, we have drawn v̂, t̂0 and ĥ with dotted lines;
the other regions x̂ are suppressed for clarity.)

Let ϕ0 be the conjunction of x 6= 0, x·y = 0, ¬C(x,−x̂),
for distinct x, y ∈ V . The last of these ensures that x̂ repre-
sents a region whose interior contains x.

r1

t h

s r3

r0

r4

r2

r1

r2

v

t0 r5

(pattern repeats)

Figure 8: Satisfiability of ϕ over RC(R2).

Let ϕ1 be the conjunction of the following formulas:

c(h) c(v) ¬C(v, h) c(h+ t+ s+ v)

¬C(s, ĥ) c((t+ t0) · (−ĥ) + v)
¬C(v̂, t̂) c((t0 + r1) · (−t̂) · (−v̂) + h)

¬C(t̂0, ĥ) ¬C(t0, s) c((r1 + r2) · (−t̂0) · (−ĥ) + v).

Let ϕ2 be the conjunction of the following formulas, for i =
0, 2, 4, and with arithmetic in the subscripts modulo 6:

¬C(ri, s) ¬C(ri, t) ¬C(r̂i, ĥ)
c((ri + ri+1) · (−r̂i−1) · (−v̂) + h).

Let ϕ3 be the conjunction of the following formulas, for i =
1, 3, 5, with arithmetic in the subscripts modulo 6:

¬C(ri, s) ¬C(ri, t) ¬C(r̂i, v̂)

c((ri + ri+1) · (−r̂i−1) · (−ĥ) + v).

Let ϕ4 be the conjunction of the following formulas:

¬C(ri, rj), (0 ≤ i < j < 6, |i− j| > 1),
¬C(t0, rj), (2 ≤ j < 6).

Let ϕ =
∧4
i=0 ϕi. We claim that the model in Fig. 8 satisfies

ϕ. The truth of ϕ0 and ϕ1 is easily checked. For ϕ2, note
that, for i even, each component of ri contacts v, but not
h; on the other hand, the components of ri together connect
all the components of ri−1 to v (arithmetic modulo 6). The
conjunct ϕ3 is handled analogously. For ϕ4, observe that
the components of r0, . . . r5 form a repeating pattern, with
ri ∩ rj = ∅ whenever i and j differ by more than 1. Thus, ϕ
is satisfiable over RC(R2).

We outline the proof that ϕ is not satisfiable over
RCP(R2). Refer to Fig. 8, and pick any i (0 ≤ i < 6)
and any component of r′i of ri. Let r′i+1 be the compo-
nent of ri+1 which contacts r′i. Draw a Jordan curve in
r′i + r′i+1 + v+ s+ t+ h enclosing t0. By doing this for all
r′i and r′i+1, we obtain an infinite sequence {γi,j} of nested
Jordan curves (0 ≤ i < 6, 1 ≤ j), with each γi,j drawn in
ri+ri+1 +v+s+ t+h. Suppose, then that ϕ is satisfied by
any tuple of regions x, x̂, for x ∈ V . On the assumption that
these regions are in RCP(R2), it can be shown that just such
a sequence of Jordan curves {γi,j}must exist. But then each
set R2\(ri+ri+1+v+s+t+h) has infinitely many compo-
nents, contradicting the supposition that the satisfying tuple
is in RCP(R2).



We turn now to complexity-theoretic issues, employing a
surprising theorem on graph-drawing. Let D be the frame
consisting of all regular closed subsets of R2 homeomor-
phic to closed discs. (It does not matter that D is not a
Boolean algebra.) Then Sat(RCC8,D) is in NP (Schaefer,
Sedgwick, and Štefankovič 2003). Using Theorem 6, we
can show that Sat(RCC8c,RC(R2)) is also in NP. The fol-
lowing lemma enables us to reduce Sat(RCC8c,RCP(R2))
non-deterministically to Sat(RCC8,D).
Lemma 2. Let ϕ be an RCC8c-formula, and suppose ϕ is
satisfied by bounded polygons r1, . . . , rn. Then ϕ is satisfied
by bounded polygons r′1, . . . , r

′
n such that: for all i ≤ n,

(a) if u is a connected component of r◦i , then u− ∈ D; and
(b) (r′i)

◦ has at most O(n3) components.
Theorem 9. The problems Sat(RCC8c,RCP(R2)) and
Sat(RCC8c◦,RCP(R2)) are both NP-complete.
Proof. Suppose ϕ is an RCC8c-formula with n variables.
We describe an NP procedure for determining whether ϕ is
satisfiable over RCP(R2). For each i (1 ≤ i ≤ n), take
up to O(n3) fresh variables ti,1, . . . , ti,mi , and list all these
variables as t1, . . . , tm. For all i, j (1 ≤ i < j ≤ m), guess
anRCC8-relationRij , and let ψ be the conjunction of all the
formulas Rij(ti, tj). By the result of (Schaefer, Sedgwick,
and Štefankovič 2003), we check, in NP, that ψ is satisfiable
over D. Finally, we check, in deterministic polynomial time,
that, if ψ is satisfied by the t1, . . . , tm, then ϕ is satisfied by
the regions r1, . . . , rn, where ri = ti,1 + · · · + ti,mi . If
both of these tests succeed, we report that ψ is satisfiable.
It follows from Theorem 8 and Lemma 2 this procedure has
a successful run if and only if ϕ is satisfied over RCP(R2)
(and RC(R2)). The case ofRCC8c◦ is handled similarly.

The precise computational complexity of the languages
Bc, Cc and Cc◦ is not known; we have only the following:
Theorem 10. Sat(L,RC(R2)) and Sat(L,RCP(R2)) are all
EXPTIME-hard, for L ∈ {Bc, Cc, Cc◦}.
Proof. The proof employs a technique developed
in (Kontchakov et al. 2009, Theorem 5.9) For details, see
http://www.dcs.bbk.ac.uk/˜roman.

Theorem 11. Sat(Bc◦,RCP(R2)) is EXPTIME-hard.
Proof. See the proof of Theorem 15.

At the time of writing, no non-trivial lower complexity
bound is known for Sat(Bc◦,RC(R2)). Moreover, no upper
bound at all is known for these problems. Thus, we do not
know whether Sat(Bc,RC(R2)), Sat(Bc,RCP(R2)), etc. are
even decidable.

Three-dimensional Euclidean space
Languages based on RCC8 cannot distinguish between Eu-
clidean spaces of more than 3 dimensions. Indeed, they are
even insensitive to the tameness of sets, and to the distinc-
tion between connectedness and interior-connectedness.
Theorem 12. The problems Sat(RCC8c,K) are identical,
where K is any of RC, RC(Rn) or RCP(Rn) for any n ≥ 3.

Further, for an RCC8c-formula ϕ, let ϕ◦ be the result of
replacing all occurrences of c with c◦. Then ϕ is satisfiable
over K if and only if ϕ◦ is.
Proof. Follows from the observation (Renz 1998) that
any satisfiable RCC8-formula is satisfied by (interior-) con-
nected polyhedra in Rn, for n ≥ 3.

It is open whether Sat(L,RC(Rn)) = Sat(L,RC(R3)),
for n > 3, where L is any of Bc, Cc or Cc◦. The best result
we have is:
Theorem 13. Sat(Cc◦,RC(Rn)) $ Sat(Cc◦,RC) for n ≥ 1.
Proof. Recall that (3) can be invalidated in the torus (Fig. 3).
To show it is valid over Euclidean spaces, we use the fol-
lowing fact (Newman 1951, p. 137): if r1, r2 ∈ RC(Rn) are
non-intersecting, and points p1 and p2 lie in the same com-
ponent of Rn \ ri = (−ri)◦ for i = 1, 2, then p1 and p2 lie
in the same component of Rn \ (r1 ∪ r2) = (−(r1 + r2))

◦ .
Thus, (3) is valid over RC(Rn).

In the case L = Bc◦, however, we can give an answer.
A connected partition in RCP(Rn) is a tuple of non-empty,
pairwise disjoint elements of RCP(Rn), having connected
interiors, which sum to the entire space. If r1, . . . , rn is a
connected partition, its neighbourhood graph is the graph
(V,E) with vertices V = {r1, . . . , rn} and edges E =
{(ri, rj) | i 6= j and (ri + rj)

◦ is connected}.
Lemma 3. Let G be a connected graph. Then G is (iso-
morphic to) to the neighbourhood graph of some connected
partition in Rn, n ≥ 3. If G is also planar, it is the neigh-
bourhood graph of some connected partition in R2.
Proof. To prove the second statement, take a plane embed-
ding H of G, and let H∗ be its geometric dual (which we
may draw with piecewise linear edges). The faces of H∗
then form a connected partition in RCP(R2), and the geo-
metric dual H∗∗ of H∗ is a drawing of the neighbourhood
graph of this connected partition. Since H is connected,
H∗∗ is isomorphic to H , and hence to G. For the first state-
ment, we proceed by induction on the number k of vertices
of G. The case k = 1 is trivial. If k > 1, let G′ = G/e be
the minor ofG formed by collapsing some edge e ofG into a
single node. By inductive hypothesis, let r1, . . . , rk−2, r′k−1
be a connected partition in Rn whose neighbourhood graph
is G′, with the interior-connected polyhedron r′k−1 corre-
sponding to the node e. It is routine to decompose r′k−1 into
two interior-connected polyhedra rk−1 and rk so that the
neighbourhood graph of r1, . . . , rk−1, rk is G.

A graph model is a pair G = (G, σ), where G = (V,E)
is a graph and σ is a function mapping any variable of Bc◦
to a subset of V . The function symbols +, · and − are inter-
preted, respectively, as union, intersection and complement
in the power-set algebra on V , and c◦ is interpreted as the
property of graph-theoretic connectedness.
Lemma 4. (i) A Bc◦-formula ϕ is satisfiable over RCP(R2)
if and only if it is true in a connected planar graph model.
(ii) A Bc◦-formula ϕ is satisfiable over RCP(Rn), n ≥ 3, if
and only if it is true in a connected graph model.



Proof. We prove (ii); the proof of (i) is similar. Suppose ϕ
is satisfiable over RCP(Rn), n ≥ 3. Let s̄ = s1, . . . , sk be a
tuple of polyhedra satisfying ϕ, and t̄ a connected partition
in RCP(R2) such that, for all i ≤ k, there exists a subset
Ri ⊆ t̄ of these elements such that si =

∑
Ri. Let G

be the neighbourhood graph of t̄; and make G into a graph
model G by assigning to each variable xi the set of nodesRi.
(Such a t̄ always exists as long as the s̄ are polyhedra.) Using
Lemma 1, we can show that ϕ is true in G. Conversely,
suppose ϕ is true in a connected graph model G = (G, σ).
By Lemma 3, let r̄ be a connected partition in RCP(Rn)
whose neighbourhood graph is isomorphic to G. Taking the
nodes of G to be the elements r̄, we define a model over
RCP(Rn) as follows: if G maps a variable x to the set of
elements R ⊆ r̄, interpret x as

∑
R. One can check that ϕ

is true in this model.

Turning next to tameness, Theorem 12 has already shown
that RCC8c and RCC8c◦ are not sensitive to the difference
between RC(Rn) and RCP(Rn) for n ≥ 3. By contrast:
Theorem 14. Sat(Bc◦,RCP(Rn)) $ Sat(Bc◦,RC(Rn))
and Sat(Cc◦,RCP(Rn))$Sat(Cc◦,RC(Rn)), for all n ≥ 3.

Proof. By cylindrification of Fig. 4 and Lemma 1.

For n ≥ 3, the question of whether Sat(L,RC(Rn)) =
Sat(L,RCP(Rn)), where L is either Bc or Cc, is open.

Finally, we address the complexity of satisfiability. As
well as settling the insensitivity of Bc◦ to dimension ≥ 3
in Euclidean spaces, Lemma 4 gives us some complexity-
theoretic information. Using (Kontchakov et al. 2009, The-
orems 5.3 and 5.19), we can show
Lemma 5. The problem of determining whether a Bc◦-
formula has a graph-model is EXPTIME-complete. It is
EXPTIME-hard to decide whether a Bc◦-formula has a pla-
nar graph-model.

Theorem 15. Sat(Bc◦,RCP(R3)) = Sat(Bc◦,RCP(Rn)),
for n > 3 and the problem is EXPTIME-complete.
Sat(Bc◦,RCP(R2)) is EXPTIME-hard.

Proof. Follows from Lemmas 4 and 5.

This result is, however, in stark contrast to the following:
Theorem 16. Sat(Bc◦,RC) is NP-complete.

Proof. See http://www.dcs.bbk.ac.uk/˜roman.

As shown in (Kontchakov et al. 2009), Sat(L,RC(Rn))
and Sat(L,RCP(Rn)) are EXPTIME-hard, for L any of Bc,
Cc or Cc◦ and n ≥ 3. The upper complexity bounds for
these problems are open.

Conclusions
We investigated the six languagesRCC8c, Bc, Cc,RCC8c◦,
Bc◦ and Cc◦ obtained by extending RCC8 with the con-
nectedness and interior connectedness predicates c and c◦,
as well as the Boolean function-symbols +, · and −, pay-
ing particular regard to issues that arise when interpreting
these languages over low-dimensional Euclidean spaces. We

showed that—in contrast to the less expressive RCC8—the
dimensionality of the space is important for all of our lan-
guages, and that, in addition, these languages exhibit vary-
ing patterns of sensitivity to tameness in different dimen-
sions. Thus, RCC8c and RCC8c◦ both distinguish between
RC(Rn) and RCP(Rn) for n = 1, but do not for n ≥ 2; Bc
does for n = 2, but not for n = 1; Bc◦ does for n = 2,
but not for n = 1 or n ≥ 3; Cc does for n = 1 and 2; Cc◦
does in all dimensions. We also obtained results on the com-
plexity of reasoning in these logics. For example, the sat-
isfiability problems for RCC8c and RCC8c◦, under all the
interpretations considered here, are NP-complete, whereas
the corresponding problems for Bc, Bc◦, Cc and Cc◦ in Rn,
for n ≥ 2, are generally EXPTIME-hard. (Two cases are still
open). A matching EXPTIME upper bound was proved for
Bc◦ over polyhedra in Rn, n ≥ 3. The expressiveness and
complexity problems that still remain open are indicated in
Fig. 2.
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Proof of Theorem 3
Theorem 3. Sat(Bc,RC(R)) = Sat(Bc,RCP(R)).
Proof. Let a Bc-formula ϕ be given. We may assume with-
out loss of generality that ϕ is of the form

(ρ = 0)∧
∧

1≤j≤m

(σj 6= 0)∧
∧

1≤i≤n

(
c(πi)∧(πi 6= 0)

)
∧
∧

1≤k≤p

¬c(τk),

since, given any Bc-formula ψ, we may easily guess such a
ϕ and show in polynomial time that ϕ and ψ are satisfiable
over the same domains.

We describe a non-deterministic procedure which, given a
formula ϕ of the form above, terminates with either success
or failure in time bounded by a polynomial function of |ϕ|.
We show that if the procedure has a successful run, then ϕ is
satisfiable over RCP(R) and if ϕ is satisfiable over RC(R)
then the procedure has a successful run.

Let E = 2(m + n + 3p). Denote by Ξ the set of regu-
lar closed intervals (−∞, 0], [0, 1], . . . , [E−1, E], [E,+∞)
and by ∆ the set of integers in the interval [0, E]. In what
follows we construct a function λ, which maps Ξ to the
power set of the set of subterms of ϕ. An interval [a, b] with
a, b ∈ ∆ is regular closed if b − a ≥ 1. We start of with
λ(I) = ∅ for every I ∈ Ξ.

1. For every j (1 ≤ j ≤ m), choose a regular closed interval
[a, b], a, b ∈ ∆, and add σj to λ(I), for each I ∈ Ξ with
I ⊆ [a, b].

2. For every i (1 ≤ i ≤ n), choose a regular closed interval
[a, b], a, b ∈ ∆, and add πi to λ(I), for each I ∈ Ξ with
I ⊆ [a, b] and add −πi to λ(I), for each I ∈ Ξ with
I ⊆ [0, a] ∪ [b, E]; if a > 0 add −πi to λ((−∞, 0]),
otherwise, add either πi or −πi to λ((−∞, 0]); if b < E
add −πi to λ([E,+∞)), otherwise, add either πi or −πi
to λ([E,+∞));

3. For every k (1 ≤ k ≤ p), choose a pair of regular closed
intervals [a1, b1] and [a2, b2] with a1, b1, a2, b2 ∈ ∆ such
that a2 − b1 ≥ 1 and add τk to λ(I), for each I ∈ Ξ
with I ⊆ [a1, b1]∪ [a2, b2], and add−τk to λ(I), for each
I ∈ Ξ with I ⊆ [b1, a2] (the latter is possible for at least
one I ∈ Ξ).

4. For every I ∈ Ξ, guess a Bc-term ξI of the form∏
1≤i≤`±ri, where r1, . . . , r` are all the variables of ϕ,

and fail if ξI ≤ ρ or ξI ≤ −
∏
λ(I). Succeed otherwise.

Suppose the procedure has a successful termination. Then
we define an interpretation over RCP(R) by setting r to be
the union of all the intervals I ∈ Ξ with ξI ≤ r. Step 4
ensures that ρ = 0 and that, for every I ∈ Ξ, I ⊆

∏
λ(I).

Hence: Step 1 ensures that, for every j (1 ≤ j ≤ m), σj
is non-empty; Step 2 ensures that, for every i (1 ≤ i ≤ n),
πi is connected and non-empty (note that πi need not be
bounded); Step 3 ensures that, for every k (1 ≤ k ≤ p), τj
is not connected. Thus, the interpretation is as required.

Conversely, if ϕ is true in a model over RC(R), it is easy
to see how the intervals and the terms ξI may be selected so
as to ensure successful termination of the procedure.

This shows that the both problems are in NP.

Proof of Theorem 16
Theorem 16. Sat(Bc◦,RC) is NP-complete.
Proof. Let ϕ be a Bc◦-formula of the form

(ρ = 0)∧
∧

1≤j≤m

(σj 6= 0)∧
∧

1≤i≤n

(
c◦(πi)∧(πi 6= 0)

)
∧

m∧
1≤k≤p

¬c◦(τk).

We show that (i) if ϕ is satisfiable over RC then it is satisfi-
able in a model A over an Aleksandrov space with at most
2 · 2` + n points, where ` is the number of variables in ϕ;
and (ii) how one can select a submodel B of A, which con-
tains at most m + 2n + 2p + n · p points and satisfies ϕ.
Thus, we establish a polynomial finite model property for
Bc◦ over RC, which gives us NP membership (NP-hardness
is trivial).
(i) By a type ξ for ϕ we mean any term of the form∏

1≤i≤`±ri, where r1, . . . , r` are all the variables of ϕ. Let
W0 contain a pair of distinct points xξ and x′ξ, for each type
ξ inconsistent with ρ, i.e., ξ 6|= ρ (we need two points to
make some regions disconnected). Let W1 contain a distinct
point zπi

for each positive c◦(πi) in ϕ. LetR be the reflexive
closure of

{(zπi
, xξ), (zπi

, x′ξ) | ξ |= πi}.

Define a valuation ·A by taking

rAi = {xξ, x′ξ | ξ |= ri} ∪ {zπi | πi |= ri}.

It is readily seen that rAi is a regular closed set in the Alek-
sandrov topology induced by (W,R).

We show now that ϕ is true in A. It is trivial for the
first three conjuncts of ϕ. So, it remains to show that
A 6|= c◦(τk), for each k (1 ≤ k ≤ p). Suppose to the
contrary that τk is interior-connected in A. Then there is
a sequence x1, z1, x2, z2, · · · , xs such that ziRxi, ziRxi+1

and the xi and the zi are all the points in τAk . Then,
by the definition of A, there are πi1 , . . . , πis−1 such that
xj , zj , xj+1 ∈ πA

ij
∩ τAk , for all j (1 ≤ j < s). It fol-

lows then that zij ∈ (π◦ij )A ∩ (τ◦k )A and, as zij is the R-
predecessor of all points in πA

ij
, we obtain πA

ij
≤ τAk . So, we

have (
∑

1≤j<n πij )A ≤ τAk and (
∑

1≤j<n πij )A is interior-
connected. On the other hand, as the path contains all points
in τAk , we obtain τAk ≤ (

∑
1≤j<n πij )A . Therefore, τAk co-

incides with the sum of the πij and so, is interior-connected
contrary to ϕ being satisfiable.
(ii) We select the following points:
• for each j (1 ≤ j ≤ m), pick x ∈W0 ∩ σA

j ;

• for each i (1 ≤ i ≤ n), pick x ∈W0 ∩ πA
i and zπi

∈W1;

• for each k (1 ≤ k ≤ p), pick 2 points xτk , x
′
τk
∈W0∩τAk

form two distinct components of τAk and up to n points
yτk,πi ∈ W0 ∩ πA

i ∩ (−τk)A, for 1 ≤ i ≤ n (the point is
picked if the set is not empty).

As ϕ is true in A, all the points mentioned above do neces-
sarily exist (apart from the yτk,πi

, some of which may not
exist). Let V be the set of all these points and B the restric-
tion of A onto V . We claim that ϕ is true in B. Indeed, this



is clearly the case for the first three conjuncts of ϕ. So, it
remains to show that B 6|= c◦(τk), for each k (1 ≤ k ≤ p).
This fact follows from the observation that zπi

∈ (τ◦k )A if
and only if zπi

∈ (τ◦k )B, for each i (1 ≤ i ≤ n) and there-
fore, τk is inerior-connected in B if and only if it is interior-
connected in A.

This completes the proof.

Proof of Theorem 8
Theorem 8. Sat(Cc,RCP(R2)) $ Sat(Cc,RC(R2)). In
fact, Sat(Bc,RCP(R2)) $ Sat(Bc,RC(R2)).
Proof. Let V be the set of variables
{v, h, s, t, t0, r0, r1, r2, r3, r4, r5} and, for any x ∈ V ,
let x̂ be a fresh variable. For all x ∈ V , the region x̂ is a
slightly ‘enlarged’ version of x, with x lying in the interior
of x̂.

The formula ϕ we are about to construct contains con-
juncts ¬C(x,−x̂), for x ∈ V , which ensure that x̂ repre-
sents a region whose interior contains x. The other conjuncts
of ϕ will be presented as they are required in the proof. The
claim that ϕ is not satisfiable over RCP(R2) is established
by showing that any satisfying assignment in RC(R2) has
the property that the interiors of the regions ri (0 ≤ i < 6)
have infinitely many components. Suppose we have such a
satisfying assignment.

(v 6= 0) ∧ (h 6= 0) (5)
c(v) ∧ c(h) (6)
c(h+ t+ s+ v) (7)
¬C(v, h) (8)
¬C(t, v) (9)

¬C(s, ĥ) (10)

c((t+ t0) · (−ĥ) + v) (11)
¬C(t0, s) (12)

First stage: By (5), choose a point in v and a point in h
and, by (7), connect the first to the second by an arc α∗0 in
v + s + t + h. Let q0 be the first point of α∗0 in h. By (8),
q0 6∈ v and q0 is not the first point of α∗0. Let p0 be the last
point of α∗0 in v and strictly before q0. Let α0 be the segment
of α∗0 from p0 to q0. Hence, no interior point of α0 lies in v
or h, and so all points of α0 lie in s+ t.

By (9), some initial segment of α0 lies in s, whence,
by (10), there exists a point p∗1 on α0 such that p∗1 6∈ s and
p∗1 6∈ ĥ. It follows that p∗1 ∈ t · (−ĥ). By (11), draw an arc
α∗1 from p∗1 to p0 ∈ v, and lying in (t+ t0) · (−ĥ) + v. Since
p∗1 6∈ v, let q1 be the first point of v on α∗1 after p∗1.

This arc has a last point of contact with α0 strictly before
q1. For, all points of α∗1 before q1 are in t + t0, whence,
by (9), some segment of α∗1 leading to q1 ∈ v must lie en-
tirely in t0. But then, by (12), this segment does not touch
some initial segment of α0. Therefore, let p1 be the last
point of α∗1 before q1 lying on α0. Let α1 be the segment
of α∗1 between p1 and q1. Thus, no point of α1 lies in h,

q1 ∈ v

p1 ∈ t

p∗1 /∈ ĥ+ s

q0 ∈ h ≤ ĥ

β1 ⊆ v

α0 (interior in s+ t)p0 ∈ v

α∗
1

α1 ⊆ (t+ t0) · (−ĥ) + v

α∗
1

R1

α0 α0

Figure 9: The first stage: the arc α1 (solid line) is a sub-arc
of α∗1. The Jordan curve (thick lines) is denoted by γ1; R1

is the open set it bounds not containing q0.

and the only point of α1 lying in v is q1. By (6), let β1
be an arc in v from q1 to p0. Thus, β1 ∩ α1 = {q1} and
β1 ∩ α0 = {p0}. The situation is shown in Fig. 9. Let γ1
be the Jordan curve formed by α1, β1 and the segment of α0

lying between p0 and p1, shown in thick lines. We denote
the open set bounded by γ1 and not containing the point q0
by R1. By drawing the configuration on the closed plane
(with all Jordan arcs avoiding the point at infinity), we may
without loss of generality regard R1 as the ‘inside’ of γ1.

¬C(t̂, v̂) (13)

c((t0 + r1) · (−t̂) · (−v̂) + h) (14)
¬C(t0 + r1, s) (15)

Second stage: Since p1 ∈ t and q1 ∈ v, by (13), there
exists a point p∗2 on α1 such that p∗2 /∈ t̂ and p∗2 /∈ v̂. It
follows that p∗2 ∈ t0 · (−t̂) · (−v̂). By (14), let α∗2 be an arc
from p∗2 to q0 lying in (t0+r1)·(−t̂)·(−v̂)+h. Let p2 be the
last point of α∗2 lying on α1; hence, p2 ∈ t0. Also p2 6∈ h,
since it lies on α1. Let q2 be the first point of α∗2 after p2
lying in h; and let α2 be the segment of α∗2 from p2 to q2.
Thus, no point of α2 other than q2 lies in h, and certainly,
no point of α2 lies in v. By (6), let β2 be an arc from q2
to q0 lying entirely in h. Notice that β2 cannot intersect
α0, α1 or α2 except at the endpoints q2 and q0, because no
other points of these arcs lie in h. We further claim that α2

cannot enter region R1, for it is impossible that any point in
(α2 ∪ β2) \ {p2} lies on γ1. To see this, note that: (i) by
construction, no point of α2 apart from p2 lies on α1, (ii)
by (15) and the fact that α2 ⊆ (t0 + r1) · (−t̂), no point
on α2 apart from q2 can lie in s + t ⊇ α0; (iii) no point of
α2 lies in v ⊇ β1; (iv) no point of β2 lies on γ1, since no
point on γ1 lies in h. It follows that α2 and β2 lie on the
‘outside’ of γ1 (since q0 does). The situation is shown in
Fig. 10. Thus, α0, α2 and β2 divide the outside of γ1 into
two residual domains; denote that residual domain which
does not contain p0 by R2. In addition, let γ2 be the Jordan
curve formed by α2, β2, α0, β1 and α1 from q1 to p2 (shown
in thick lines). By drawing the configuration on the closed
plane (with all Jordan arcs avoiding the point at infinity), we
may without loss of generality regard R2 as lying ‘inside’
γ2. Note that S2 = (R1 ∪R2)−◦ is the bounded open set
having γ2 as its boundary.



q1 ∈ v

β1 ⊆ v

α0

α∗
2

q0p0 p1 ∈ t

R2

R1

R1

α2 ⊆ (t0 + r1) · (−t̂) · (−v̂) + h

α1

α∗
2

q2 ∈ h

α1

β2 ⊆ h

α0

p2 ∈ t0
p∗2 /∈ t̂+ v̂

Figure 10: The second stage: the arc α2 (solid line) is a
sub-arc of α∗2. The Jordan curve (thick lines) is denoted by
γ2. The region S2 = (R1 ∪R2)−◦ is the bounded open set
whose boundary is γ2.

¬C(t̂0, ĥ) (16)

c((r1 + r2) · (−t̂0) · (−ĥ) + v) (17)
¬C(r1 + r2, t) (18)
¬C(r1 + r2, s+ t) (19)

Third stage: Since p2 ∈ t0 and q2 ∈ h, by (16), there
exists a point p∗3 on α2 such that p∗3 6∈ t̂0 and p∗3 6∈ ĥ. It
follows that p∗3 ∈ r1 · (−t̂0) · (−ĥ). By (17), let α∗3 be an
arc from p∗3 to q1 lying in (r1 + r2) · (−t̂0) · (−ĥ) + v. Let
p3 be the last point of α∗3 lying on α2; hence, p3 lies in r1.
Let q3 be the first point of α∗3 after p3 lying in v; and let α3

be the segment of α∗3 from p3 to q3. Thus, no point of α3

other than q3 lies in v, and certainly, no point of α3 lies in
h. By (6), let β∗3 be an arc from q3 to q1 lying entirely in v.
Let q∗3 be the first point of β∗3 lying on γ2 ∩ v (i.e. lying on
β1). Let β3 be the segment of β∗3 between q3 and q∗3 . The
situation is shown in Fig. 11.

We need to show that the way in which α3 and β3
have been drawn is sufficiently general. Recall that that
R1 is bounded by the Jordan curve γ1, and that S2 =
(R1 ∪R2)◦− is bounded by the Jordan curve γ2. We first
establish that α3 cannot enter R1. For: (i) all points of α1

are in t0 + t, and so by (18) cannot coincide with any point
in (r1 + r2) · (−t̂0); (ii) all points of β3 are in v, and q1 is
the only point of α1 in v; (iii) α3 \ {q3} has no points in
v, and hence none on β1; (iv) by construction, β3 stops as
soon as it touches γ2; (v) by (19), no points of (r1 + r2)
can coincide with any points of s + t ⊇ α0; (vi) no points
of α0 \ {p0} lie in v and hence none lie on β3. We next
establish that α3 cannot enter R2, either. For, (i) by con-
struction, no point of α3 apart from the first, can intersect
α2, (ii) by (19) and (18), no points of (r1 + r2) can coincide
with any points of s+ t ⊇ α0; (iii) no point of α3 lies in h,
and hence none lies on β2. Thus, α3 cannot enter S2; and α3

and β3 divide the exterior of γ2 into two regions, forming a
larger Jordan curve γ3, shown by the thick lines in Fig. 11.
By inspection, exactly one of these two regions will contain
points in v. Drawing the configuration on the closed plane
as before, we may without loss of generality regard the re-
gion containing points of v as the ‘outside’ of γ3. The region
S3 = (S2 ∪R3)−◦ is thus the interior of γ3.

β1 ⊆ v

α0 q0 ∈ hp0 ∈ v p1 ∈ t

q2 ∈ h

q1 ∈ v

β3 ⊆ v

q3

R1

R2

β2 ⊆ h

β1 ⊆ v

α1

α1

α2
α2

β∗3
R1

R3

α0

p2 ∈ t0

p3

α3 ⊆ (r1 + r2) · (−t̂0) · (−ĥ) + v

Figure 11: The third stage: the point p∗3 and arc α∗3 are not
shown, for clarity; the arc β3 (solid line) is a sub-arc of β∗3 .
The Jordan curve (thick lines) is denoted by γ3. The region
S3 = (S2 ∪R3)−◦ is the bounded open set whose boundary
is γ3.

pi−2qi−3

pi−1

βi−1

αi−2αi−2

α0

αi−1αi−1

αi−3

αi−3

q0

qi−2
qi−1

p0

pi

αi ⊆ (ri−2 + ri−1) · (−r̂i−3) · (−ĥ) + v

Ri−1

Si−1

Figure 12: The general case: the arc αi (i even).

¬C(r̂i−3, v̂) (i even) (20)
¬C(r̂i−3, ĥ) (i odd) (21)
c((ri−2 + ri−1) · (−r̂i−3) · (−v̂) + h) (i even) (22)
c((ri−2 + ri−1) · (−r̂i−3) · (−ĥ) + v) (i odd) (23)
¬C(ri−2 + ri−1, ri−4) (24)
¬C(ri−2 + ri−1, ri−4 + ri−5) (25)
¬C(ri−2 + ri−1, t+ t0) (i = 4) (26)
¬C(ri−2 + ri−1, s+ t) (27)

General stage i: After this point, the process repeats it-
self through infinitely many stages; at each new stage, the
numerical indices in the variables ri are incremented (mod-
ulo 6) and h and v are transposed. The general situation
(for i even), is illustrated in Fig. 12. In this stage, αi and
βi are about to be constructed. The arc αi ⊆ (ri−1 + ri) ·
(−r̂i−2) · (−v̂) + h will run from a point pi on αi−1 to a
point qi in h (the starting point p∗i exists by (20) and the arc
by (22)); and the arc βi ⊆ h, will run from qi to some point
on γi−1 ∩ h = γi−2 ∩ h. The Jordan curve γi−2, enclosing
Si−2, is shown in thick lines.

The key observation is that neither αi nor βi can enter
Si−1 = (Si−2 ∪Ri−1)−◦ . We first show that αi cannot
enter Si−2. To see this, we note that: (i) since αi ⊆ (ri−2 +
ri−1) · (−r̂i−3) and αi−2 ⊆ (ri−4 + ri−3), by (24), αi ∩
αi−2 = ∅; (ii) since αi ⊆ (ri−1+ri−2) and αi−3 ⊆ (ri−5+



ri−4), by (25), αi ∩ αi−3 = ∅; (iii) since αi ⊆ −v̂, αi does
not intersect the segment of γi−2 from qi−3 (clockwise) to
p0; (iv) since αi ⊆ (ri−2 + ri−1) and α0 ⊆ s + t, by (27),
αi+1 ∩α0 = ∅; (v) only the end-point qi of αi is in h and so
αi cannot intersect the segment of γi−2 from q0 (clockwise)
to qi−2. We note here that, for i = 4, we use (26) instead
of (24) and (25) to show (i) and (ii).

We next show that αi cannot enter Ri−1. To see this,
we note that: (i) by construction, αi ∩ αi−1 = {pi}; (ii)
αi cannot enter Si−2, as we have just argued, and βi ⊆ h
certainly cannot cross the boundary betweenRi−1 and Si−2,
none of whose points are in h by construction of αi−2, αi−3,
and by (8); (iii) αi ⊆ −v̂ and so cannot intersect the segment
of the boundary of Ri−1 from qi−1 (clockwise) to the point
where βi−1 reaches γi−2; βi cannot intersect this segment
either, by (8). But this means that it is impossible for αi and
βi to connect a point of Ri−1 to a point of γi−1 ∩ h; hence
αi cannot enter Ri−1 at all, and so must be drawn (in the
closed plane) as shown.

To complete the proof, observe that, for all k > 0,
p6k+2 ∈ r0; and since r0 is regular closed, there exist points
in the interior of r0 arbitrarily close to p6k+2. But p6k+2 and
p6(k+1)+2 are separated by (for example) γ6k+6, which lies
entirely in the set s + t + h + v + r3 + r4 + r5, and hence
contains no interior points of r0. Therefore, r◦0 has infinitely
many components, as required.

For the second statement of the theorem, we replace every
literal ¬C(x, y) in ϕ with a conjunction

(x ≤ x†) ∧ (y ≤ y†) ∧ c(x†) ∧ c(y†) ∧ ¬c(x† + y†),

where the variables x† and y† are chosen afresh for each
replaced literal. Let the resulting Bc-formula be ψ. Triv-
ially, RCP(R2) |= ψ → ϕ, so that ψ is not satisfiable over
RCP(R2). That ψ is satisfiable over RC(R2) is almost im-
mediate by inspection of Fig. 8.

Proof of Theorem 6
Theorem 6. If an RCC8c- or RCC8c◦-formula is satisfi-
able over RC(R2), then it can be satisfied over the frame of
bounded regular closed polygons. In consequence:

Sat(RCC8c,RC(R2)) = Sat(RCC8c,RCP(R2)),

Sat(RCC8c◦,RC(R2)) = Sat(RCC8c◦,RCP(R2)).

Proof. For the first statement, it suffices to construct,
for any tuple r1, . . . , rn in RC(R2), a corresponding tuple
p1, . . . , pn in RCP(R2) satisfying exactly the same atomic
RCC8c-formulas. We may assume that the ri are distinct
and non-empty. By reordering the ri if necessary, we can en-
sure that ri ⊆ rj implies i ≤ j. For all i, j (1 ≤ i < j ≤ n),
let Rij ∈ {DC,EC,PO,TPP,NTPP} be the unique rela-
tion such that Rij(ri, rj).

Step 1: We construct regular closed sets r+1 , . . . , r
+
n such

that, for all j (1 ≤ j ≤ n), rj ⊆ (r+j )◦ ,

if rj is connected then (r+j )◦ is connected, (28)

if rj ∩ rj′ = ∅ then r+j ∩ r
+
j′ = ∅, for all j, j′. (29)

Lemma 6. There are r+1 , . . . , r
+
n in RC(R2) with (28)–(29).

Proof. By the normality of R2, let s1, . . . , sn be closed sets
such that rj ⊆ s◦j , for all j ≤ n, and if rj ∩ rj′ = ∅
then sj ∩ sj′ = ∅, for all j, j′ ≤ n. Fix any rj . For all
u ∈ rj , let du be a connected and regular closed subset of sj
with u ∈ d◦u (which is possible because R2 is locally con-
nected). Let r+j =

∑
u∈rj du. By construction, rj ⊆ (r+j )◦

and (29). To show (28), consider tj =
⋃
u∈rj d

◦
u. Since⋃

u∈rj (d◦u ∪ rj) = tj , the set tj is connected whenever rj
is. Clearly, tj ⊆ (r+j )◦ . On the other hand, t−j is regular
closed and t−j ⊇

∑
u∈rj d

◦
u
− = r+j . Thus, tj ⊆ (r+j )◦ ⊆

r+j ⊆ t−j , which means that if rj is connected then (r+j )◦ is
sandwiched between a connected set tj and its closure t−j ,
and hence is itself connected; cf. (28).

Step 2: For all i, j (1 ≤ i < j ≤ n), pick points o, o′, o′′
satisfying the conditions:

• if Rij = EC, then o ∈ δri ∩ δrj ;
• if Rij = PO, then o ∈ r◦i ∩ r

◦
j , o′ ∈ r◦i \ rj , o′′ ∈ r

◦
j \ ri;

• if Rij = TPP, then o ∈ δri ∩ δrj and o′ ∈ r◦j \ ri;

• if Rij = NTPP, then o ∈ r◦j \ ri.

And for all j (1 ≤ j ≤ n), pick points o, o′ satisfying the
condition that, if rj is not connected, then o and o′ lie in
different components of rj . Enumerate the chosen (distinct)
points as o1, . . . , om: we call them witness points. We can
draw disjoint closed disks d1, . . . , dm, centred on the respec-
tive witness points ok, such that, for all j ≤ n and k ≤ m:

if ok ∈ r◦j then dk ⊆ r◦j , (30)

if ok ∈ (r+j )
◦

then dk ⊆ (r+j )◦ , (31)

if (r+j )◦ is connected then so is (r+j )◦ \ d, (32)

where

d =

m⋃
k=1

dk.

This can be done because, if s is a connected, open subset
of R2 and u ∈ s, then there exists a closed disc d such that
u ∈ d ⊆ s and s \ d is connected.

Step 3: We now begin the construction of the p1, . . . , pn.
First, for each set rj and each witness point ok, we select a
polygon wk,j such that

wk,j ⊆ dk. (33)

We refer to the wk,j as wedges: for each j ≤ n, and each
k ≤ m we will make wk,j part of pj . Wedges are selected
as follows.

(i) If ok ∈ δrj , pick a point qk,j ∈ δdk ⊆ (r+j )◦ and let
wk,j be a lozenge within dk such that ok, qk,j ∈ δwk,j ;
see Fig. 6a. We may pick the qk,j to be distinct, and con-
struct the wk,j so that no two such wk,j have intersecting
interiors.
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Figure 13: Disposition of the various arcs involving a par-
ticular connected element rj . The outline of rj is indicated
with thickened lines, and its including region r+j with a dot-
ted line. In this example, rj involves three witness points:
o1 (lying on δrj) and o2, o3 (lying in r◦j ). Notice that the
arcs γk,j are contained within the larger set r+j , and not nec-
essarily within rj .

(ii) If ok ∈ r◦j , pick a point qk,j ∈ δdk ⊆ r◦j and let wk,j be
a lozenge within dk such that ok ∈ (wk,j)

◦ , qk,j ∈ δwk,j .
Again, we may pick the qk,j to be distinct from each other
and from the qk,j selected in (i); see Fig. 6b.

(iii) Otherwise, i.e., if ok 6∈ rj , let wk,j = ∅.
The wedges wk,j will ensure that p1, . . . , pn contain cer-
tain witness points required for the satisfaction of the rele-
vant atomic RCC8c-formulas. For example, if PO(ri, rj),
there will exist a witness point ok ∈ r◦i ∩ r

◦
j ; but then

ok ∈ w◦k,i ∩ w
◦
k,j , whence ok ∈ p◦i ∩ p

◦
j , which is required

to ensure that PO(pi, pj).
It is also obvious that the wk,j may be constructed so that

distinct wk,j and wk′,j′ share no bounding line segments.
This condition is important in view of the following simple
observation about sums of regular closed polygons:

Lemma 7. Suppose that s1, . . . , sk are elements of
RCP(R2) no two of which have any line segment common
to their boundaries. Then (

∑
1≤i≤k si)

◦ =
⋃

1≤i≤k s
◦
i .

Step 4: We must take steps now to connect up the wedges
corresponding to the connected regions. For each connected
set rj (1 ≤ j ≤ n), we do the following:

• Pick a point uj ∈ (r+j )◦ \ d and, for every k ≤ m, select
a piecewise-linear arc γk,j ⊆ (r+j )◦ \ d that connects qk,j
with uj .

This is possible because, by (28) and (32), (r+j )◦ \ d is con-
nected and qk,j ∈ (r+j )◦ ∩ δd. Fig. 13 illustrates the dis-
position of the various arcs γk,j for a particular connected
element rj . We may evidently assume without loss of gen-
erality that, if γk,j and γk′,j′ are defined and distinct, then
γk,j and γk′,j′ intersect at a finite number of points—i.e., do
not have any line segments in common.

Step 5: For all j (1 ≤ j ≤ n), denote

sj =
⋃

j′<j and
TPP(rj′ ,rj) or NTPP(rj′ ,rj)

⋃
1≤k≤m

(
wk,j′ ∪ γk,j′

)
.

pj

qk,j

ak′,j′

ak′,j′

γk′,j′

ak,j ak,j

γk,j

Figure 14: Illustration of the region ak,j surrounding the arc
γk,j , where γk,j is intersected once by another arc γk′,j′ .

This set is closed and semi-linear. So, therefore, are all of
its finitely many components. For each of the connected
components sij of sj , we may construct a connected, regular
closed polygon zij such that sij ⊆ (zij)

◦ and

the zij are pairwise disjoint, for fixed j.

Denote zj =
∑
i z
i
j .

Step 6: It is easy to see (Fig. 14) that, for every γk,j defined
above, we can construct a regular closed polygon ak,j , such
that the following conditions are satisfied:

γk,j ⊆ ak,j ⊆ R2 \ d◦ , (34)
every p ∈ γk,j ∩ δak,j is either an endpoint of γk,j (35)

or one of the (finitely many) points in γk,j ∩ γk′,j′ ,
if γk,j ∩ ri = ∅ then ak,j ∩ ri = ∅, for all i ≤ n, (36)

if γk,j ⊆ (r+i )
◦

then ak,j ⊆ (r+i )
◦
, for all i ≤ n, (37)

if γk,j ⊆ z◦j′ then ak,j ⊆ z◦j′ , for all j′ ≤ j, (38)

if γk,j 6= γk′,j′ then (ak,j)
◦ ∩ (ak′,j′)

◦ = ∅. (39)

If the arc γk,j is not defined, set ak,j = ∅. The ak,j can
also be selected so that, wk,j +ak,j and wk′,j′ +ak′,j′ share
no line segments on their boundaries, for distinct pairs (k, j)
and (k′, j′). This fact is significant in view of Lemma 7.

Step 7: Now define, inductively, the sequences p1, . . . , pn
and p+1 , . . . , p

+
n as follows. Suppose that p1, . . . , pj−1 and

p+1 , . . . , p
+
j−1 have been defined. Let

pj = bj +
∑
j′<j

TPP(rj′ ,rj)

pj′ +
∑
j′<j

NTPP(rj′ ,rj)

p+j′ , (40)

where

bj =
∑

1≤k≤m

(wk,j + ak,j), (41)

and let p+j be a regular closed polygon such that pj ⊆ (p+j )◦



and

every component of p+j includes a component of pj , (42)

if pj ∩ p+j′ = ∅ then p+j ∩ p
+
j′ = ∅, for j′ < j, (43)

if pj ∩ bi = ∅ then p+j ∩ bi = ∅, for j < i ≤ n, (44)

if ok 6∈ pj then ok /∈ p+j , for k ≤ m, (45)

if pj ∩ δzj′ = ∅ then p+j ∩ δzj′ = ∅, for j′ ≤ j. (46)

The polygon p+j can also be chosen so that it shares no line
segment with the boundary of any of the sets p1, . . . , pj ,
p+1 , . . . , p

+
j−1. Again, this fact is significant in view of

Lemma 7. Since all the regions concerned are bounded poly-
gons, the existence of the p+j is unproblematic.

This concludes the construction of the bounded regular
closed polygons p1, . . . , pn. We now proceed to show that
p1, · · · , pn satisfy the same atomic RCC8c-formulas as the
given formula. First, we establish a series of lemmas.

Lemma 8. For all j and k (1 ≤ j ≤ n, 1 ≤ k ≤ m),
(i) ok ∈ rj if and only if ok ∈ pj and
(ii) ok ∈ r◦j if and only if ok ∈ p◦j .

Proof. (i) If ok ∈ rj , then, by construction of wk,j , we have
ok ∈ wk,j ⊆ bj ⊆ pj . For the converse direction, we first
observe that

if ok /∈ rj then ok /∈ bj , for all j ≤ n. (47)

Indeed, by (34), ok /∈ ak′,j , for each k′. By construction,
ok /∈ rj implies wk,j = ∅ and, for each k′ 6= k, we have
ok /∈ dk′ , whence, by (33), ok /∈ wk′,j .

Then we proceed to show (i) by induction on j. The case
j = 1 is immediate from (47). Let j > 1 and ok /∈ rj .
By (47), ok /∈ bj and, for all j′ < j with TPP(rj′ , rj) or
NTPP(rj′ , rj), we have ok /∈ rj′ , whence, by IH, ok 6∈ pj′
and, by (45), ok /∈ p+j′ . By (40), ok /∈ pj .
(ii) If ok ∈ r◦j , then, by construction of wk,j , we obtain
ok ∈ (wk,j)

◦ ⊆ b◦j ⊆ p◦j . For the converse direction, we
first show that

if ok /∈ r◦j then ok /∈ b◦j , for all j ≤ n. (48)

In view of Lemma 7, it suffices to prove that ok /∈ (wk′,j)
◦

and ok /∈ (ak′,j)
◦ , for each k′. The latter is immediate

from (34). The former holds because ok /∈ r◦j implies
ok /∈ (wk,j)

◦ and, for each k′ 6= k, we have ok /∈ dk′ ,
whence, by (33), ok /∈ (wk′,j)

◦ .
Then we proceed to show (ii) by induction on j. The case

j = 1 is immediate from (48). Let j > 1 and ok /∈ r◦j .
By (48), ok /∈ b◦j . For all j′ < j with TPP(rj′ , rj), we have
ok /∈ r◦j′ , whence, by IH, ok /∈ p◦j′ . For all j′ < j with
NTPP(rj′ , rj), we have ok /∈ rj′ , whence, by (i), ok /∈ pj
and, by (45), ok /∈ (p+j′)

◦ . It follows from (40) and Lemma 7
that ok /∈ pj .

Lemma 9. For all i, j (1 ≤ i, j ≤ n), if ri ∩ rj = ∅ then
p+i ∩ p

+
j = ∅.

Proof. First, we need to prove the following two statements:

if ri ∩ rj = ∅ then bi ∩ bj = ∅, for i, j ≤ n; (49)
if rj ∩ ri = ∅ then p+j ∩ bi = ∅, for j < i ≤ n. (50)

Observe that ak,j + wk,j ⊆ (r+j )◦ , for all k ≤ m: indeed,
if ak,j 6= ∅ then γk,j is defined and γk,j ⊆ (r+j )◦ , whence,
by (37), ak,j ⊆ (r+j )◦ ; further, if wk,j 6= ∅ then ok ∈ rj
whence, by (31), wk,j ⊆ dk ⊆ (r+j )◦ . Now, if ri ∩ rj = ∅
then, by (29), r+i ∩ r

+
j = ∅ and thus (49).

For each i, we prove (50) by induction on j. The ba-
sis of induction, j = 1, follows from (49) and (44) as
p1 = b1. For the induction step, let j > 1 and rj ∩ ri = ∅.
By (49), bj ∩ bi = ∅. For each j′ < j with TPP(rj′ , rj) or
NTPP(rj′ , rj), we have j′ < j < i and thus rj′ ∩ ri = ∅,
whence, by IH, p+j′ ∩ bi = ∅. Therefore, by (40), pj ∩ bi = ∅
and, by (44), p+j ∩ bi = ∅.

Finally, we prove the statement of the lemma: we show
by induction on i that for all j, j′ ≤ i, if rj′ ∩ rj = ∅ then
p+j′ ∩ p

+
j = ∅. The case i = 1 is trivial. Let i > 1 and

rj′ ∩ rj = ∅. We have to consider only the case j′ < j = i
(other cases are either immediate from IH or mirror image
of this case). By (50), p+j′ ∩ bi = ∅. For each j′′ < i with
TPP(rj′′ , ri) or NTPP(rj′′ , ri), we have rj′ ∩ rj′′ = ∅,
whence, by IH, p+j′ ∩ p

+
j′′ = ∅. By (40), p+j′ ∩ pi = ∅, and

thus, by (43), p+j′ ∩ p
+
i = ∅.

Lemma 10. For all i, j (1 ≤ i, j ≤ n), if r◦i ∩ r
◦
j = ∅ then

p◦i ∩ p
◦
j = ∅.

Proof. First, we need to prove the following two statements:

if r◦i ∩ r
◦
j = ∅ then b◦i ∩ b

◦
j = ∅, for i, j ≤ n; (51)

if r◦j ∩ r
◦
i = ∅ then p◦j ∩ b

◦
i = ∅, for j < i ≤ n. (52)

To show (51), suppose otherwise, that is, b◦i ∩ b
◦
j 6= ∅. Then

there exists k ≤ m such that one of the following holds:
ok ∈ wk,i∩(wk,j)

◦ or ok ∈ (wk,i)
◦∩wk,j or ok ∈ (wk,i)

◦∩
(wk,j)

◦ . The first case is possible only if ok ∈ ri ∩ r◦j , the
second only if ok ∈ r◦i ∩rj , and the third only if ok ∈ r◦i ∩r

◦
j .

In all cases, r◦i ∩ r
◦
j 6= ∅.

For each i, we prove (52) by induction on j. The basis
of induction, j = 1, follows from (51) as p1 = b1. For
the induction step, let j > 1 and r◦j ∩ r

◦
i = ∅. By (51),

b◦j ∩ b
◦
i = ∅. For all j′ < j with TPP(rj′ , rj), we have

r◦j′∩r
◦
i = ∅, whence, by IH, p◦j′∩b

◦
i = ∅; for all j′ < j with

NTPP(rj′ , rj), we have rj′ ∩ ri = ∅, whence, by Lemma 9,
p+j′ ∩ bi = ∅ and (p+j′)

◦ ∩ b◦i = ∅. By (40) and Lemma 7,
p◦j ∩ b

◦
i = ∅.

Finally, we prove by induction on i that for all j, j′ ≤ i,
if r◦j′ ∩ r

◦
j = ∅ then p◦j′ ∩ p

◦
j = ∅. The case i = 1 is trivial.

Let i > 1 and r◦j′ ∩ r
◦
j = ∅. We have to consider only the

case j′ < j = i (other cases are either immediate from IH
or mirror image of this case). By (52), p◦j′ ∩ b

◦
i = ∅. For all

j′′ < i with TPP(rj′′ , ri), we have r◦j′ ∩ r
◦
j′′ = ∅, whence

by IH, p◦j′ ∩ p
◦
j′′ = ∅; for all j′′ < i with NTPP(rj′′ , ri), we

have rj′∩rj′′ = ∅, whence, by Lemma 9, p+j′ ∩ p
+
j′′ = ∅ and

so p◦j′ ∩ (p+j′′)
◦ = ∅. By (40) and Lemma 7, p◦j′ ∩p

◦
i = ∅.



Lemma 11. For all j (1 ≤ j ≤ n), rj is connected if and
only if pj is connected.

Proof. (⇒) By construction of the sets b1, . . . , bn, if rj is
connected then bj is connected. We show by induction on
j that every component of pj includes a component of bj .
For j = 1, we have p1 = b1. Suppose, j > 1 and pj has
a component not including (and hence not intersecting) any
component of bj . By construction, if rj′ ⊆ rj then every
component of bj′ intersects some component of bj , since
wk,j′ 6= ∅ implies ok ∈ rj′ ⊆ rj and thus wk,j 6= ∅. Then,
by (40), there exists j′ < j such that either TPP(rj′ , rj) and
some component e of pj′ does not intersect any component
of bj or NTPP(rj′ , rj) and some component of p+j′ does not
intersect any component of bj . In the former case, by IH, e
includes some component of bj′ but since rj′ ⊆ rj , bj′ and
hence e intersects some component of bj , a contradiction.
The latter case follows similarly, making use of (42).

(⇐) Now we show by induction on j that

if rj′ ⊆ rj then pj′ ∩ δzj = ∅, for all j′ ≤ j. (53)

As δzj separates the components of sj′ , it follows that
(wk,j′ ∪ γk,j′) ∩ δzj = ∅, for all k ≤ m, and so, by (38),
bj′ ∩ δzj = ∅. Now, the basis of induction, j = 1, is
trivial, since p1 = b1, and rj′ ⊆ r1 only if j′ = 1. Let
j > 1. We have bj′ ∩ δzj = ∅, and, for all j′′ < j′

with TPP(rj′′ , rj′) or NTPP(rj′′ , rj′), we have rj′′ ⊆ rj ,
whence, by IH, pj′′ ∩ δzj = ∅ and, by (46), p+j′′ ∩ δzj = ∅.
By (40), pj′ ∩ δzj = ∅.

If rj is not connected then there exist ok and ok′ lying in
separate components of rj . We claim that ok and ok′ lie in
distinct components of zj , which, by (53), implies that pj
is not connected. Suppose, to the contrary, that ok and ok′
lie in the same component of zj ; then they lie in the same
component of sj . But then, by the construction of the γk,j
and wk,j , there exists a sequence of arcs γk1,j1 , . . . , γk`,j`
along which its is possible to pass (possibly via wedges
wk′′,j′ with rj′ ⊆ rj) from ok to ok′ . But in that case,
we have, for all l ≤ `: (i) rjl is connected; (ii) rjl ⊆ rj ;
and (iii) rjl ∩ rjl+1

6= ∅ if l < `. To see (iii), suppose
rjl ∩ rjl+1

= ∅. By (29), r+jl ∩ r
+
jl+1

= ∅; but γkl,jl ⊆ r+jl
and γkl+1,jl+1

⊆ r+ij+1
. Thus, ok and ok′ lie in the same

component of rj contrary to our assumption.

Consider all the atomic formulas: (i) if DC(ri, rj) then,
by Lemma 9, pi∩pj = ∅ and so DC(ri, pj); (ii) if EC(ri, rj)
then, by Lemma 10, p◦i ∩ p

◦
j = ∅ and, by Lemma 8,

δpi ∩ δpj 6= ∅ and so, EC(pi, pj); (iii) if PO(ri, rj) then,
by Lemma 8, p◦i ∩ p

◦
j 6= ∅, p

◦
i \ pj 6= ∅ and p◦j \ pi 6= ∅

and so, PO(pi, pj); (iv) if TPP(ri, rj) then i < j and,
by (40), pi ⊆ pj ; also, by Lemma 8, δpi ∩ δpj 6= ∅ and
p◦j \ pi 6= ∅ and so, TPP(pi, pj); (v) if NTPP(ri, rj) then
i < j, whence, by (40), pi ⊆ p◦j , and so, NTPP(pi, pj);
(vi) finally, by Lemma 11, ri is connected if and only if pi is
connected.

Proof of Theorem 4
Theorem 4. The problems Sat(RCC8c,RC(R)) and
Sat(RCC8c,RCP(R)) are both NP-complete; the problem
Sat(Cc,RCP(R)) is PSPACE-complete.
Proof. (i) We show that an RCC8c-formula ϕ is satisfi-
able over RCP(R) if and only if it is satisfiable over the
Aleksandrov space induced by a quasi-order of the form
({x0, . . . , xn, z0, . . . , zn−1}, R), where R is the reflexive
closure of {(zi, xi), (zi, xi+1) | 1 ≤ i < n} and n ≤ |ϕ|2.

Without loss of generality we may assume that ϕ is a con-
junction of atoms of the form:

• (r · r′ 6= 0), (r · (−r′) 6= 0),

• C(r, r′), C(r,−r′),

• (r · r′ = 0), (r ≤ r′),

• ¬C(r, r′), ¬C(r,−r′),

• c(r)
(negative occurrences of c(r) can be equi-satisfiably re-
placed by (r′ ≤ r) ∧ (r′′ ≤ r) ∧ ¬C(r′, r′′), where r′ and
r′′ are fresh variables).

Suppose ϕ is satisfiable in a model M over RCP(R). We
construct a model B over the Alkesandrov space induced by
(W,R) in a number of steps.
Step 1. First we find points for W in the following way:

(sing) if M |= (τ 6= 0), we pick a point x ∈ τM; and

(fork) if M |= C(τ, τ ′), we pick a pair of points x ∈ (τ)M

and x′ ∈ (τ ′)M.

Without loss of generality, we may assume that between no
pair of points picked in (fork) lies another of the picked
points (this can be done by selecting that pair close enough
to the point of contact of τ and τ ′). We also assume that the
same point may be picked twice. Denote byW0 the set of all
the points picked above and let ≺ be the strict linear order
on W0 induced by their natural order in M. Let W = W0

and R = ∅. Next, for each pair x, x′ of points picked in
(fork), take a fresh point z, add it to W and (z, x), (z, x′)
to R. Note that (W,R) is a subgraph of the required quasi-
order (i.e., each z has at most two successors and each x has
at most two predecessors). Finally, we construct the model
B based on the Aleksandrov space induced by (W,R) by
setting x ∈ rB iff x ∈ rM, for each w ∈ W0 (the valuation
in z ∈W \W0 needs no definition as if rB are to be regular
closed we must have z ∈ B iff x ∈ rB, for some x ∈ W0

with zRx). Note that B |= (τ = 0) whenever M |= (τ = 0)
and B |= ¬C(τ, τ ′) whenever M |= ¬C(τ, τ ′). If the space
is connected and B |= c(r) whenever M |= c(r), for all
c(r), we are done.

Step 2. So, suppose c(τ0), where τ0 is either r or 1, is false
in the model. Pick any two neighbouring (with respect to≺)
points x, x′ ∈ τB0 without a common predecessor and take
a fresh point y, add y to W with y ∈ rB iff x, x′ ∈ rB.
Clearly, adding this point to the model does not change the
truth value of any subformula of the form (τ 6= 0), C(τ, τ ′),
(τ = 0) or ¬C(τ, τ ′). So, it remains to connect y to both x
and x′. We cannot, however, directly connect y to, say, x by



creating a common R-predecessor, i.e., a point of depth 1,
because that might make one of the ¬C(τ, τ) subformulas
false. Let rj1 , . . . , rjk be a linear order on the regions con-
taining x such that it is compatible with the subformulas of
the form (ri ≤ rj), i.e., such that M |= (rji ≤ rji′ ) when-
ever ji ≤ ji′ . We proceed our construction in a step-by-step
way. For step 0, let x0 = y. For step i, 1 ≤ i ≤ k, take fresh
points xi and zi, add them to W , add (zi, xi−1) and (zi, xi)
to R, let

xi ∈ rB iff xi−1 ∈ rB or M |= rji ≤ r

and zi ∈ rB iff {xi−1, xi}∩ rB 6= ∅. Clearly, all subformu-
las of the form (τ 6= 0), C(τ, τ ′) and (τ = 0) that are true in
M are also true in B. It is also clear that the same holds for
subformulas of the form ¬C(r, r′). So, it remains to show
that the same holds for subformulas of the form ¬C(r,−r′).
To this end we observe that, each triple xi−1, zi, xi is either
entirely in rB or zi is on the boundary of rB, in which case
xi−1 /∈ rB and xi ∈ rB. It also follows that in the latter
case M |= rjk ≤ r iff k ≥ i, and so zi cannot be a point
of contact of r and any −r′. Finally, points xk and x belong
to precisely the same regions and can be identified. In the
same way we connect y to x′.

Repeating Step 2 for each pair of neighbouring (with re-
spect to≺) points of depth 0 without a common predecessor,
we construct the model as required.

(ii) For Sat(Cc,RCP(R)), the model can be of exponential
size (due to exponential paths required in Step 2 to connect
up disconnected regions) but a non-deterministic algorithm
can guess such a model using only a polynoimial number of
cells on the tape of a Turing machine.


