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Abstract
We develop a formal framework for comparing different
versions of DL-Lite ontologies. Four distinct notions of
difference and entailment between ontologies are intro-
duced and their applications in ontology development
and maintenance discussed. These notions are obtained
by distinguishing between differences that can be ob-
served among concept inclusions, answers to queries
over ABoxes, and by taking into account additional con-
text ontologies. We compare these notions, study their
meta-properties, and determine the computational com-
plexity of the corresponding reasoning tasks. Moreover,
we show that checking difference and entailment can be
automated by means of encoding into QBF satisfiability
and using off-the-shelf QBF solvers.

Introduction
In computer science, ontologies are used to provide a com-
mon vocabulary for a domain of interest, together with a
description of the relationships between terms built from
the vocabulary. Ontology languages based on description
logics (DLs) represent ontologies as TBoxes (terminologi-
cal boxes) containing inclusions between complex concepts
over the vocabulary. An increasingly important application
of ontologies is management of large amounts of data, where
ontologies are used to provide flexible and efficient access to
repositories consisting of data sets of instances of concepts
and relations. In DLs, such repositories are typically mod-
elled as ABoxes (sets of assertions).

Developing and maintaining ontologies for this and other
purposes is a difficult task. When dealing with DLs, the
ontology designer is supported by efficient reasoning tools
for classification, instance checking and some other reason-
ing tasks. However, it is generally recognised that this sup-
port is not sufficient when ontologies are not developed as
‘monolithic entities’ but rather result from importing, merg-
ing, combining, re-using, refining and extending already ex-
isting ontologies. In all those cases, reasoning support for
analysing the impact of the respective operation on the on-
tology would be highly desirable. Typical examples of such
‘unorthodox’ reasoning services include the following:
• Comparing versions of ontologies. The standard diff

utility is an indispensable tool for comparing files. How-
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ever, such a purely syntactic operation is of little value
if the files contain different versions of ontologies (Noy
& Musen 2002) because our concern now is not the syn-
tactic form of their axioms, but the differences between
relationships between terms over their common vocabu-
lary Σ these ontologies imply. The reasoning service we
need in this case is to compare the logical consequences
of different versions of ontologies over Σ.

• Ontology refinement. When refining an ontology by
adding new axioms, one usually wants to preserve the re-
lationships between terms of a certain part Σ of its vocab-
ulary. The reasoning service required in such a case is to
check whether the refined ontology has precisely the same
logical consequences over Σ as the original one.

• Ontology re-use. When importing an ontology, one wants
to use its vocabulary Σ as originally defined. However,
relationships between terms over Σ may change due to
some axioms in the importing ontology. So, again, we
need a reasoning service capable of checking whether new
logical consequences over Σ are derivable (this service
has been termed safety checking in (Grau et al. 2007b)).

In all these and many other cases, we are interested in com-
paring the relationships between terms over some vocabu-
lary (or signature) Σ two ontologies imply. This gives rise
to the two main notions we investigate in this paper: Σ-
difference and Σ-entailment. Roughly, the Σ-difference be-
tween two ontologies is the set of ‘formulas’ over Σ that are
derivable from one ontology but not from the other; and one
ontology Σ-entails another if all Σ-formulas derivable from
the latter are also derivable from the former.

A very important special case of Σ-entailment, namely
various versions of the notion of conservative extension,
has been intensively investigated in the past few years (An-
toniou & Kehagias 2000; Ghilardi, Lutz, & Wolter 2006;
Grau et al. 2007a; 2007b; Lutz, Walther, & Wolter 2007).
In this case one ontology is included in the other and Σ is
the vocabulary of the smaller one. The Σ-formulas consid-
ered in these papers were concept inclusions C1 v C2, and
a number of complexity and decidability results were ob-
tained.1 Also, model conservativity (Lutz, Walther, & Wolter

1The complexity and decidability results for conservative exten-
sions obtained in (Ghilardi, Lutz, & Wolter 2006; Lutz, Walther, &
Wolter 2007) can easily be generalised to Σ-entailment.



2007) and sufficient syntactic conditions of conservativity,
e.g., locality (Grau et al. 2007b), have been considered.

In this paper we also deal with concept inclusions, but
more importantly, we analyse Σ-difference and entailment
with respect to existential Σ-queries, where the reasoning
task is to decide whether two ontologies give precisely the
same answers to Σ-queries for any database (= ABox) over
Σ, and perhaps any additional context ontology over Σ. The
corresponding notions of Σ-query difference and entailment
are of interest for any DL, but they are of particular impor-
tance to those DLs that were specifically designed in order
to facilitate efficient query-answering over large data sets.

The idea of using ontologies as a conceptual view over
data repositories goes back to (Borgida et al. 1989) and has
recently been developed to a quite practical level (Acciarri
et al. 2005; Calvanese et al. 2007) with promising appli-
cations in such areas as data integration and P2P data man-
agement. The DL-Lite family of description logics has been
largely designed with this application in mind (Calvanese et
al. 2005; 2006). The data complexity of query answering
is within LOGSPACE for most members of the family, and
moreover, queries over DL-Lite ontologies can be rewritten
as SQL queries so that standard database query engines can
be used. DL-Lite is part of the OWL 1.1 Web Ontology Lan-
guage which is a W3C Member Submission.

In this paper, we investigate four notions of Σ-difference
and Σ-entailment for two members of the DL-Lite family:
DL-Litebool, the most expressive language of the family, ba-
sically covering all others, and DL-Litehorn, the Horn sub-
set of DL-Litebool. The four notions of Σ-difference and
entailment are obtained by distinguishing between differ-
ences visible among concept inclusions, answers to queries
over ABoxes, and by taking into account additional context
ontologies. We compare these notions, study their meta-
properties, and determine the computational complexity of
the corresponding reasoning tasks. Moreover, we show
that the reasoning services discussed above can be imple-
mented by means of encoding into satisfiability of quantified
Boolean formulas (QBF). We report on our first experiments
with general purpose off-the-shelf QBF solvers for deciding
Σ-entailment between ‘typical’ DL-Lite ontologies.

The DL-Lite Family
We remind the reader of the syntax and semantics of the DLs
DL-Litebool and DL-Litehorn introduced and investigated in
(Calvanese et al. 2005; 2006; Artale et al. 2007). The lan-
guage of DL-Litebool has object names a1, a2, . . . , concept
names A1, A2, . . . , and role names P1, P2, . . . . Complex
roles R and DL-Litebool concepts C are defined as follows:

R ::= Pi | P−i ,

B ::= ⊥ | > | Ai | ≥ q R,
C ::= B | ¬C | C1 u C2,

where q ≥ 1. The concepts of the form B above are called
basic. A concept inclusion in DL-Litebool is of the form
C1 v C2, whereC1 andC2 are DL-Litebool concepts. (Other
concept constructs like ∃R, ≤ q R and C1 tC2 will be used
as standard abbreviations.) A TBox in DL-Litebool, T , is a
finite set of concept inclusions in DL-Litebool.

In the Horn fragment DL-Litehorn of DL-Litebool, concept
inclusions are restricted to the form

d
k Bk v B, where B

and the Bk are basic concepts. In this context, basic con-
cepts will also be called DL-Litehorn concepts. Note that the
inclusions

d
k Bk v ⊥ and > v B are legal in DL-Litehorn.

A DL-Litehorn TBox is a finite set of DL-Litehorn concept
inclusions. It is worth noting that in DL-Litehorn we can ex-
press both global functionality of a role and local function-
ality (i.e., functionality restricted to a (basic) concept B) by
means of the axioms ≥ 2R v ⊥ and B u ≥ 2R v ⊥.

Let L be either DL-Litebool or DL-Litehorn. An ABox in L,
A, is a set of assertions of the form C(ai), R(ai, aj), where
C is an L-concept, R a role, and ai, aj are object names. A
knowledge base in L (KB, for short) is a pair K = (T ,A)
with a TBox T and an ABox A both in L.

An interpretation I is a structure of the form
(∆I , AI1 , . . . , P

I
1 , . . . , a

I
1 , . . .), where ∆I is nonempty,

AIi ⊆ ∆I , P Ii ⊆ ∆I ×∆I and aIi ∈ ∆I with aIi 6= aIj , for
ai 6= aj (i.e., we adopt the unique name assumption). The
extension CI ⊆ ∆I of a concept C is defined as usual, e.g.,

d ∈ (≥ q R)I iff |{d′ ∈ ∆I | (d, d′) ∈ RI}| ≥ q.

A concept inclusion C1 v C2 is satisfied in I if CI1 ⊆ CI2 ;
in this case we write I |= C1 v C2. I is a model for
a TBox T if all concept inclusions from T are satisfied in
I. An ABox assertion C(a) (R(ai, aj)) is satisfied in I if
aI ∈ CI ((aIi , a

I
j ) ∈ RI). A concept inclusion C1 v C2

follows from T , T |= C1 v C2 in symbols, if every model
for T satisfies C1 v C2. A concept C is T -satisfiable if
there exists a model I for T with CI 6= ∅. We say that I
is a model for a KB (T ,A) if I is a model for T and every
assertion of A is satisfied in I.

An (essentially positive) existential query in L (or simply
a query, if L is understood) is a first-order formula

q(x1, . . . , xn) = ∃y1 . . . ∃ymϕ(x1, . . . , xn, y1, . . . , ym),

where ϕ is constructed, using only ∧ and ∨, from atoms of
the formC(t) andR(t1, t2), withC being anL-concept,R a
role, and ti being either an object name or a variable from the
list x1, . . . , xn, y1, . . . , ym. Given a KBK and a query q(x),
x = x1, . . . , xn, we say that an n-tuple a of object names
is a certain answer to q(x) w.r.t. K and write K |= q(a)
if, for every model I for K, we have I |= q(a). The sub-
sumption problem ‘T |= C1 v C2?’ is coNP-complete in
DL-Litebool and P-complete in DL-Litehorn; the data com-
plexity of the query answering problem for DL-Litehorn KBs
is in LOGSPACE, while for DL-Litebool it is CONP-complete
(Artale et al. 2007).

What is the Difference?
As we saw in the introduction, the notions of difference and
entailment between ontologies are restricted to some sig-
nature, i.e., a finite set of concept and role names.2 Given
a concept, role, concept inclusion, TBox, ABox, or query
E, we denote by sig(E) the signature of E, that is, the

2As DL-Litebool TBoxes do not contain object names, we do not
have to include them to signatures (unlike DLs with nominals).



set of concept and role names that occur in E. It is to be
noted that ⊥ and > are regarded as logical symbols, and so
sig(⊥) = sig(>) = ∅. A concept (role, concept inclusion,
TBox, ABox, query) E is called a Σ-concept (role, concept
inclusion, TBox, ABox, query, respectively) if sig(E) ⊆ Σ.
Thus, P− is a Σ-role iff P ∈ Σ.

Definition 1 Let L ∈ {DL-Litebool,DL-Litehorn} and let T1

and T2 be TBoxes in L and Σ a signature.

• The Σ-concept difference between T1 and T2 is the set
cDiffLΣ(T1, T2) of all Σ-concept inclusions C v D in L
such that T2 |= C v D and T1 6|= C v D. We say that T1

Σ-concept entails T2 in L if cDiffLΣ(T1, T2) = ∅.
• The Σ-query difference between T1 and T2 is the set

qDiffLΣ(T1, T2) of pairs (A, q(x)), where A is a Σ-ABox
in L and q(x) a Σ-query in L such that (T1,A) 6|= q(a)
and (T2,A) |= q(a), for some tuple a of object names
from A. We say that T1 Σ-query entails T2 in L if
qDiffLΣ(T1, T2) = ∅.
• The strong Σ-concept difference between T1 and T2 is the

set scDiffLΣ(T1, T2) of all pairs (T , C v D) such that T is
a Σ-TBox in L and C v D ∈ cDiffLΣ(T ∪T1, T ∪T2). T1

strongly Σ-concept entails T2 inL if scDiffLΣ(T1, T2) = ∅.
• The strong Σ-query difference between T1 and T2 is the

set sqDiffLΣ(T1, T2) of all triples (T ,A, q(x)) such that T
is a Σ-TBox inL and (A, q(x)) ∈ qDiffLΣ(T ∪T1, T ∪T2).
We also say that T1 strongly Σ-query entails T2 in L if
sqDiffLΣ(T1, T2) = ∅.

As argued in the introduction, the notions of Σ-difference
and Σ–entailment can play an important role in comparing
ontologies, checking whether a refinement of an ontology
has undesirable effects on a certain part of its signature, and
in checking whether a re-used (imported) ontology changes
when put into the environment of another ontology. In all
those cases, Σ indicates the vocabulary over which the user
wants to compare ontologies. For example, for two versions
of a medical ontology, a user interested in anatomy might
choose Σ to be the set of terms relevant to anatomy and then
check whether the two ontologies differ w.r.t. these terms.

In the definition of Σ-query difference, we take into ac-
count arbitrary Σ-ABoxes in L. The reason is that during
the ontology design phase, the data repositories to which
the ontology will be applied are often either completely un-
known or are subject to more or less frequent changes. Thus,
to assume that we have a fixed ABox is unrealistic when
checking differences between ontologies, and that is why in
our approach we regard ABoxes as ‘black boxes.’

Observe that, in general, more differences are detected
when we consider Σ-queries rather than Σ-concept inclu-
sions. Indeed, let L be one of DL-Litebool and DL-Litehorn.
To see that any difference detected by means of concept
inclusions can also be detected by means of queries, sup-
pose that we have T1 6|= C1 v C2 and T2 |= C1 v C2,
for some Σ-concept inclusion C1 v C2 in L. Consider
the ABox A = {C1(a)} and the query q = C2(a). Then
(T2,A) |= q, while (T1,A) 6|= q. (Note that in DL-Litehorn,
C1 = B1 u · · · uBk and C2 = B, where B,B1, . . . , Bk are

basic concepts.) To show that the converse does not hold,
namely that queries can detect more differences than con-
cept inclusions, we consider the following example. (Most
of the claims in the examples below can be verified directly
or using the criteria of Theorem 11 below.)
Example 2 Take Σ = {Lecturer,Course}, T1 = ∅, and

T2 = {Lecturer v ∃teaches, ∃teaches− v Course}.
Intuitively, the only consequence of T2 over Σ is ‘if there is
a lecturer, then there is a course,’ but it cannot be expressed
as a Σ-concept inclusion. Thus, T1 Σ-concept entails T2

(in both DL-Litebool and DL-Litehorn). However, T1 does
not Σ-query entail T2. Indeed, let A = {Lecturer(a)} and
q = ∃y Course(y). Then (T1,A) 6|= q but (T2,A) |= q.

It is also of interest to observe that Σ-query entail-
ment in DL-Litehorn does not imply Σ-query entailment in
DL-Litebool (the converse implication follows immediately
from the fact that DL-Litehorn is a fragment of DL-Litebool).
Example 3 Let Σ = {Lecturer}, T1 = ∅, and

T2 = {Lecturer v ∃teaches, Lecturer u ∃teaches− v ⊥}
Then T1 does not Σ-query entail T2 in DL-Litebool: just take
A as before and q = ∃y ¬Lecturer(y). But T1 Σ-query en-
tails T2 in DL-Litehorn.

The first two notions of difference in Definition 1 do not
take into account any context ontologies in which T1 or T2

may be used, nor do they cover the situation where T1 and
T2 are changed by adding new axioms. To accommodate for
this, we have introduced strong versions of entailment and
difference. If two versions of ontologies strongly Σ-entail
each other for their shared signature Σ, then they can be
safely replaced by each other within any ontology T which
only uses symbols from Σ; after such a replacement no dif-
ferences between the sets of derivable Σ-concept inclusions
(or answers to Σ-queries) can be detected. To see that the
‘weak’ notions of entailment do not always have this re-
placement property, consider the following example.
Example 4 Let T1 = ∅ and T2 be the TBox from Example 3
saying that every lecturer teaches and that a lecturer is not
something which is taught. Let, as before, Σ = {Lecturer}.
Then T1 and T2 Σ-concept entail each other in DL-Litebool.
But for T = {> v Lecturer}, we have T1 ∪ T 6|= > v ⊥
and T2 ∪ T |= > v ⊥, i.e., the former TBox is consistent
while the latter is not. Thus, the difference between T1 and
T2 becomes visible if we extend them with the ontology T .

Example 4 shows also that Σ-query entailment in
DL-Litehorn does not imply strong Σ-concept entailment in
DL-Litehorn. In the context of defining modules within on-
tologies, taking into account changes to ontologies and con-
text ontologies has been strongly advocated in (Grau et al.
2007b), which inspired our definitions. The following exam-
ple shows that strong Σ-concept entailment in DL-Litehorn
does not imply strong Σ-concept entailment in DL-Litebool.
Example 5 Consider the DL-Litehorn TBoxes
T1 =

{
Male u Female v ⊥, > v ∃father, > v ∃mother,

∃father− v Male, ∃mother− v Female
}
,

T2 =
{
> v ∃id, Male u ∃id− v ⊥, Female u ∃id− v ⊥

}
,



and let Σ = {Male,Female, father,mother}. T2 implies
that > 6v Male t Female. Now, in DL-Litebool, T1 ∪ T2 is
not strongly Σ-concept entailed by T1: it is enough to take
T = {> v Male t Female}. However, T1 ∪ T2 is strongly
Σ-entailed by T1 in DL-Litehorn.

Semantic Criteria of Σ-Entailment
Now we compare the notions of Σ-difference and Σ-
entailment in a systematic way using model-theoretic char-
acterisations. Our first observation generalises the well-
known result from propositional logic according to which
two propositional Horn theories entail the same Horn formu-
las if, and only if, these theories have the same consequences
in the class of all propositional formulas.

Theorem 6 For any DL-Litehorn TBoxes T1, T2 and any sig-
nature Σ, the following two conditions are equivalent:

• T1 Σ-concept entails T2 in DL-Litebool;
• T1 Σ-concept entails T2 in DL-Litehorn.

Examples 3 and 5 show that this theorem does not hold
for the stronger notions of Σ-entailment. Moreover, for nei-
ther DL-Litehorn nor DL-Litebool any of the stronger notions
is equivalent to Σ-concept entailment. Our second theorem
summarises the classification of the remaining notions and
shows that in all those cases where we have not provided
counterexamples our notions of Σ-entailment are equivalent.

Theorem 7 Let L be DL-Litebool or DL-Litehorn, T1 and T2

TBoxes in L, and Σ a signature. For L = DL-Litebool, the
following conditions are equivalent:

(1) T1 Σ-query entails T2 in L;
(2) T1 strongly Σ-concept entails T2 in L;
(3) T1 strongly Σ-query entails T2 in L.

For L = DL-Litehorn, conditions (2) and (3) are equivalent,
while (1) is strictly weaker than each of them.

Thus, the full comparison table looks as follows:

DL-Litehorn
Σ-concept�Σ-query� strong Σ-concept≡ strong Σ-query

DL-Litebool
Σ-concept�Σ-query≡ strong Σ-concept≡ strong Σ-query

The equivalence results of Theorem 7 follow from the
model-theoretic characterisations of the notions of Σ-entail-
ment to be presented below. In this paper, our characterisa-
tions will have a somewhat syntactic flavour in the sense that
they are formulated in terms of types—syntactic abstrac-
tions of domain elements—realised in models, rather than in
model-theoretic terms. The advantage of such characterisa-
tions is that they can be used directly for designing decision
algorithms, despite the fact that the underlying models are
often infinite as neither DL-Litebool nor DL-Litehorn has the
finite model property (Calvanese et al. 2005). Needless to
say, however, that the correctness of the type-based charac-
terisations presented below require model constructions (see
Appendix).

Let Σ be a signature and Q a set of positive natural num-
bers containing 1. By a ΣQ-concept we mean any concept of

the form ⊥, >, Ai, ≥ q R, or its negation, for some Ai ∈ Σ,
Σ-role R and q ∈ Q. A ΣQ-type is a set t of ΣQ-concepts
containing > such that the following conditions hold:
• for every ΣQ-concept C, either C ∈ t or ¬C ∈ t,
• if q < q′ are both in Q and ≥ q′R ∈ t then ≥ q R ∈ t,
• if q < q′ are in Q and ¬(≥ q R) ∈ t then ¬(≥ q′R) ∈ t.
Clearly, for each ΣQ-type t with⊥ /∈ t, there is an interpre-
tation I and a point x in it such that x ∈ CI , for all C ∈ t.
In this case we say that t is realised (at x) in I.

Definition 8 For a TBox T , a ΣQ-type t is called T -realis-
able if t is realised in a model for T . A set Ξ of ΣQ-types is
said to be T -realisable if there is a model for T realising all
types from Ξ. We also say that Ξ is precisely T -realisable if
there is a model I for T such that I realises all types in Ξ,
and every ΣQ-type realised in I is in Ξ.

Given a TBox T , let QT denote the set of numerical pa-
rameters occurring in T together with 1. The following con-
ditions are equivalent:
• T1 Σ-concept entails T2 in DL-Litebool;
• every T1-realisable ΣQT1∪T2 -type is T2-realisable.
This equivalence is trivial if one considers ΣN-types instead
of ΣQT1∪T2 -types. Thus, the message here is that it is suffi-
cient to consider only parameters from QT1∪T2 .

For Σ-query entailment in DL-Litebool (and the two other
equivalent notions), the following conditions are equivalent:
• T1 Σ-query entails T2 in DL-Litebool;
• every precisely T1-realisable set Ξ of ΣQT1∪T2 -types is

precisely T2-realisable.
Intuitively, while Σ-concept entailment is a ‘local’ form of
entailment referring to one point in a model, Σ-query entail-
ment and strong Σ-concept/query entailment are ‘global’ in
the sense that all points of models have to be considered.

Example 9 In Example 2, to compute the ΣQT1∪T2 -types,
we do not require numerical parameters, as Σ contains
no role names. There are four T1-realisable Σ-types
{(¬)Lecturer, (¬)Course}. All of these are T2-realisable as
well. However, the singleton set {{Lecturer,¬Course}} is
precisely T1-realisable but not precisely T2-realisable.

In the case of DL-Litehorn more definitions are required.
Given a ΣQ-type t, let t+ = {B ∈ t | B a basic concept}
(i.e., positive part of the type). Say that a ΣQ-type t1 is h-
contained in a ΣQ-type t2 if t+

1 ⊆ t+
2 . The following two

notions characterise Σ-entailment for DL-Litehorn:
Definition 10 A set Ξ of ΣQ-types is said to be sub-pre-
cisely T -realisable if there is a model I for T such that I
realises all types from Ξ, and every ΣQ-type realised in I is
h-contained in a type from Ξ. We also say that Ξ is meet-pre-
cisely T -realisable if there is a model I for T such that, for
every ΣQ-type t realised in I, Ξt 6= ∅ and t+ =

⋂
ti∈Ξt

t+
i ,

where Ξt = {ti ∈ Ξ | t+ ⊆ t+
i }. (It follows that t+ ⊆ t+

i ,
for all ti ∈ Ξt, and thus, Ξ is sub-precisely T -realisable.)

Theorem 11 Let L ∈ {DL-Litebool,DL-Litehorn} and α be
one of the four notions of Σ-entailment. For a signature Σ
and TBoxes T1 and T2 in L, the following are equivalent:



• T1 α entails T2 in L;
• every precisely T1-realisable set of ΣQT1∪T2 types satis-

fies the corresponding property from the following table:
language L

entailment α DL-Litehorn DL-Litebool

Σ-concept3 T2-realisable T2-realisable

Σ-query sub-precisely
T2-realisable

strong Σ-concept meet-precisely
T2-realisable

precisely
T2-realisable

strong Σ-query

Example 12 Consider the TBoxes from Example 3. Again,
we do not require numerical parameters because Σ does
not contain role names. The T1-realisable Σ-types are
{¬Lecturer} and {Lecturer}, and both are T2-realisable.
Hence T1 Σ-concept entails T2 in DL-Litebool (and, there-
fore, in DL-Litehorn). The singleton set {{Lecturer}} is pre-
cisely T1-realisable, but not precisely T2-realisable. Hence
T1 does not Σ-query entail T2 in DL-Litebool. However,
{{Lecturer}} is sub-precisely T1-realisable and, therefore
T1 Σ-query entails T2 in DL-Litehorn. On the other hand,
{{Lecturer}} is not meet-precisely T2-realisable, and so T1

does not strongly Σ-concept entail T2 in DL-Litehorn.

Robustness Properties
Results regarding Σ-difference and Σ-entailment can be eas-
ily misinterpreted and are of limited use if these notions
do not enjoy certain robustness properties. To start with,
recall that in the definition of essentially positive existen-
tial queries for DL-Litebool, we allow negated concepts in
queries and ABoxes. An alternative approach would be to
allow only positive concepts. These two types of queries
give rise to different notions of query entailment: under the
second definition, the TBox T2 from Example 3 is Σ-query
entailed by T1 = ∅, even in DL-Litebool. We argue, how-
ever, that it is the essentially positive queries that should be
considered in the context of this investigation. The reason is
that, with only positive queries allowed, the addition of the
definitionB ≡ ¬Lecturer to T2 andB to Σ would result in a
TBox which is not Σ-query entailed by T1 in DL-Litebool any
longer. This kind of non-robust behaviour of the notion of
Σ-entailment is clearly undesirable. Obviously, the formula-
tions we gave are robust under the addition of definitions to
TBoxes. We now consider two other robustness conditions.

Theorem 13 Let ‘Σ-entails’ be one of the eight notions of
Σ-entailment given in Definition 1.
• The relation ‘Σ-entails’ is robust under vocabulary exten-

sions: if T1 Σ-entails T2, then T1 Σ′-entails T2, for every
Σ′ such that Σ′ ∩ sig(T2) ⊆ Σ.

• The relation ‘Σ-entails’ is robust under joins: if T and Ti

Σ-entail each other, for i = 1, 2, and sig(T1)∩ sig(T2) ⊆
Σ, then T Σ-entails T1 ∪ T2.

Robustness under vocabulary extensions is of particular im-
portance for query Σ-entailment and the strong versions of

3Every T1-realisable type is always contained in a precisely T1-
realisable set.

Σ-entailment. For example, it implies that if T1 strongly
Σ-query entails T2 then, for any ABox A, TBox T and
query q containing, besides Σ, arbitrary symbols not oc-
curring in T2, we have (T1 ∪ T ,A) |= q(a) whenever
(T2 ∪ T , A) |= q(a). This property is critical for applica-
tions, as it is hardly possible to restrict ABoxes and context
ontologies to a fixed signature Σ and not permit the use of
any fresh symbols.

Robustness under joins is of interest for collaborative on-
tology development. This property means that if two (or
more) ontology developers extend a given ontology T in-
dependently and do not use common symbols with the ex-
ception of those in a certain signature Σ then they can safely
form the union of T and all their additional axioms provided
that their individual extensions are safe for Σ.

Both robustness conditions are closely related to the well-
known Robinson consistency lemma and interpolation (see
e.g., (Chang & Keisler 1990)), which have been investi-
gated in the context of modular software specification (Dia-
conescu, Goguen, & Stefaneas 1993) as well. They typically
fail for description logics with nominals and/or role hierar-
chies (Areces & ten Cate 2006; Konev et al. 2007). Observe
that, for robustness under joins, mutual Σ-entailment of T
and Ti is required:

Example 14 Let T1 = {A v ∃R,∃R− v B}, T2 = T ,
T = {> v ¬B}, and Σ = {A,B}. Then T Σ-concept
entails Ti, i = 1, 2, but T1 ∪ T2 |= > v ¬A, and so it is not
Σ-concept entailed by T .

Complexity and Algorithms
We first determine the complexity of deciding Σ-entailment
and then consider the problem of computing Σ-differences.

Theorem 15 For all notions of Σ-entailment introduced
in Definition 1, deciding Σ-entailment is Πp

2-complete in
DL-Litebool and CONP-complete in DL-Litehorn.

The lower bounds follow immediately from the corre-
sponding lower bounds for propositional logic and its Horn
fragment. The upper bound for Σ-concept entailment in
DL-Litebool and DL-Litehorn is rather straightforward: by the
characterisation of Theorem 11, it is sufficient to check that
every T1-realisable ΣQT1∪T2 -type is T2-realisable. Thus, to
check non Σ-concept entailment in DL-Litebool, the algo-
rithm guesses a ΣQT1∪T2 -type and checks, using an NP-
oracle, that is is T1-realisable but not T2-realisable. For
DL-Litehorn, this latter check can be done in deterministic
polynomial time.

Proving the upper bounds for the remaining decision
problems is harder: the criteria of Theorem 11 do not make
any claim regarding the cardinality of the sets of ΣQT1∪T2 -
types one has to consider (there are exponentially many
ΣQT1∪T2 -types). Our upper bound proof shows that it suf-
fices to consider sets Ξ of ΣQT1∪T2 -types the size of which
is bounded by a linear function in the size of the TBoxes.
Then, for DL-Litebool TBoxes T1 and T2, one can decide
whether T1 does not Σ-entail T2 by guessing a set Ξ of lin-
early many ΣQT1∪T2 -types and checking that it is precisely
T1-realisable and not precisely T2-realisable. The Appendix



provides an NP algorithm deciding whether a given set of
ΣQ-types is precisely T -realisable. This gives the Πp

2 upper
bound for Σ-query entailment in DL-Litebool. The proce-
dures for DL-Litehorn are similar: given DL-Litehorn TBoxes
T1 and T2, one can decide whether T1 does not (strongly)
Σ-query entail T2 by guessing Ξ and checking that it is
precisely T1-realisable and not sub-precisely (respectively,
meet-precisely) T2-realisable. The Appendix provides poly-
nomial deterministic algorithms deciding whether a set of
ΣQ-types is precisely, sub-precisely and meet-precisely T -
realisable, for a DL-Litehorn TBox T . This gives CONP up-
per bounds for Σ-query and strong Σ-query entailment.

Observe that deciding Σ-entailment and conservativity is
much harder for most DLs: it is EXPTIME-complete for EL
(Lutz & Wolter 2007), 2EXPTIME-complete for ALC and
ALCQI, and undecidable forALCQIO (Ghilardi, Lutz, &
Wolter 2006; Lutz, Walther, & Wolter 2007).

In applications, it is not enough just to decide whether
two ontologies differ w.r.t. a signature. If the ontologies are
different, the ontology engineer needs an informative list of
differences. Observe that the set of Σ-differences as defined
in Definition 1 is either infinite or empty. Thus, only ap-
proximations of these sets can be computed. By the crite-
ria of Theorem 11, for Σ-concept difference the ΣQ-types
which are T1-realisable but not T2-realisable are obvious
candidates to include in such a set. Such a type contains,
for each concept name A ∈ Σ and (≥ qR) with q ∈ Q,
R ∈ Σ, either the concept itself, or its negation. If there
are too many Σ-differences (remember, there are exponen-
tially many types) and the resulting list is incomprehensi-
ble, the user can step-by-step decrease the size of Σ (e.g.,
by removing elements X from Σ such that two types which
coincide except for X are in the Σ-difference) until the set
of types in the Σ-difference can be analysed. Moreover, as
a second step the user might consider applying pinpointing
algorithms (Schlobach & Cornet 2003) which exhibit the ax-
ioms in the ontology from which the Σ-differences are deriv-
able. For stronger versions of Σ-difference, it appears to be
unavoidable to consider precisely T1-realisable sets of ΣQ-
types, which are (in one of the four ways described in The-
orem 11) not precisely T2-realisable. We leave a systematic
study of the problem of constructing or approximating the
query and strong versions of difference for future research.

Experimental Results
To see whether the algorithms of the previous section
can be used in practice, we refined the criteria for Σ-
concept and Σ-query entailment in DL-Litebool and en-
coded them by means of ∀∃ QBFs (the satisfiability prob-
lem for which is Πp

2-complete). The reader can find the
encodings in the full version available at www.dcs.bbk.
ac.uk/˜roman/qbf2. We used these QBF translations
to check Σ-concept/query entailment for DL-Litebool on-
tologies with the help of three off-the-shelf QBF solvers:
sKizzo (Benedetti 2005), 2clsQ (Samulowitz & Bacchus
2006) and Quaffle (Zhang & Malik 2002b; 2002a). As our
benchmarks, we considered three series of instances of the
form (T1, T2,Σ). In the NN-series, T1 does not Σ-concept
entails T2; in the YN-series, T1 Σ-concept but not Σ-query

entails T2; and in the YY-series, T1 Σ-query entails T2. The
sizes of the instances are uniformly distributed over the in-
tervals given in the table below.

no. of axioms basic concepts
series instances T1 T2 T1 T2 Σ

NN 420 59–154 74–198 47–121 49–146 5–52
YN 252 56–151 77–191 44–119 58–145 6–45
YY 156 54–88 62–110 43–79 47–94 6–32

It is to be noted that our ontologies were not randomly gener-
ated. On the contrary, we used ‘typical’ DL-Lite ontologies
available on the Web: extensions of DL-Litebool fragments
of the standard ‘department ontology’ as well as DL-Litebool
representations of the ER diagrams used in the QuOnto sys-
tem (www.dis.uniroma1.it/˜quonto/).

The next table illustrates the size of the QBF translations
of our instances for both Σ-concept and Σ-query entailment.

Σ-concept entailment QBF Σ-query entailment QBF
series variables clauses variables clauses

NN 1,469–11,752 2,391–18,277 1,715–15,174 5,763–163,936
YN 1,460–11,318 2,352–17,424 1,755–14,723 7,006–151,452
YY 1,526–4,146 2,200–6,079 1,510–4,946 5,121–29,120

The large difference between the size of the QBF transla-
tions for Σ-concept and Σ-query entailment (say, 18,277
v. 163,936 clauses in the same instance) reflects the differ-
ence between simple and precise realisability of sets of types
(cf. Theorem 11): roughly, the QBF encoding of the latter re-
quires quadratical number of clauses (in the number of role
names) whereas the former needs only linearly many.

A brief summary of the tests, conducted on a 3GHz P4
machine with 2GB RAM, is given in Fig. 1, where the
graphs in the upper (lower) row show the percentage of
solved instances for Σ-concept (respectively, Σ-query) en-
tailment; for details and more charts see www.dcs.bbk.
ac.uk/˜roman/qbf2.

The main conclusion of the tests is that automated check-
ing of Σ-entailment between DL-Litebool ontologies4 is in-
deed possible, even with off-the-shelf general purpose soft-
ware (let alone dedicated reasoners). Although of the
same worst-case complexity, in practice Σ-concept entail-
ment turns our to be much easier to check than Σ-query
entailment. Quaffle solved all of our 828 Σ-concept in-
stances. However, none of the solvers could cope with all
Σ-query instances, with those of the YY series being espe-
cially hard. All in all, we have solved more than 90% of the
Σ-query instances. Another interesting observation is that,
for Σ-concept entailment, bigger Σs usually meant harder
instances, whereas the impact of the size of Σ on Σ-query
entailment was rather limited. Finally, our tests showed that
none of the three solvers was better than the others when
checking Σ-entailment: Quaffle was the best for Σ-concept
entailment, 2clsQ for Σ-query entailment with the answer
‘NO,’ and sKizzo for Σ-query entailment with the answer
‘YES.’ On the other hand, having tried various quantifier or-
derings in the prenex QBF translations (www.dcs.bbk.
ac.uk/˜roman/qbf2), we have identified a number of
strategies that could dramatically improve performance of

4The main application area of the DL-Lite family of logics is
conceptual data modelling and data integration, where typical DL-
Lite ontologies do not contain more than a few hundred axioms.
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Figure 1: Percentage of instances solved (Y axis) for each timeout (X axis).

QBF solvers when checking Σ-query entailment.

Conclusion
We have analysed the relation between various notions of
difference and entailment w.r.t. a signature in description
logics DL-Litebool and DL-Litehorn, and proved that the cor-
responding reasoning problems are not harder (at least the-
oretically) than similar problems in propositional logic. We
also demonstrated that an efficient reasoning service check-
ing entailment between DL-Litebool ontologies can be im-
plemented, even using off-the-shelf QBF solvers. Future re-
search problems include the following: (1) The algorithms
presented for Σ-entailment provide a basis for developing
module extraction algorithms for DL-Lite ontologies. Such
an algorithm should output, given an ontology and a signa-
ture Σ, a minimal sub-ontology which Σ-entails the full on-
tology; see (Grau et al. 2007a) for an overview. It remains to
develop the details of such a procedure for DL-Lite. (2) We
have only provided a sketch of how an approximation of the
differences between different versions of an ontology can be
computed. Further experimental results are required to eval-
uate the feasibility of this approach.
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Appendix

A Model-theoretic properties of DL-Lite
In this section, we prove an amalgamation property of
DL-Litebool models. The construction will be used through-
out the paper.

Let Σ be a signature and Q a set of positive natural num-
bers containing 1. Recall that a ΣQ-concept in DL-Litebool
is any concept of the form ⊥, >, Ai, ≥ q R, or its negation
for some Ai ∈ Σ, Σ-role R and q ∈ Q. A ΣQ-type is a
set t of ΣQ-concepts containing > such that the following
conditions hold:

• for every ΣQ-concept C, either C ∈ t or ¬C ∈ t,

• if q < q′ are both in Q and ≥ q′R ∈ t then ≥ q R ∈ t,

• if q < q′ are in Q and ¬(≥ q R) ∈ t then ¬(≥ q′R) ∈ t.

For each ΣQ-type t with ⊥ /∈ t, there is an interpretation
I and a point x in it such that, for every C ∈ t, we have
x ∈ CI . In this case we say that t is realised at x in I, or
that t is the ΣQ-type of x in I and denote it by tΣQ

I (x). A set
Ξ of ΣQ-types is said to be T -realisable if there is a model
for T realising all types from Ξ. Ξ is precisely T -realisable
if there is a model I for T such that I realises all types in
Ξ, and every ΣQ-type realised in I is in Ξ. In this case we
say that I realises precisely the types in Ξ.

Our aim in this section is to introduce, in Lemma A.1, an
operation which allows us to amalgamate interpretations in a
‘truth-preserving’ way. We will need two simple definitions.

Given a signature Σ, we say that two interpretations I and
J are Σ-isomorphic and write I ∼Σ J if there is a bijection
f : ∆I → ∆J such that f(aI) = aJ , for every object name
a, x ∈ AI iff f(x) ∈ AJ , for every concept name A in
Σ, and (x, y) ∈ P I iff (f(x), f(y)) ∈ PJ , for every role
name P in Σ. Clearly, Σ-isomorphic interpretations cannot
be distinguished by Σ-TBoxes, Σ-ABoxes or Σ-queries.

Given a set Ii, i ∈ I , of interpretations and 0 ∈ I , define
the interpretation

J =
⊕
i∈I

Ii,

where ∆J = {(i, w) | i ∈ I, w ∈ ∆i}, aJ = (0, aI1), for
an object name a, AJ = {(i, w) | w ∈ AIi}, for a concept
name A, and PJ = {((i, w1), (i, w2)) | (w1, w2) ∈ P Ii},
for a role name P . J can be regarded as a disjoint union of
the Ii. Given an interpretation I, we set

Iω =
⊕
i∈ω

Ii,

where Ii = I for i ∈ ω. It should be clear that Σ-TBoxes,
Σ-ABoxes or Σ-queries (for any signature Σ) cannot distin-
guish between I and Iω .

For a TBox T , denote by QT the set of all numerical pa-
rameters occurring in T together with 1.

The following lemma provides an important model-
theoretic property of DL-Litebool that will be frequently used
to establish model-theoretic characterisations of various no-
tions of Σ-entailment.

Lemma A.1 Let I1 and I2 be (at most countable) models
for TBoxes T1 and T2, respectively, and let Σ be a signature
such that sig(T1) ∩ sig(T2) ⊆ Σ. If interpretations I1 and
I2 realise precisely the same ΣQT1∪T2 -types, then there is
an interpretation I∗ such that:
• I∗ |= T1 ∪ T2,
• I∗ ∼Σ Iω

1 , and
• I∗, I1 and I2 realise the same set of ΣQT1∪T2 -types.
Proof. Let Ξ be the set of ΣQT1∪T2 -types realised in I1

(and I2). We show that Iω
1 can be expanded to a model I∗

for T1 ∪ T2. As both Iω
1 and Iω

2 realise each ΣQT1∪T2 -type
from Ξ by countably infinitely many points, there is a bijec-
tion f : ∆I

ω
2 → ∆I

ω
1 which is invariant under ΣQT1∪T2 -

types. Now, we set ∆I
∗

= ∆I
ω
1 and, for all object names a,

concept names A, and role names P ,

aI
∗

= aI
ω
1 ,

AI
∗

= AI
ω
1 , if A ∈ Σ ∪ sig(T1),

AI
∗

= {f(x) | x ∈ AI
ω
2 }, if A /∈ Σ ∪ sig(T1),

P I
∗

= P I
ω
1 , if P ∈ Σ ∪ sig(T1),

P I
∗

= {(f(x), f(y)) | (x, y) ∈ P I
ω
2 }, if P /∈ Σ ∪ sig(T1).

By definition, I∗ ∼Σ∪sig(T1) Iω
1 and thus I∗ ∼Σ Iω

1 . So
I∗ |= T1 and I∗ realises the same ΣQT1∪T2 -types as I1

and I2. Let us show that I∗ |= T2. By the definition, we
have x ∈ AI

ω
2 iff f(x) ∈ AI

∗
, for all points x in Iω

2 and
all concept names A ∈ sig(T2). As Iω

2 is a model for T2,
it is enough to prove that, for every q ∈ QT1∪T2 and every
sig(T2)-role R, we have

x ∈ (≥ q R)I
ω
2 iff f(x) ∈ (≥ q R)I

∗
. (1)

IfR is not a Σ-role then, by the definition above, the number
of R-successors of x in Iω

2 and f(x) in I∗ is the same. And
if R is a Σ-role, then the ΣQT1∪T2 -type realised by x in Iω

2
coincides with the ΣQT1∪T2 -type realised by f(x) in I∗,
which again gives (1). Thus, I∗ |= T1 ∪ T2. q

Our first application of Lemma A.1 is the uniform inter-
polation theorem for DL-Litebool.

For L ∈ {DL-Litebool,DL-Litehorn}, let T be a TBox in
L and Σ a signature. A TBox TΣ in L is called a uniform
interpolant for T w.r.t. Σ in L if
• sig(TΣ) ⊆ Σ;
• T |= TΣ;
• TΣ |= C1 v C2 whenever T |= C1 v C2, for every
C1 v C2 in L with sig(C1 v C2) ∩ sig(T ) ⊆ Σ.

We say that L has uniform interpolation if, for every TBox
T in L and every signature Σ, there exists a uniform inter-
polant for T w.r.t. Σ in L.

Let Σ be a signature andQ a finite set of numerical param-
eters. As the number of nonequivalent ΣQ-concepts in L is
obviously finite (remember that Σ is finite and there are no
nested occurrences of roles in L), for every set S of concept
inclusions C1 v C2 in L, where C1, C2 are ΣQ-concepts,
there is a finite subset S ′ of S such that S ′ |= S.



Theorem A.2 DL-Litebool has uniform interpolation. More
precisely, let T be a TBox in DL-Litebool, Σ a signature, and
let T ′ be a finite presentation of the set

S = {C1 v C2 | T |= C1 v C2,

C1 v C2 a ΣQT -concept inclusion in DL-Litebool}.

Then T ′ is a uniform interpolant for T w.r.t. Σ in
DL-Litebool.

Proof. It is sufficient to show that S |= C1 v C2 whenever
T |= C1 v C2, for every concept inclusion C1 v C2 in
DL-Litebool with sig(C1 v C2) ∩ sig(T ) ⊆ Σ. Suppose, on
the contrary, that S 6|= C1 v C2. Take a model I1 for S sat-
isfying C1 u ¬C2 and realising all S-realisable ΣQT -types.
Take a model I2 for T and realising all T -realisable ΣQT -
types. Then I1 and I2 realise exactly the same ΣQT -types.
By Lemma A.1, there exists a model I∗ for T satisfying
C1 u ¬C2, which is a contradiction. q

Uniform interpolation of DL-Litehorn will be considerd in
Theorem B.5.

We will be using one more immediate consequence of
Lemma A.1:

Lemma A.3 Let J be an (at most countable) model for T1

and Σ a signature with Σ ⊆ sig(T1). Suppose that there is
a model for T2 realising exactly the same ΣQT1∪T2 -types as
J . Then there is a model I∗ for T2 such that I∗ ∼Σ J ω .

In particular, I∗ |= A iff J |= A, for all Σ-ABoxes A,
I∗ |= T iff J |= T , for all Σ-TBoxes T , and I∗ |= q(a) iff
J |= q(a), for all Σ-queries q(a).

B Model-theoretic characterisations of
Σ-entailment

In this section, we give model-theoretic characterisations of
the notions of Σ-entailment introduced above. The equiva-
lences stated in Theorems 6, 7 and 11 will follow from these
characterisations. Moreover, they will be used for proving
the complexity results of Theorem 15.

DL-Litebool
We start with the characterisation of Σ-concept entailment
in DL-Litebool.

Lemma B.1 The following conditions are equivalent for
DL-Litebool TBoxes T1, T2 and a signature Σ:

(ceb) T1 Σ-concept entails T2 in DL-Litebool;
(r) every T1-realisable ΣQT1∪T2 -type is T2-realisable.

Proof. (ceb) ⇒ (r) Suppose that t is a T1-realisable
ΣQT1∪T2 -type which is not T2-realisable. Then T2 |= D v
⊥ but T1 6|= D v ⊥, for D =

d
C∈t C, contrary to T2 being

Σ-entailed by T1.
(r)⇒ (ceb) Suppose otherwise. Then there isC1 v C2 with
sig(C1 v C2) ⊆ Σ, T2 |= C1 v C2 and T1 6|= C1 v C2.
Take the uniform interpolant S2 of T2 w.r.t. Σ constructed
in the proof of Theorem A.2. Since S2 |= C1 v C2, there
exist ΣQT2 -concepts C ′1, C

′
2 such that C ′1 v C ′2 ∈ S2 and

T1 6|= C ′1 v C ′2. Thus, there is a T1-realisable ΣQT1∪T2 -
type that is not T2-realisable. q

Let us now consider the other types of Σ-entailment for
DL-Litebool TBoxes. The next lemma proves the equiv-
alences of Theorem 7 for DL-Litebool. Moreover, it also
shows that only numerical parameters from T1 ∪ T2 need
consideration.

Lemma B.2 The following conditions are equivalent for
DL-Litebool TBoxes T1, T2 and a signature Σ:
(sceb) T1 strongly Σ-concept entails T2;
(qeb) T1 Σ-query entails T2;
(sqeb) T1 strongly Σ-query entails T2;
(pr) if a set of ΣQT1∪T2 -types is precisely T1-realisable,

then it is precisely T2-realisable.

Proof. Implications (sqeb) ⇒ (qeb) and (sqeb) ⇒ (sceb)
follow immediately from definitions.
(pr) ⇒ (sqeb) Suppose that there are a Σ-TBox T , a Σ-
ABox A and a Σ-query q(x) such that (T2 ∪ T ,A) |= q(a)
but (T1 ∪ T ,A) 6|= q(a), for some object names a. Take a
modelJ for (T1∪T ,A) such thatJ 6|= q(a) and let Ξ be the
set of ΣQT1∪T2 -types realised in J . Then there is a model
for T2 realising exactly the types in Ξ and, by Lemma A.3,
there exists a model I∗ for T2 such that I∗ |= (T ,A) and
I∗ 6|= q(a), which is a contradiction.
(qeb) ⇒ (pr) Suppose that there is a set Ξ of ΣQT1∪T2 -
types that is precisely T1-realisable but not precisely T2-
realisable. Then two cases are possible:

1. For every model I of T2, there is some t ∈ Ξ that is not
realised in I. Consider the query q = ⊥ and the ABox
AΞ = {C(at) | C ∈ t, t ∈ Ξ}, where at is a fresh object
name for each type t ∈ Ξ. We then have (T2,AΞ) |= q
but (T1,AΞ) 6|= q, which is a contradiction.

2. Suppose now that Case 1 does not hold. Consider the
ABox AΞ = {C(at) | C ∈ t, t ∈ Ξ}, where at is a fresh
object name, for each type t ∈ Ξ. Let Θ be the set of all
T2-realisable ΣQT1∪T2 -types that are not in Ξ. We have
Θ 6= ∅. Now consider the query

q = ∃x
∨
t∈Θ

∧
C∈t

C(x).

Then (T2,AΞ) |= q but (T1,AΞ) 6|= q, which is again a
contradiction.

(sceb) ⇒ (pr) Let Ξ be a set of precisely T1-realisable
ΣQT1∪T2 -types. Consider

TΞ =
{
> v

⊔
t∈Ξ

l

C∈t

C
}
.

Clearly, T1 ∪ TΞ 6|=
d

C∈t C v ⊥, for every t ∈ Ξ. Then,
by (sceb), T2 ∪ TΞ 6|=

d
C∈t C v ⊥ and thus, there is a

model It for T2 ∪ TΞ realising t. Take the disjoint union I
of all these models It, for t ∈ Ξ. It is easy to see that I is a
model for T2 realising precisely the types in Ξ. q



DL-Litehorn

Recall that a ΣQ-concept in DL-Litehorn is any concept of
the form ⊥, Ai or ≥ q R, for some Ai ∈ Σ, Σ-role R and
q ∈ Q. A ΣQ concept inclusion in DL-Litehorn is of the
form B1 u · · · u Bk v B, where B1, . . . , Bk, B are ΣQ-
concepts in DL-Litehorn. In what follows, the empty con-
junction

d
i∈∅Bi stands for >.

Given a ΣQ-type t, let

t+ = {B ∈ t | B a concept in DL-Litehorn},
t− = {¬B ∈ t | B a concept in DL-Litehorn}.

Say that a ΣQ-type t1 is h-contained in a ΣQ-type t2 if
t+
1 ⊆ t+

2 .
Given a TBox T in DL-Litehorn and a ΣQ-type t with

Σ ⊆ sig(T ) and Q ⊆ QT , define the T -closure clT (t) of t
as the sig(T )QT -type clT (t) such that clT (t)+ consists of
all sig(T )QT -concepts B in DL-Litehorn with

l

Bk∈t+

Bk v B.

As we will see later in Theorem E.1, clT (t) can be computed
in polynomial time in the size of T . Moreover, we have the
following standard properties of Horn logic:

Lemma B.3 Let T be a TBox in DL-Litehorn. A ΣQ-type t
is T -realisable iff t = clT (t) � ΣQ and ⊥ /∈ t, where �ΣQ
means restriction to ΣQ-types.

Furthermore, T enjoys the ‘disjunction property:’ if
T |=

d
B′j v

⊔
Bi, where the B′j and Bi are concepts in

DL-Litehorn, then there is some i such that T |=
d
B′j v Bi.

We are now in a position to prove Theorem 6.

Lemma B.4 For any DL-Litehorn TBoxes T1, T2 and any
signature Σ, the following two conditions are equivalent:

• T1 Σ-concept entails T2 in DL-Litebool;
• T1 Σ-concept entails T2 in DL-Litehorn.

Proof. Suppose that T1 does not Σ-concept entail T2 in
DL-Litebool (without loss of generality, we assume that
Σ ⊆ sig(T1)). By Lemma B.1, there exists a T1-realisable
ΣQT1∪T2 -type t that is not T2-realisable. Consider now the
T1 and T2-closures clT1(t) and clT2(t) of t. Since t is T1-
realisable, we have clT1(t) � ΣQT1∪T2 = t by Lemma B.3.
On the other hand, as t is not T2-realisable, t is properly
h-contained in clT2(t) � ΣQT1∪T2 , again by Lemma B.3.
Therefore, there is B ∈ (clT2(t) \ clT1(t)) � ΣQT1∪T2 such
that

T1 6|=
l

Bk∈t+

Bk v B and T2 |=
l

Bk∈t+

Bk v B,

which means that T1 does not Σ-concept entail T2 in
DL-Litehorn. q

We are now in a position to prove the uniform interpola-
tion theorem for that DL-Litehorn:

Theorem B.5 Let T be a TBox in DL-Litehorn, Σ a signa-
ture, and let T ′ be a finite presentation of the set

S = {C1 v C2 | T |= C1 v C2,

C1 v C2 a ΣQT -concept inclusion in DL-Litehorn}.
Then T ′ is a uniform interpolant for T w.r.t. Σ in
DL-Litehorn.
Proof. It is sufficient to show that S |= C1 v C2 when-
ever T |= C1 v C2, for every concept inclusion C1 v C2

in DL-Litehorn with sig(C1 v C2) ∩ sig(T ) ⊆ Σ. Sup-
pose, on the contrary, that S 6|= C1 v C2. Take a model
I1 for S satisfying C1 u ¬C2 and realising all S-realisable
ΣQT -types. Take a model I2 for T realising all T -realisable
ΣQT -types. Then I1 and I2 realise exactly the same ΣQT -
types (this follows from the proof of Lemma B.4). Finally,
we use Lemma A.1 according to which there exists a model
I∗ for T satisfying C1 u ¬C2, which is a contradiction. q

Let I and I ′ be interpretations and Σ a signature. A map
f from ∆I into ∆I

′
is called a Σ-homomorphism if the fol-

lowing conditions hold for all x, y ∈ ∆I :

• f(aI) = aI
′
, for every object name a,

• x ∈ AI implies f(x) ∈ AI′ , for every concept name A
in Σ;

• (x, y) ∈ P I implies (f(x), f(y)) ∈ P I
′
, for every role

name P in Σ.
If there is a Σ-homomorphism from I to I ′, then I ′ |= q(a)
follows from I |= q(a), for every Σ-query q in DL-Litehorn
and tuple a.

A set Ξ of ΣQ-types is said to be sub-precisely T -
realisable if there is a model I for T such that I realises
all types from Ξ, and every ΣQ-type realised in I is h-
contained in some type from Ξ. If this happens to be the
case, we also say that I sub-precisely realises Ξ.
Lemma B.6 For any TBoxes T1 and T2 in DL-Litehorn and
any signature Σ, the following conditions are equivalent:
(qeh) T1 Σ-query entails T2 in DL-Litehorn;
(spr) if a set of ΣQT1∪T2 -types is precisely T1-realisable,

then it is sub-precisely T2-realisable.

Proof. (spr) ⇒ (qeh) Let Q12 = QT1∪T2 . Assume that
(spr) holds and (T1,A) 6|= q(a), for a Σ-ABox A and a Σ-
query q(a) in DL-Litehorn. We show that (T2,A) 6|= q(a).
Let I1 be a model for (T1,A) with I1 6|= q(a). Let Ξ be
the set of ΣQ12-types realised in I1. Then, by (spr), there
exists a model I2 for T2 which realises all types in Ξ and
such that every ΣQ12-type realised in it is h-contained in
some type from Ξ. We may assume that both I1 and I2

have a countably infinite domain.
Consider the model Iω

2 . We construct a model I∗
for (T2,A) with ∆I

∗
= ∆I

ω
2 and a Σ-homomorphism

g : ∆I
∗ → ∆I1 . Then we shall have I∗ 6|= q(a) and, there-

fore, (T2,A) 6|= q(a). Let

AI
∗

= AI
ω
2 , for all concept names A,

P I
∗

= P I
ω
2 , for all P /∈ Σ.



Define a sequence

(gi,∆i, (P i)P∈Σ), i ∈ ω,

such that

• ∆0 ⊆ ∆1 ⊆ · · · ⊆ ∆I
∗

and ∆I
∗

=
⋃

i∈ω ∆i;

• P i ⊆ ∆i ×∆i;

• gi : ∆i → ∆I1 has the following properties:

– if (x, y) ∈ P i then (gi(x), gi(y)) ∈ P I1 , for all P ∈ Σ
and all x, y ∈ ∆i;

– for all x ∈ ∆i, the ΣQ12-type of x in Iω
2 is h-contained

in the ΣQ12-type of gi(x) in I1.

To start with, take a bijection g0 : ∆0 → ∆I1 which is in-
variant under ΣQ12-types, where ∆0 ⊆ ∆I

ω
2 is chosen in

such a way that each ΣQ12-type realised in Iω
2 is realised

infinitely often in ∆I
ω
2 \∆0. Such a bijection exists because

Iω
2 realises every ΣQ12-type (in particular those from I1)

infinitely often. Let

aI
∗

= g−1
0 (aI1),

for every object name a, and

P 0 = {(g−1
0 (x), g−1

0 (y)) | (x, y) ∈ P I1},

for every P ∈ Σ. Assume that an ordering < of ∆I
ω
2 \∆0 is

isomorphic to ω, and suppose that ∆k, gk, and P k, P ∈ Σ,
have already been constructed. To construct ∆k+1, gk+1,
and P k+1, we apply one of the following three rules to x ∈
∆I

ω
2 \∆0, provided that none of these rules is applicable to

any y ∈ ∆I
ω
2 \∆0 with y < x.

• If x ∈ ∆k and the ΣQ12-type of x in Iω
2 contains

≥ q P , for q ∈ Q12 and P ∈ Σ, such that P k contains
fewer than q pairs (x, xi), pick a point y ∈ ∆I

∗ \ ∆k

which has the same ΣQ12-type as a point z ∈ ∆I1 with
(gk(x), z) ∈ P I1 (this can be done since the ΣQ12-type
of x is h-contained in the ΣQ12-type of g(x)). Then
we set ∆k+1 = ∆k ∪ {y}, gk+1 = gk ∪ {(y, z)}, and
P k+1 = P k ∪ {(x, y)}.

• If x ∈ ∆k and the ΣQ12-type of x in Iω
2 contains≥ q P−,

for q ∈ Q12 and P ∈ Σ, such that P k contains fewer than
q pairs (xi, x), pick a point y ∈ ∆I

∗ \∆k which has the
same ΣQ12-type as a point z ∈ ∆I1 with (z, gk(x)) ∈
P I1 . Then we set ∆k+1 = ∆k ∪ {y}, gk+1 = gk ∪
{(y, z)}, and P k+1 = P k ∪ {(y, x)}.

• If x ∈ ∆I
∗ \∆k, select z ∈ ∆I1 such that the ΣQ12-type

of x in Iω
2 is h-contained in the ΣQ12-type of z in I1.

Set ∆k+1 = ∆k ∪ {x} and gk+1 = gk ∪ {(x, z)}, and
Pk+1 = Pk.

Clearly, for P I
∗

=
⋃

i∈ω P
i, P ∈ Σ, the function g =⋃

i∈ω gi is a Σ-homomorphism from ∆I
∗

to ∆I1 and the
ΣQ12-type of each x is the same in I∗ and Iω

2 . Hence I∗ is
a model for T2. Moreover, I∗ is a model for A because I1

is a model for A.
(qeh)⇒ (spr) Suppose that (spr) does not hold for Ξ. Then
two cases are possible:

1. For every model I for T2, there is t ∈ Ξ with
(
d

B∈t+ B)I = ∅. Consider the query q = ⊥ and the
ABox AΞ = {B(at) | t ∈ Ξ, B ∈ t+}, where at is a
fresh object name, for each t ∈ Ξ. Then (T1,AΞ) 6|= q,
while (T2,AΞ) |= q.

2. Case 1 does not hold. Consider AΞ = {B(at) | t ∈
Ξ, B ∈ t+}, at an object name, for each t ∈ Ξ. Then,
for every model I ′ for (T2,AΞ), there is a ΣQT1∪T2 -type
t that is realised in I ′ and not h-contained in any type
from Ξ. Let Θ be the set of all such ΣQT1∪T2 -types and
consider the query

q = ∃x
∨
t∈Θ

∧
B∈t+

B(x).

Then (T1,AΞ) 6|= q but (T2,AΞ) |= q.
This completes the proof of the lemma. q

The following model-theoretic property of TBoxes in
DL-Litehorn is standard in Horn logic; see, e.g., (Artale et
al. 2007).

Lemma B.7 Let T be a TBox in DL-Litehorn and t a T -
realisable ΣQ-type. Then there exists (at most countable)
model JT (t) for T such that JT (t) realises t and, for every
model I for T realising t, there exists a Σ-homomorphism
h : JT (t)→ I.

In what follows we fix some model JT (t) mentioned
in the formulation of the lemma and call it the minimal
model for T realising t. As an immediate consequence of
Lemma B.7 we obtain the following:

Lemma B.8 Let T be a TBox in DL-Litehorn and t a T -
realisable ΣQ-type. Then there exists a countable model
JT (t) for T such that JT (t) realises t and, for every model
I for T realising t, there is a Σ-homomorphism h : I ⊕
JT (t)→ I. In particular,
• all ΣQ-types that are realised in I are also realised in
I ⊕ JT (t);

• every ΣQ-type realised in I ⊕ JT (t) is h-contained in
some ΣQ-type realised in I;

• if I ⊕ JT (t) |= q(a) then I |= q(a), for every Σ-query
q(a) in DL-Litehorn.

Finally, we show the equivalence of (2) and (3) in Theorem 7
for DL-Litehorn. Given a realisable set Ξ of ΣQ-types, de-
fine the TBox TΞ induced by Ξ by taking all ΣQ-concept
inclusions

B1 u · · · uBk v B,
where B1, . . . , Bk, B are distinct ΣQ-concepts in
DL-Litehorn such that, for all t ∈ Ξ,

if B1, . . . , Bk ∈ t+ then B ∈ t+.

Note that (i) if, for distinct ΣQ-concepts B1, . . . , Bk, there
is no t ∈ Ξ with B1, . . . , Bk ∈ t+ then B1 u · · · uBk v ⊥
is in TΞ, and (ii) if B ∈ t+, for all t ∈ Ξ, then> v B ∈ TΞ.

Lemma B.9 Let Ξ be a set of ΣQ-types and t0 a ΣQ-type.
Let Λt0 = {t ∈ Ξ | t+

0 ⊆ t+}. Then t0 is TΞ-realisable iff
Λt0 6= ∅ and t+

0 =
⋂

t∈Λt0
t+.



Proof. (⇒) Clearly, if Λt0 = ∅ then
d

B∈t+
0
B v ⊥ is in

TΞ, and so t0 cannot be TΞ-realisable. If Λt0 6= ∅ then, for
every B′ ∈

⋂
t∈Λt0

t+, we have (
d

B∈t+
0
v B′) ∈ TΞ. So

t+ ⊇
⋂

t∈Λt0
t+.

(⇐) If there is no model for TΞ realising t0, then we have
TΞ |=

d
B∈t+

0
B v

⊔
¬B∈t−0

B. But then, by Lemma B.3,
TΞ |=

d
B∈t+

0
v B′, for some ¬B′ ∈ t−0 . Therefore,

d
B∈t+

0
B v B′ ∈ TΞ, and so B′ must be in t+, which

is impossible. q

A set Ξ of ΣQ-types is said to be meet-precisely T -
realisable if there is a model I for T ∪TΞ such that I realises
all types from Ξ. (It follows that every ΣQ-type realised in I
is h-contained in a type from Ξ.) As we shall see later, given
a type t, the T ∪ TΞ-closure clT ∪TΞ(t) can be computed in
polynomial type in the size of T , Ξ and t.

Lemma B.10 Let Ξ be the set of ΣQ-types that is precisely
realised in a model I for a TBox T . Then

1. I |= TΞ;
2. T |=

d
k Bk v B implies TΞ |=

d
k Bk v B (which

holds iff
d

k Bk v B ∈ TΞ), for all ΣQ-concept inclu-
sions

d
k Bk v B in DL-Litehorn.

Proof. The first claim is obvious. To show the second one,
assume that T |=

d
k Bk v B, but TΞ 6|=

d
k Bk v B. Thend

k Bk v B /∈ TΞ, and so there is a type t ∈ Ξ such that
Bk ∈ t, while B /∈ t. But this means that I 6|=

d
k Bk v B,

which is impossible, since I |= T . q

Lemma B.11 For any TBoxes T1 and T2 in DL-Litehorn and
any signature Σ, the following conditions are equivalent:

(sceh) T1 strongly Σ-concept entails T2 in DL-Litehorn;
(sqeh) T1 strongly Σ-query entails T2 in DL-Litehorn;
(mpr) if a set of ΣQT1∪T2 -types is precisely T1-realisable,

then it is meet-precisely T2-realisable.

Proof. The implication (sqeh)⇒ (sceh) is trivial.
(mpr) ⇒ (sqeh) Let I be a model for T1 and Ξ the set of
ΣQT1∪T2 -types realised in I. Consider

JI = I ⊕
⊕

t∈ΘI

JT1∪TΞ(t),

where ΘI is the set of all T1∪TΞ-realisable ΣQT1∪T2 -types.
Observe that JI precisely realises ΘI : indeed, JI realises
every T1 ∪ TΞ-realisable ΣQT1∪T2 -type and conversely, ev-
ery ΣQT1∪T2 -type realised in JI , is T1 ∪ TΞ-realisable.

By (mpr), there exists, for the set ΘI of ΣQT1∪T2 -types,
a model I ′ for T2 that realises all types in ΘI and such
that each ΣQT1∪T2 -type realised in I ′ is TΘI -realisable. We
claim that I ′ realises precisely the set ΘI of ΣQT1∪T2 -types.
Indeed, I ′ realises every type from ΘI ; conversely, let t be
a ΣQT1∪T2 -type realised in I ′; as t is TΘI -realisable, by
Lemma B.9, there are t1, . . . , tk ∈ ΘI with t+ =

⋂
k t+

i ; as
the tk are all realised in JI , they are T1 ∪ TΞ-realisable and
therefore, t is T1 ∪ TΞ-realisable and t ∈ ΘI .

Suppose now that (sqeh) does not hold and let T be a Σ-
TBox,A a Σ-ABox and q(x) a Σ-query in DL-Litehorn such
that (T2 ∪ T ,A) |= q(a) but (T1 ∪ T ,A) 6|= q(a). Let I be
a model of (T1 ∪ T ,A) with I 6|= q(a). By Lemma B.10,
I |= TΞ. By Lemma B.8, applied to T1 ∪ TΞ, JI 6|= q(a).
But then we can apply Lemma A.3 to JI and I ′ and find a
model I∗ for T2 that is Σ-isomorphic to J ω

I . As JI |= T ,
it follows that I∗ is a model for (T2 ∪ T ,A) such that I∗ 6|=
q(a), which is a contradiction.
(sceh) ⇒ (mpr) Let Ξ be a set of precisely T1-realisable
ΣQT1∪T2 -types. We claim that, for all ΣQT1∪T2 concept
inclusions C v

⊔
B′k with C =

d
Bk,

T2 ∪ TΞ |= C v
⊔
B′k iff T1 |= C v

⊔
B′k. (2)

Indeed, if T2 ∪ TΞ |= C v
⊔
B′k then, by Lemma B.3,

there is j with T2 ∪ TΞ |= C v B′j and, by (sceh), we have
T1 ∪ TΞ |= C v B′j . Then, by Lemma B.10, T1 |= C v B′j ,
from which the claim follows. The converse implication is
obvious.

Clearly, for each t ∈ Ξ, we have

T1 6|=
l

B∈t+

B v
⊔
¬B∈t−

B,

and in view of (2), there is a model for T2 ∪ TΞ realising
t. Take the disjoint union I ′ of all models It, for t ∈ Ξ.
Clearly, I ′ realises all types in Ξ and each ΣQT1∪T2 -type t
realised in it is Ξ-realisable. q

C Robustness
Here we prove Theorem 13, which is formulated as follows:
Let ‘Σ-entails’ be one of the eight notions of Σ-entailment
given in Definition 1.
• The relation ‘Σ-entails’ is robust under vocabulary exten-

sions: if T1 Σ-entails T2, then T1 Σ′-entails T2, for every
Σ′ such that Σ′ ∩ sig(T2) ⊆ Σ.

• The relation ‘Σ’-entails’ is robust under joins: if T and Ti

Σ-entail each other, for i = 1, 2, and sig(T1)∩ sig(T2) ⊆
Σ, then T Σ-entails T1 ∪ T2.

Proof. Throughout this proof we use the obvious fact that
instead of ΣQT1∪T2 types in the semantic criteria for Σ-
entailment between T1 and T2 (Theorem 11) one can take
ΣQ-types, for any set Q ⊇ QT1∪T2 .

We start by considering robustness under joins.
(a) Σ-concept entailment in DL-Litebool. Suppose that

T and Ti Σ-concept entail each other in DL-Litebool, for
i = 1, 2. Consider a T -realisable ΣQ-type t with Q =
QT ∪T1∪T2 . By Theorem 11, it is sufficient to show that t is
T1 ∪ T2-realisable. Let Ξ be the set of all T -realisable ΣQ-
types. As T and Ti Σ-concept entail each other, Ξ is also the
set of all Ti-realisable ΣQ-types, for i = 1, 2. It follows that
Ξ is precisely Ti-realisable, for i = 1, 2. Using Lemma A.1,
we obtain a model for T1 ∪ T2 precisely realising Ξ. This
model realises t.
(b) Σ-concept entailment in DL-Litehorn. This case follows
from (a) by Theorem 6.



(c) Σ-query entailment in DL-Litebool (and, equivalently,
strong Σ-concept entailment and strong Σ-query entail-
ment). Suppose that T and Ti Σ-query entail each other
in DL-Litebool, for i = 1, 2, and let Ξ be a precisely T -
realisable set of ΣQ-types, where Q = QT ∪T1∪T2 . By The-
orem 11, it is sufficient to show that Ξ is precisely T1 ∪ T2-
realisable. By Theorem 11, Ξ is precisely Ti-realisable, for
i = 1, 2. Using Lemma A.1, we obtain a model for T1 ∪ T2

precisely realising Ξ.

(d) Σ-query entailment in DL-Litehorn. Suppose that T and
Ti Σ-query entail each other in DL-Litehorn, for i = 1, 2,
and let Ξ be a precisely T -realisable set of ΣQ-types, where
Q = QT ∪T1∪T2 . By Theorem 11, it is sufficient to show that
Ξ is sub-precisely T1 ∪ T2-realisable. As T and Ti mutually
Σ-query entail each other, we obtain a set Ξ′ ⊇ Ξ which
is precisely T -, T1-, and T2-realisable and such that each
t ∈ Ξ′ is h-contained in a type from Ξ. By Lemma A.1, we
obtain a model for T1 ∪ T2 precisely realising Ξ′. But then
Ξ is sub-precisely T1 ∪ T2-realisable.

(e) Strong Σ-query entailment in DL-Litehorn (and, equiva-
lently, strong Σ-concept entailment). Suppose that T and
Ti strongly Σ-query entail each other in DL-Litehorn, for
i = 1, 2, and let Ξ be a precisely T -realisable set of ΣQ-
types, where Q = QT ∪T1∪T2 . Let I be a model for T pre-
cisely realising Ξ. Consider the set ΘI of ΣQ-types con-
structed in the proof of Lemma B.11, (mpr)⇒ (sceh), with
T1 replaced by T . The set ΘI is precisely Ti-realisable, for
i = 1, 2. Hence, by Lemma A.1, there exists a model for
T1 ∪ T2 precisely realising ΘI . This model meet-precisely
realises Ξ.

Let us consider now robustness under vocabulary exten-
sions.

(a) Σ-concept entailment in DL-Litebool. This case follows
from uniform interpolation of DL-Litebool.

(b) Σ-concept entailment in DL-Litehorn. This case follows
from uniform interpolation of DL-Litehorn.

(c) Σ-query entailment in DL-Litebool (and, equivalently,
strong Σ-concept entailment and strong Σ-query entail-
ment). Suppose that T1 Σ-query entails T2 and Σ′ is a signa-
ture with sig(T2)∩Σ′ ⊆ Σ. Assume that Ξ is a T1-precisely
realisable set of Σ′Q-types, Q = QT1∪T2 . Let Ξ0 be the set
of restrictions of types in Ξ to ΣQ-concepts. There exists a
model for T2 precisely realising Ξ0, and there exists a model
precisely realising Ξ. Using Lemma A.1, we then obtain a
model for T2 precisely realising Ξ.

(d) Σ-query entailment in DL-Litehorn. Suppose that T1 Σ-
query entails T2 and Σ′ is a signature with sig(T2) ∩ Σ′ ⊆
Σ. Assume that Ξ is a T1-precisely realisable set of Σ′Q-
types,Q = QT1∪T2 . Let Ξ0 be the set of restrictions of types
in Ξ to ΣQ-concepts. There exists a model I2 for T2 sub-
precisely realising Ξ0. Let Ξ′0 ⊇ Ξ0 be the set of ΣQ-types
realised in I2. Expand every type t ∈ Ξ′0 to the Σ′Q-type
t0 ⊇ t such that t+ = t+

0 and denote the resulting set of
Σ′Q-types by Ξ′′0 . Clearly, there exists a model I1 precisely
realising Ξ ∪ Ξ′′0 . Observe that I1 and I2 realise the same
ΣQ-types. Using Lemma A.1, we can construct a model for

T2 precisely realising Ξ∪Ξ′′0 , and so sub-precisely realising
Ξ.
(e) Strong Σ-query entailment in DL-Litehorn (and, equiv-
alently, strong Σ-concept entailment). Suppose that T1

strongly Σ-concept entails T2 and Σ′ is a signature with
sig(T2) ∩ Σ′ ⊆ Σ. Assume that Ξ is a T1-precisely realis-
able set of Σ′Q-types,Q = QT1∪T2 . Let I be a model for T1

precisely realising Ξ. Consider the sets ΘI,Σ and ΘI,Σ′ of,
respectively, ΣQ- and Σ′Q-types constructed in the proof of
Lemma B.11, (mpr)⇒ (sceh), using Σ′ instead of Σ in the
definition of ΘI,Σ′ . It is not difficult to show that ΘI,Σ co-
incides with the set of restrictions of types in ΘI,Σ′ to ΣQ-
concepts. Hence, the set of restrictions of types in ΘI,Σ′ to
ΣQ-concepts is precisely T2-realisable. Using Lemma A.1,
we obtain a model for T2 precisely realising ΘI,Σ. This
model meet-precisely realises Ξ. q

D Decision procedures and complexity for
DL-Litebool

Here we prove the complexity results for DL-Litebool stated
in Theorem 15. Recall the following result from (Artale et
al. 2007):

Theorem D.1 The problem whether T |= C1 v C2 holds
in DL-Litebool is CONP-complete.

We use this result and Lemma B.1 to prove

Theorem D.2 Σ-concept entailment for TBoxes in
DL-Litebool is Πp

2-complete.

Proof. Let T1, T2 be TBoxes in DL-Litebool and Σ a sig-
nature. Without loss of generality, we may assume that
Σ ⊆ sig(T1 ∪ T2). Here is a Σp

2 algorithm deciding whether
T1 does not Σ-concept entail T2:

1. Guess a ΣQT1∪T2 -type t. (Observe that the size of t is
linear in the size of T1 ∪ T2.)

2. Check, by calling an NP-oracle, whether (i) t is T1-
realisable and whether (ii) t is not T2-realisable. Such
an oracle exists by Theorem D.1.

3. Return ‘T1 does not Σ-concept entails T2’ if the answers
to (i) and (ii) are both positive.

By Lemma B.1, T1 does not Σ-concept entails T2 if, and
only if, the algorithm says so. q

To prove the other complexity results for DL-Litebool from
Theorem 15, we reduce precise realisability of a set of types
(as stated in criterion (pr) of Lemma B.2) to a satisfiabil-
ity problem in propositional logic. Let Σ be a signature and
Q a set of positive natural numbers containing 1. With ev-
ery basic concept B of the form A or ≥ q R we associate
a fresh propositional variable B∗, and, for a concept C in
DL-Litebool, denote by C∗ the result of replacing each B in
it with B∗ (and u, t with ∧, ∨, respectively), for a ΣQ-type
t, denote by t∗ the set {C∗ | C ∈ t}, and, for a TBox T , de-
note by T ∗ the set {C∗1 → C∗2 | C1 v C2 ∈ T }. Thus, C∗
is a formula and t∗, T ∗ are sets of formulas of propositional
logic.



The following result follows immediately from (Artale et
al. 2007):

Lemma D.3 Let T be a TBox in DL-Litebool, Q ⊇ QT ,
and Ω be a set of roles closed under inverse and containing
all sig(T )-roles. Then a set Ξ of ΣQ-types is precisely T -
realisable iff there is a set Ω0 ⊆ Ω closed under inverse and
such that:

(t) for each t ∈ Ξ, t∗ ∪ Ax(T ,Ω0) is satisfiable;
(pw) for each R ∈ Ω0, there is tR ∈ Ξ such that t∗R ∪
{(≥ 1R)∗} ∪ Ax(T ,Ω0) is satisfiable,

where

Ax(T ,Ω0) = T ∗ ∪
{
¬(≥ 1R)∗ | R ∈ Ω \ Ω0} ∪{

(≥ q R)∗ → (≥ q′R)∗ | R ∈ Ω, q, q′ ∈ Q, q > q′
}
.

It follows, in particular, that, given T and a set Ξ of ΣQ-
types, precise T -realisability of Ξ is decidable in NP. To
prove the complexity upper bound stated in Theorem 7, it
will be sufficient to show that it is enough to consider sets Ξ
of polynomial size in the size of T .

Lemma D.4 Suppose that a set Ξ of ΣQT1∪T2 -types is pre-
cisely T1-realisable but not precisely T2-realisable. Let Ω be
the set of role names and their inverses that occur in T1∪T2.
Then there is some Θ ⊆ Ξ with |Θ| ≤ |Ω| + 1 such that Θ
is precisely T1-realisable but not precisely T2-realisable.

Proof. The proof follows from Lemmas D.3. For every t ∈
Ξ, there is Ω0 ⊆ Ω such that the set Θt = {t} ∪ {tR |
R ∈ Ω0} is precisely T1-realisable. But then at least one of
these Θt, for t ∈ Ξ, is as required, for otherwise, if all of
them turn out to be precisely T2-realisable, the disjoint union
of models It for T2 precisely realising Θt would precisely
realise the whole Ξ, which is impossible. q

Theorem D.5 The Σ-query, strong Σ-concept and strong
Σ-query entailment problems for DL-Litebool are all Πp

2-
complete.

Proof. We check criterion (pr) of Lemma B.2. Let Σ be a
signature and Ω the set of role names and their inverses that
occur in T1∪T2. We may assume that Σ ⊆ sig(T1∪T2). By
Lemma D.3, for both T = T1 and T = T2, it is decidable
in NP (in |T1 ∪ T2|) whether a set Ξ of ΣQT1∪T2 -types of
size ≤ |Ω| + 1 is precisely T -realisable. The Σp

2 algorithm
deciding whether there exists a set of ΣQT1∪T2 -types that is
precisely T1-realisable but not precisely T2-realisable is as
follows:

1. Guess a set Ξ of ΣQT1∪T2 -types of size ≤ |Ω|+ 1.

2. Check, using an NP-oracle, whether (i) Ξ is precisely
T1-realisable, and whether (ii) Ξ is not precisely T2-
realisable.

3. Return ‘T1 Σ-query entails T2’ if the answers to (i) and
(ii) are both positive.

By Lemmas B.2 and D.4, T1 Σ-query entails T2 if, and only
if, the algorithm says so. q

E Decision procedures and complexity for
DL-Litehorn

The following is proved in (Artale et al. 2007):
Theorem E.1 The problem ‘T |= C1 v C2?’ in
DL-Litehorn is P-complete.

Theorem E.2 Σ-concept entailment for DL-Litehorn
TBoxes is CONP-complete.

Proof. Observe that, by Lemmas B.4 and B.1, if T1 does
not Σ-entail T2 in DL-Litehorn w.r.t. Σ, then there exists a
ΣQT1∪T2 -concept inclusion in DL-Litehorn witnessing this.
For the NP-upper bound for non-entailment, observe that
such a witness concept inclusion is of polynomial size
(in |T1 ∪ T2|). Hence the algorithm non-deterministically
guesses such a witness and then checks in polynomial time
whether it is a consequence of T2 but not a consequence
of T1. The CONP lower bound follows from the fact that
Σ-entailment is already CONP-hard for the Horn fragment
of propositional logic; see, e.g., (Flögel, Kleine Büning and
Lettmann 2005). q

The proof of NP-completeness of Σ-query entailment
for DL-Litehorn TBoxes is based on criterion (spr) of
Lemma B.6. Note that in precisely the same way as in the
proof of Lemma D.4 one can show now that if (spr) does
not hold for some Ξ, then it does not hold for a Ξ with
|Ξ| ≤ |Ω| + 1, where Ω is the set of all role names and
their inverses that occur in T1 ∪ T2.

In the formulations of the algorithms below we will be
taking the local closures of types under the TBox rules.
More precisely, given a type t and a TBox T in DL-Litehorn,
we denote by cl•T (t) the type where cl•T (t)+ is the result of
applying iteratively the ‘rules’ from T to t+ in the Datalog
manner: if

d
Bi v B ∈ T and B /∈ t+ then add B to t+.

Note that the only difference between cl•T (t) and the ‘global
closure’ clT (t) is that the latter can contain ⊥ even when
⊥ /∈ cl•T (t). Indeed, consider the TBox

T = {A v ∃R, A u ∃R− v ⊥, > v A}
and the type t = {>}. Then cl•T (t) = {>, A,∃R,¬∃R−},
while clT (t) = {>, A,∃R,∃R−,⊥} because T |= > v ⊥;
see Example 4.

Theorem E.3 Σ-query entailment for DL-Litehorn TBoxes
is CONP-complete.

Proof. We present a nondeterministic polynomial-time al-
gorithm for deciding whether T1 does not Σ-query entails
T2 in DL-Litehorn, where without loss of generality we may
assume that Σ ⊆ sig(T1) ∩ sig(T2). The algorithm is for-
mulated in a straightforward manner without a reduction to
propositional logic. Let Ω be the set of all role names and
their inverses that occur in T1 ∪ T2.

1. Guess a set Ξ of ΣQT1∪T2 -types of size ≤ |Ω|+ 1.
2. For each t ∈ Ξ, we compute (in time polynomial in |T1|)

its local closure cl•T1
(t) and denote the set of all such

closures by cl•T1
(Ξ) (these are all sig(T1)QT1∪T2 -types).

Now, Ξ is precisely T1-realisable iff the following condi-
tions hold:



– t = cl•T1
(t)�ΣQT1∪T2 and ⊥ /∈ t, for all t ∈ Ξ;

– for every t ∈ cl•T1
(Ξ) with (≥ 1R) ∈ t, there exists

t′ ∈ cl•T1
(Ξ) with (≥ 1 inv(R)) ∈ t′.

3. If Ξ is precisely T1-realisable, then we do the following.
First, compute Θ0 = cl•T2

(Ξ) and check whether

– t = cl•T2
(t)�ΣQT1∪T2 and ⊥ /∈ t, for all t ∈ Ξ.

If this is not the case, stop with answer ‘No.’ Now, if
Θi, i ≥ 0, has already been computed and there is t ∈ Θi

with (≥ 1R) ∈ t, for some roleR, but there is no t′ ∈ Θi

with (≥ 1 inv(R)) ∈ t′, then we construct the type t′ =
cl•T2

({≥ 1 inv(R)}), check whether the following holds

– ⊥ /∈ t′ and there is t ∈ Ξ with t′+ �ΣQT1∪T2 ⊆ t+,
and if it does, we add t′ to Θi and denote the result by
Θi+1; otherwise we terminate with answer ‘No.’ We stop
when Θn = Θn+1. Clearly, all this can be done in poly-
nomial time.

T1 does not Σ-query entails T2 in DL-Litehorn iff there is a
set Ξ guessed at step 1 such that the conditions at step 2 are
satisfied, while step 3 terminates with answer ‘No.’ q

Finally, we formulate a CONP algorithm for decid-
ing strong Σ-concept and Σ-query entailment DL-Litehorn
TBoxes, using criterion (mpr) of Lemma B.11. Note first
that we again have the following:
Lemma E.4 Suppose that a set Ξ of ΣQT1∪T2 -types is pre-
cisely T1-realisable but does not satisfy condition (mpr)
from Lemma B.11. Let Ω be the set of role names and their
inverses that occur in T1 ∪ T2. Then there is some Θ ⊆ Ξ
with |Θ| ≤ |Ω|+1 such that Θ is precisely T1-realisable but
not meet-precisely T2-realisable.
Proof. As in the proof of Lemma D.4, for every t ∈ Ξ, we
take Ω0 ⊆ Ω such that the set Θt = {t} ∪ {tR | R ∈ Ω0}
is precisely T1-realisable. We again claim that at least one
of these Θt, for t ∈ Ξ, is not meet-precisely T2-realisable.
Indeed, suppose, on the contrary, that (mpr) holds for all the
Θt. Then we have models It |= T2 such that It realises all
types in Θt and each ΣQT1∪T2 -type realised in It is TΘt

-
realisable and h-contained in a type from Θt. Let J be the
disjoint union of all these It. Clearly, J |= T2, J realises
all types in Ξ and each ΣQT1∪T2 -type realised in J is h-
contained in a type from Ξ. And since each ΣQT1∪T2 -type
realised in J is TΘt -realisable, it must be also TΞ-realisable,
as Θt ⊆ Ξ, and so TΘt ⊇ TΞ. But then Ξ satisfies (mpr),
which is a contradiction. q

In the proof of the next theorem we will be taking the local
closures of types under a TBox T in DL-Litehorn and the
TBox TΞ induced by some set Ξ of types. More precisely,
given a type t, a TBox T in DL-Litehorn and a set Ξ of types,
we denote by cl•T ∪TΞ

(t) the type where cl•T (t)+ is the result
of the following iterative procedure:
1. if

d
Bi v B is in T and all conjuncts of

d
Bi are in t+,

then add B to t+;
2. if Λt = {t′ ∈ Ξ | t+ ⊆ t′+} is empty then add ⊥ to t+

and stop; otherwise add the concepts from
⋂

t′∈Λt
t′+ to

t+;

3. stop if t+ has not been incremented; otherwise go to step
1.

Theorem E.5 The strong Σ-concept and Σ-query entail-
ment problems for TBoxes in DL-Litehorn are CONP-
complete.

Proof. We show a nondeterministic polynomial-time algo-
rithm for deciding whether T1 does not strongly Σ-concept
(or Σ-query) entail T2 in DL-Litehorn, where without loss of
generality we assume that Σ ⊆ sig(T1) ∩ sig(T2). Let Ω
be the set of all role names and their inverses that occur in
T1 ∪ T2.
1. Guess a set Ξ of ΣQT1∪T2 -types of size ≤ |Ω|+ 1.
2. For each t ∈ Ξ, we compute (in time polynomial in
|T1|) its T1-closure cl•T1

(t) and denote the set of all such
closures by cl•T1

(Ξ) (these are all sig(T1)QT1∪T2 -types).
Now, Ξ is precisely T1-realisable iff the following condi-
tions hold:
– t = cl•T1

(t)�ΣQT1∪T2 and ⊥ /∈ t, for all t ∈ Ξ;
– for every t ∈ cl•T1

(Ξ) with (≥ 1R) ∈ t, there exists
t′ ∈ cl•T1

(Ξ) with (≥ 1 inv(R)) ∈ t′.
3. If Ξ is precisely T1-realisable, then we do the following.

First, compute Θ0 = cl•T2
(Ξ) and check whether

– t = cl•T2
(t)�ΣQT1∪T2 and ⊥ /∈ t, for all t ∈ Ξ.

If this is not the case, stop with answer ‘No.’ Now, if Θi,
i ≥ 0, has already been computed and there is t ∈ Θi

with (≥ 1R) ∈ t, for some role R, but there is no t′ ∈
Θi with (≥ 1 inv(R)) ∈ t′, then we construct the type
t′ = cl•T2∪TΞ

({≥ 1 inv(R)}) according to the procedure
above, check whether the following holds
– ⊥ /∈ t′ and there is t ∈ Ξ with t′+ �ΣQT1∪T2 ⊆ t+,
and if it does, we add t′ to Θi and denote the result by
Θi+1; otherwise we terminate with answer ‘No.’ We stop
when Θn = Θn+1. Clearly, all this can be done in poly-
nomial time.

T1 does not strongly Σ-concept (or Σ-query) entail T2 in
DL-Litehorn iff there is a set Ξ guessed at step 1 such that
the conditions at step 2 are satisfied, while step 3 terminates
with answer ‘No.’ q

F QBF for DL-Litebool
In what follows, for a TBox T , we denote bymT the number
of role names in T .

Let Q be a set of numerical parameters containing 1 and
all parameters from T1 and T2. Denote by Σ1 and Σ2 the
signatures of T1 and T2, respectively. We also assume that
sig(T1) ∩ sig(T2) ⊆ Σ.

Σ-concept entailment
First we refine the criterion of Theorem 11 with the aim of
encoding it by means of QBFs. T -realisability of a type t
means that there is a precisely T -realisable set Ξ of types
at least one of which expands t. And it turns out that one
can always find such a Ξ of size ≤ mT + 1. Moreover, we



can order the types in Ξ in such a way that its i’s type ti

‘takes care of the role Pi.’ To make this claim more precise
we need a definition. For a ΣQ-type t, a sequence ΘTt =
t0, t1, . . . , tmT of (not necessarily distinct) sig(T )Q-types
is called a T -witness set for t if
(a1) t ⊆ t0;
(b1) each type in t0, t1, . . . , tmT is T -realisable;

(c1) ∃Pi ∈ tj , for some j, iff ∃Pi ∈ ti or ∃P−i ∈ ti, for
each of the role names Pi in T , 1 ≤ i ≤ mT .

Theorem F.1 A ΣQ-type t is T -realisable iff there is a T -
witness set for t. So T1 Σ-concept entails T2 in DL-Litebool
iff, for every ΣQ-type t, whenever there is a T1-witness set
for t then there is also a T2-witness set for t.

To translate the criterion of Theorem F.1 into QBF, with
each basic Σ0Q-concept (different from ⊥) we associate a
propositional variable. Fix some linear order on the set of
all basic concepts, and let B1, . . . , Bn be the induced list of
Σ0Q-concepts. Then any vector t = (b1, . . . , bn) of distinct
propositional variables bi can be used to encode Σ0Q-types:
every classical assignment a (of the truth values F and T
to propositional variables) gives rise to the Σ0Q-type ta(t)
such that Bi ∈ ta(t) iff a(bi) = T (and so if a(bi) = F then
¬B ∈ ta(t)). We will call t a Σ0Q-vector and ta(t) the
Σ0Q-type of t under a. We also set t(Bi) = bi and extend
this map inductively to complex Σ0Q-concepts:

t(⊥) = ⊥, t(¬C) = ¬t(C),
t(C1 u C2) = t(C1) ∧ t(C2).

We use concatenation t0 · t1 of types t0, t1 (when extend-
ing Σ0Q-types to Σ′0Q-types, Σ0 ⊂ Σ′0) and projection
t�{B1,...,Bk} = (t(B1), . . . , t(Bk)) (not a Σ0Q-vector, in
general). A sequence tn, . . . , tm of ΣQ0-vectors is denoted
by tn..m.

Let t0
0 be a ΣQ-vector, t̂

0

1 a (Σ1 \ Σ)Q-vector, t
1..mT1
1 a

sequence of Σ1Q-vectors, t̂
0

2 a (Σ2\Σ)Q-vector, and t
1..mT2
2

a sequence of Σ2Q-vectors. By Theorem F.1, the condition
‘T1 Σ-concept entails T2’ can be represented by means of
the following closed quantified Boolean formula

∀ t0
0

[
∃ t̂

0

1t
1..mT1
1 φT1(t0

0 · t̂
0

1, t
1..mT1
1 ) →

∃ t̂
0

2t
1..mT2
2 φT2(t0

0 · t̂
0

2, t
1..mT2
2 )

]
, (3)

where, for a TBox T and N ≥ mT ,

φT (t0..N ) =
N∧

j=0

θT (tj) ∧
mT∧
i=1

%Pi,i(t
0..N�{∃Pi,∃P−i }

),

θT (t) =
∧

D1vD2 ∈T

(
t(D1)→ t(D2)

)
,

%P,i(p0..N ) =
(
pi(∃P )→

∨N

j=0
pj(∃P−)

)
∧
(
pi(∃P−)→

∨N

j=0
pj(∃P )

)
∧
(
¬pi(∃P ) ∧ ¬pi(∃P−)→∧N

j=0
j 6=i

¬pj(∃P ) ∧
∧N

j=0
j 6=i

¬pj(∃P−)
)
.

Theorem F.2 For each assignment a, we have
a(φT (t0..N )) = T iff the set {ta(t0), . . . , ta(tN )} of
sig(T )Q-types is precisely T -realisable in a model I where
P Ii 6= ∅ iff a(ti(∃Pi)) = T or a(ti(∃P−i )) = T, for
1 ≤ i ≤ mT . In particular, T1 Σ-concept entails T2 w.r.t. Σ
iff QBF (3) is satisfiable.

There are different ways of transforming (3) into a prenex
CNF, which is a standard input to QBF solvers (see http:
//dcs.bbk.ac.uk/˜roman/qbf for some options).
One of the versions we used in our experiments is of the
form

∀ t0
0∀ t̂

0

1t
1..mT1
1 ∃ t̂

0

2t
1..mT2
2

∃u1 . . .um1 ∃w0..mT1 ∃ p[
φ′T1

(t0
0 · t̂

0

1, t
1..mT1
1 ,u1 . . .umT1

,w0..mT1 , p)

∧ φ′′T2
(t0

0 · t̂
0

2, t
1..mT2
2 , p)

]
,

where u1, . . . ,um1 , w0..mT1 and p are K auxiliary vari-
ables,K = (mT1 +1)CT1 +3mT1 +1 andCT is the number
of axioms in T . In total the prenex QBF has (mT1 + 1)WT1

universal and (mT2 +1)WT2−W0 +K existential variables,
where WT and W0 are the numbers of basic concepts in T
and Σ, respectively. CNFs φ′T (t0..N ,u1 . . .umT ,w

0..N , p)
and φ′′T (t0..N , p) contain (N + 1)BT + 1 + (2N + 7)mT
and (N + 1)(CT +B′T ) + 2(N + 1)mT clauses, where BT
and B′T are the numbers of basic concepts in the left- and
right-hand sides in T , respectively.

The order of the variables in the prefix has a strong impact
on the solvers’ performance (as is well-known in the QBF
community), and usually one can fine-tune it depending on
the solver. Another important parameter, which has not been
studied comprehensively yet by the QBF community, is the
structure of the prefix. For example, some of the existen-
tial quantifiers can be moved right after the universal ones
they depend on, which gives a prefix of the form ∀∃ . . . ∀∃.
The impact of this transformation is not completely clear.
However, our experiments show—especially for the more
complex Σ-query entailment—that the structure of the pre-
fix may become crucial for a solver to succeed.

Σ-query entailment
To make the criterion of Theorem 11 for Σ-query entailment
in DL-Litebool more efficient, we observe first that a set Ξ of
sig(T )Q-types is precisely T -realisable iff every type in Ξ
has a T -witness set within Ξ. So the following conditions
are equivalent:

• T1 Σ-query entails T2;

• for every T1-witness set ΘT1
t for a ΣQ-type t, the set

ΘT1
t �Σ is precisely T2-realisable, where ΘT1

t � Σ is the
set of restrictions of types in ΘT1

t to Σ.

Intuitively, this result means that we do not have to consider
arbitrary sets of Σ1Q-types, but only those of size≤ mT1 +1
that are ‘generated’ by a ΣQ-type t and ordered in such a
way that a certain type ti in the ordering ‘takes care of Pi.’
Now we extend the notion of a T -witness set as follows. For



a T1-witness set ΘT1
t = t0, t1, . . . , tmT1

and M = mT2 −
m0, call a sequence ΘT1T2

t = t̂0, t̂1, . . . , t̂mT1
, s1, . . . , sM

of Σ2Q-types a T2-witness set for ΘT1
t if

(a2) for each 1 ≤ i ≤ mT1 , ti �Σ ⊆ t̂i,
(a′2) for each 1 ≤ j ≤ M , there is 1 ≤ k ≤ mT1 with

tk �Σ ⊆ sj ,

(b2) each type in t̂0, t̂1, . . . , t̂mT1
, s1, . . . , sM is T2-

realisable,
(c2) ∃Pi ∈ t̂j , for some 1 ≤ j ≤ mT1 , or ∃Pi ∈ sk, for

some 1 ≤ k ≤ M , iff ∃Pi ∈ si or ∃P−i ∈ si, for each
role name Pi in Σ2 \ Σ, 1 ≤ i ≤M .

Theorem F.3 T1 Σ-query entails T2 in DL-Litebool iff, for
every T1-witness set ΘT1

t for some ΣQ-type t, there is a T2-
witness set for ΘT1

t .
In the criterion of Theorem F.1, we had to take a ΣQ-

type t, (i) extend t to a Σ1Q-type, (ii) check whether there
are ‘witnesses’ for all the roles in that type and the types
providing those witnesses, and if this is the case, we finally
had to repeat steps (i) and (ii) again for Σ2 in place of Σ1.
The criterion of Theorem F.3 is much more complex not
only because now we have to start with a set of (mT1 + 1)
Σ1Q-types rather than a single type. More importantly, now
the T2-witnesses we choose for these types are not arbitrary
but must have the same Σ-restrictions as the original Σ1Q-
types. This last condition makes the QBF translation much
more complex (see below) and, consequently, computation-
ally more costly.

Let M = mT2 − m0, t
0..mT1
0 be ΣQ-vectors, t̂

0..mT1
1

(Σ1 \ Σ)Q-vectors, t̂
0..mT1
2 , s1..M

2 be (Σ2 \ Σ)Q-vectors.
By Theorem F.3, the condition ‘T2 Σ-query entails T2’ can
be expressed by the following closed QBF

∀ t
0..mT1
0

[
∃ t̂

0..mT1
1 φT1((t0 · t̂1)0..mT1 ) →

∃ t̂
0..mT1
2 ∃ s1..M

2 βT2(t0..mT1
0 , t̂

0..mT1
2 , s1..M

2 )
]
, (4)

where βT2(t0..mT1
0 , t̂

0..mT1
2 , s1..M

2 ) is the formula
mT1∧
j=0

θT2(tj
0 · t̂

j

2) ∧
M∧

j=1

mT1∨
k=0

θT2(tk
0 · s

j
2)

∧
M∧
i=1

%Pm0+i,i((s
1..M
2 )�{∃Pi,∃P−i }

, (t̂
0..mT1
2 )�{∃Pi,∃P−i }

),

and φT , θT and %P,i are defined as before (here we assume
that all concepts ∃R for Σ-roles precede those for Σ2 \ Σ-
roles).
Theorem F.4 T1 Σ-query entails T2 iff (4) is satisfiable.

It can be checked that (4) is equivalent to the prenex QBF

∀ t
0..mT1
0 ∃ t̂

0..mT1
2 ∃ s1..M

2 ∃ q0..mT1 ∃ p
∀ t̂

0

1∃w0 · · ·∀ t̂
mT1
1 ∃wmT1 ∃u1 . . .umT1[

φ′T1
((t0

0 · t̂1)0..mT1 ,u1 . . .umT1
,w0..mT1 , p) ∧

β′′T2
(t0..mT1

0 , t̂
0..mT1
2 , s1..M

2 , q0..mT1 , p)
]
,

where qj = (qj
1, . . . , q

j
M ), for 0 ≤ j ≤ mT1 , φT is as before

and β′′T is a CNF equivalent to (p → βT ). The latter CNF
contains (M+1)(N+1)(CT +B′T )+2M(M+N+1)+M
clauses, where N = mT1 , which is quadratic in mT2 , the
number of roles in Σ2 (unlike φ′′T2

, which is only linear in
mT2 ).
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