
Ontology-Based Data Access:
Ontop of Databases

Mariano Rodŕıguez-Muro1, Roman Kontchakov2 and Michael Zakharyaschev2

1 Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
2 Department of Computer Science and Information Systems,

Birkbeck, University of London, U.K.

Abstract. We present the architecture and technologies underpinning
the OBDA system Ontop and taking full advantage of storing data in
relational databases. We discuss the theoretical foundations of Ontop:
the tree-witness query rewriting, T -mappings and optimisations based
on database integrity constraints and SQL features. We analyse the per-
formance of Ontop in a series of experiments and demonstrate that, for
standard ontologies, queries and data stored in relational databases, On-
top is fast, efficient and produces SQL rewritings of high quality.

1 Introduction

Ontology-based data access (OBDA) [6, 11, 22] is regarded as a key ingredient for
the new generation of information systems, especially for Semantic Web appli-
cations that involve large amounts of data. In the OBDA paradigm, an ontology
defines a high-level global schema and provides a vocabulary for user queries,
thus isolating the user from the details of the structure of data sources (which
can be relational databases, triple stores, datalog engines, etc.). The OBDA sys-
tem transforms user queries into the vocabulary of the data and then delegates
the actual query evaluation to the data sources.

In this paper, we concentrate on OBDA with ontologies given in OWL 2 QL,
a profile of OWL 2 designed to support rewriting of conjunctive queries (CQs)
over ontologies into first-order (FO) queries. A standard architecture of such an
OBDA system over relational data sources can be represented as follows:

CQ q

ontology T

FO q′

mapping

SQL

data DABox A

+

rewriting

+

unfolding

+

ABox virtualisation

The user is given an OWL 2 QL ontology T and can formulate CQs q(x) in the
signature of T . The system rewrites q and T into an FO-query q′(x), called
a rewriting of q and T , such that (T ,A) |= q(a) iff A |= q′(a), for any set
A of ground atoms (called an ABox) in the signature of T and any tuple a

of individuals in A. A number of different rewriting techniques have been pro-
posed and implemented for OWL 2 QL (PerfectRef [22], Presto/Prexto [27, 26],
Rapid [5], the tree-witness rewriting [15]) and its extensions ([16], Nyaya [9],
Requiem/Blackout [20, 21], Clipper [7]).

The rewriting q′ is formulated in the signature of T and, before evaluation,
has to be further transformed into the vocabulary of the data source D. For
instance, q′ can be unfolded into an SQL query by means of a GAV mappingM
relating the signature of T to the vocabulary of D. Strangely enough, mappings
and unfoldings have largely been ignored by query rewriting algorithms (with
Mastro-I [22] being an exception), partly because the data was assumed to be
given as an ABox (say, as a universal table in a database or as a triple store).
We consider the query transformation process as consisting of two steps—query
rewriting and unfolding—and argue that this brings practical benefits (even in
the case of seemingly trivial mappings for universal tables or triple stores).

The performance of first OBDA systems based on the architecture above was
marred by large rewritings that could not be processed by RDBMSs, which led
the OBDA community to intensive investigations of rewriting techniques and
optimisations. There are 3 main reasons for large CQ rewritings and unfoldings:

(E) Sub-queries of q with existentially quantified variables can be folded in
many different ways to match the canonical models of possible knowledge
bases (T ,A), all of which must be reflected in the rewriting q′.

(H) Classes/properties occurring in q can have many subclasses/subproperties
according to T , which all have to be included in the rewriting q′.

(M) The mappingM can have multiple definitions of the ontology terms, which
may result in an exponential blowup when q′ is unfolded into a (most suitable
for RDBMSs) union of Select-Project-Join queries.

In fact, most of the proposed techniques produce rewritings in the form of unions
of CQs (UCQs) and try to tame (E) using various optimisations in unification
strategies to reduce the size of rewritings, with expensive CQ containment as the
last resort. Presto [27] and the tree-witness rewriting [15] use nonrecursive data-
log to deal with (H); this, however, is of little help if a further transformation to
a UCQ is required. The combined approach [17] constructs finite representations
of (in general) infinite canonical models of (T ,A) thereby totally removing (H).
It also solves (E) for ontologies without role inclusions; otherwise, rewritings
can still be of exponential size, or the filtering procedure [19] may have to run
exponentially many times.

In theory, (E) turns out to be incurable under the architecture above: there
are CQs and OWL 2 QL ontologies for which any FO- (or nonrecursive datalog)
rewriting is superpolynomial (or exponential) [13, 14], which happens indepen-
dently of the contribution of (H) and (M); the polynomial rewriting of [10] hides
this blowup behind extra existential quantifiers. Fortunately, it seems that only
(artificially) complex CQs and ontologies trigger issues with (E). Our experi-
ments show that, for standard benchmark CQs and ontologies, the number of
foldings in (E) is small and can be efficiently dealt with by the tree-witness
rewriting.

In this paper, we attack both (H) and (M) at the same time using two key
observations. First, the schema and integrity constraints (dependencies), Σ, of
the data source D together with the mapping M often provide valuable infor-
mation about the class of possible ABoxes over which the user CQ is rewritten.
(These ABoxes are virtual representations of D and are not materialised.) For
example, if we know that all our virtual ABoxes A are ∃-complete with respect
to T (that is, contain witnesses for all ∃R in T) then we can ignore (E); if
all A are H-complete (that is, A contains A(a) whenever it contains B(a) and
T |= B v A, and similarly for properties) then the problem (H) does not exist.
Second, we can make the virtual ABoxes H-complete by taking the composition
of T andM as a new mapping. This composition, called a T -mapping [24], can
be simplified with the help of Σ and the features of the target query language
before being used in the unfolding. As the simplifications use Σ, they preserve
correct answers only over database instances satisfying Σ. (Even if the mappings
are trivial and the data comes from a universal table or a triple store, it often
has a certain structure and satisfies certain constraints, which could be taken
into account to make query answering more efficient [12]).

These observations underpin the system Ontop (ontop.inf.unibz.it) imple-
mented at the Free University of Bozen-Bolzano and available as a plugin for
Protégé 4, SPARQL end-point and OWLAPI and Sesame libraries. The process
of query rewriting and unfolding in Ontop with all optimisations is shown below
(the dashed lines show processes that aid explanations but do not take place):

CQ q

ontology T

UCQ qtw

T -mappingmapping M

dependencies Σ

SQL

data D

virtual ABox

H-complete ABox A

+

tw-rewriting Ê

+

unfolding

+

ABox virtualisation

+

ABox virtualisation

+

H-completion

+

composition Ë
SQO

Ì

SQ
O

Í

This architecture, which is our main theoretical contribution, will be discussed
in detail in Section 2. Here we only emphasise the key ingredients:

Ê the tree-witness rewriting qtw assumes the virtual ABoxes to be H-complete;
it separates the topology of q from the taxonomy defined by T , is fast in
practice and produces short UCQs;

Ë the T -mapping combines the system mapping M with the taxonomy of T
to ensure H-completeness of virtual ABoxes;

Ì the T -mapping is simplified using the Semantic Query Optimisation (SQO)
technique and SQL features; the T -mapping is constructed and optimised
for the given T and Σ only once, and is used to unfold all rewritings qtw;

Í the unfolding algorithm uses SQO to produce small and efficient SQL queries.

In Section 3, we evaluate the performance of Ontop and compare it with other
systems using a number of standard ontologies, including LUBM with generated
data and the Movie Ontology with real data. Our experimental results show that
UCQ rewritings over arbitrary ABoxes are not scalable in the presence of class
and property hierarchies; in contrast to that, rewritings of real-world queries
and ontologies over H-complete ABoxes (or equivalent datalog rewritings) turn
out to be unions of few (at most two, in our experiments) CQs whose size does
not exceed (in fact, is often smaller than) the size of the original query. Class
and property hierarchies can be tackled by optimisations of T -mappings and
the SQO, which use the structure of databases and integrity constraints, so that
Ontop automatically produces SQL queries of reasonably high quality. As a
result, Ontop successfully competes with and often outperforms systems based
on materialisation of inferences.

2 The Architecture of Ontop

We begin by describing the three main ingredients of Ontop: the tree-witness
rewriting over H-complete ABoxes, T -mappings and the unfolding algorithm. To
avoid long formulas, we use the DL parlance [2] for OWL 2 QL ontologies and the
datalog notation for conjunctive queries. Thus, subclass axioms are of the form
A1 v A2, for concept (class) names Ai; property inclusions are R1 v R2, where
the Ri are role (object and datatype property) names or their inverses; and
property P domain and range axioms are ∃P v A1 and ∃P− v A2, respectively.
Conjunctive queries (CQs) are of the form q(x) ← α1, . . . , αn, where x is a
vector of answer variables and each αi is a unary or binary atom (the variables
in the αi that are not in x are existentially quantified). Throughout the paper,
we identify atoms P−(y, x) and P (x, y) (in query heads, bodies and ABoxes).

Suppose we are given a CQ q(x) and an OWL 2 QL ontology T . Ontop starts
its work by constructing the semantic-based tree-witness rewriting of q and T
over H-complete ABoxes. We say that an ABox A is H-complete with respect to
T in case it satisfies the following conditions:

A(a) ∈ A if A′(a) ∈ A, T |= A′ v A or R(a, b) ∈ A, T |= ∃R v A,
P (a, b) ∈ A if R(a, b) ∈ A and T |= R v P.

2.1 Tree-Witness Rewriting over H-Complete ABoxes

We explain the essence of the tree-witness rewriting using an example; a formal
definition can be found in [25]. Consider an ontology T with the axioms

RA v ∃worksOn.Project, Project v ∃isManagedBy.Prof, (1)

worksOn− v involves, isManagedBy v involves, (2)

and the CQ q(x) asking to find those who work with professors:

q(x) ← worksOn(x, y), involves(y, z), Prof(z).

Observe that if a model I of (T ,A), for some ABox A, contains individuals
a ∈ RAI and b ∈ ProjectI then I must also contain the following fragments:

a

RA Project

u

Prof

vworksOn

involves−

isManagedBy

involves

b

Project Prof

wisManagedBy

involves

where the points u, v, w are not necessarily named individuals from the ABox,
but can be (anonymous) witness for the existential quantifiers of (1) (or labelled
nulls in the chase); we say that these fragments are generated by RA and Project,
respectively, and use the bold-faced font to indicate that. It follows that a is an
answer to q(x) whenever a is an instance of RAI , in which case the atoms of q
(thick lines) are mapped to the fragment generated by RA as follows:

q
x y

Prof
zworksOn involves

I a
RA Project ProfworksOn, involves− isManagedBy, involves

Alternatively, we obtain the following match (provided that a is also in Prof I):

q x
yProf

z

worksOn

involves

I a
RA,Prof Project ProfworksOn, involves− isManagedBy, involves

Another option is to map x and y to ABox individuals, a and b, and if b is in
ProjectI , then the last two atoms of q can be mapped to the anonymous part
generated by Project:

q
x y

Prof
zworksOn involves

I b
Project ProfisManagedBy, involves

Finally, all the atoms of q can be mapped to ABox individuals. The possible
ways of mapping parts of the CQ to the anonymous part of the models are
called tree witnesses. The tree-witnesses for q found above give the following
UCQ tree-witness rewriting qtw(x) of q(x) and T over H-complete ABoxes:

qtw(x)← RA(x),

qtw(x)← Prof(x),RA(x),

qtw(x)← worksOn(x, y),Project(y),

qtw(x)← worksOn(x, y), involves(y, z),Prof(z).

(It is to be noted that qtw(x) is not a rewriting of q(x) and T over all ABoxes.)
Having computed the UCQ qtw, Ontop simplifies it using two optimisations.

First, it applies a subsumption algorithm to remove redundant CQs from the
union: for example, the first query in the example above subsumes the second,
which can be safely removed. It also reduces the size of the individual CQs in
the union using the following observation: any CQ q (viewed as a set of atoms)

has the same certain answers over H-complete ABoxes as

q \ {A(x)}, if A′(x) ∈ q and T |= A′ v A with A′ 6= A, (3)

q \ {A(x)}, if R(x, y) ∈ q and T |= ∃R v A, (4)

q \ {P (x, y)}, if R(x, y) ∈ q and T |= R v P with R 6= P, (5)

Surprisingly, such a simple optimisation, especially (4) for domains and ranges,
makes rewritings substantially shorter [27, 9].

We have to bear in mind, however, that in theory, the size of the resulting
UCQ rewritings can be very large: there exists [13, 14] a sequence of qn and
Tn generating exponentially many (in |qn|) tree witnesses, and any first-order
(or nonrecursive datalog) rewriting of qn and Tn is of superpolynomial (or ex-
ponential) size (unless it employs |qn|-many additional existentially quantified
variables [10]). On the other hand, to generate many tree witnesses, the CQ q
must have many subqueries that can be matched in the canonical models, which
requires both q and T to be quite sophisticated, with q ‘mimicking’ parts of
the canonical models for T . To the best of our knowledge, this never happens
in real-world CQs and ontologies used for OBDA. More often than not, they
do not generate tree witnesses at all; see Section 3.1. It is also known [15, The-
orem 21] that, if the query and ontology do not contain fragments as in the
example considered above, then the number of tree witnesses is polynomial.

2.2 Optimising T -Mappings

In a typical scenario for Ontop, the data comes from a relational database rather
than an ABox. A database schema [1] contains predicate symbols (with their
arity) for both stored database relations and views (with their definitions in
terms of stored relations) as well as a set Σ of integrity constraints (in the
form of inclusion and functional dependencies). Any instance I of the database
schema must satisfy its integrity constraints Σ. The vocabularies of a database
schema and an ontology are linked together by means of mappings. We define a
mapping, M, as a set of GAV rules of the form

S(x)← ϕ(x, z),

where S is a class or property name in the ontology and ϕ(x, z) a conjunction of
atoms with database relations (both stored relations and views) and a filter, that
is, a Boolean combination of built-in predicates such as = and <. (Note that,
by including views in the schema, we can express any SQL query in mappings.)
Given a mapping M and a data instance I, the ground atoms

S(a), for S(x)← ϕ(x, z) in M and I |= ∃z ϕ(a, z),

comprise the ABox,AI,M, which is called the virtual ABox forM over I. We can
now define certain answers to a CQ q over an ontology T linked by a mapping
M to a database instance I as certain answers to q over (T ,AI,M).

The tree-witness rewriting qtw of q and T works only for H-complete ABoxes.
An obvious way to define such ABoxes is to take the compositionMT ofM and
the inclusions in T given by

A(x)← ϕ(x, z) if A′(x)← ϕ(x, z) ∈M and T |= A′ v A,
A(x)← ϕ(x, y,z) if R(x, y)← ϕ(x, y,z) ∈M and T |= ∃R v A,

P (x, y)← ϕ(x, y,z), if R(x, y)← ϕ(x, y,z) ∈M and T |= R v P

(we do not distinguish between P−(y, x) and P (x, y)). Thus, to compute answers
to q over T withM and a database instance I, it suffices to evaluate the rewriting
qtw over AI,MT : for any I and any tuple a of individuals in AI,M,

(T ,AI,M) |= q(a) iff AI,MT |= qtw(a). (6)

Given a CQ q and an ontology T , most OBDA systems first construct a
rewriting of q and T over arbitrary ABoxes and then unfold it, using a mapping
M, into a union of Select-Project-Join (SPJ) queries, which is forwarded for
execution to an RDBMS. By (6), the same result can be achieved by unfolding
a rewriting over H-complete ABoxes with the help of the composition MT . In
principle, this may bring some benefits if the SQL query is represented as a union
of SPJ queries over views for class and property names, but only if the RDBMS
can evaluate such queries efficiently (each view is a union of simple queries, for
rules in MT listing subclasses and subproperties). On the other hand, there
will be no benefit if the query is unfolded into a union of SPJ queries either by
the RDBMS or by the OBDA system itself. However, the resulting query will
produce duplicating answers if the ontology axioms express the same properties
of the application domain as the integrity constraints of the database [23].

For this reason, before applying MT to unfold the tree-witness rewriting in
Ontop, we optimise the mapping using the database integrity constraints Σ. This
allows us to (a) reduce redundancy in answers, and (b) substantially shorten the
SQL queries. We say that a mapping M is a T -mapping over Σ if the ABox
AI,M is H-complete with respect to T , for any data instance I satisfying Σ.
(The composition MT is trivially a T -mapping over any Σ.)

To illustrate the optimisations, we take a simplified IMDb (www.imdb.com/
interfaces) whose schema contains relations title[m, t, y] with information about
movies (ID, title, production year), and castinfo[p,m, r] with information about
movie casts (person ID, movie ID, person role), and an ontology MO (www.
movieontology.org) describing the application domain in terms of, for example,
classes mo:Movie and mo:Person, and properties mo:cast and mo:year:

mo:Movie ≡ ∃mo:title, mo:Movie v ∃mo:year,

mo:Movie ≡ ∃mo:cast, ∃mo:cast− v mo:Person.

A mappingM that relates the ontology terms to the database schema contains,
for example, the following rules:

mo:Movie(m),mo:title(m, t),mo:year(m, y)← title(m, t, y),

mo:cast(m, p),mo:Person(p)← castinfo(p,m, r).

Inclusion Dependencies. Suppose M∪ {S(x) ← ψ1(x, z)} is a T -mapping
over Σ. If there is a more specific rule than S(x)← ψ1(x, z) inM, thenM itself
is also a T -mapping. To discover such ‘more specific’ rules, we run the standard
query containment check (see, e.g., [1]), but taking account of the inclusion
dependencies. For example, since T |= ∃mo:cast v mo:Movie, the composition
MMO of mapping M and MO contains the following rules for mo:Movie:

mo:Movie(m) ← title(m, t, y),

mo:Movie(m) ← castinfo(p,m, r).

The latter is redundant as IMDb contains the foreign key (inclusion dependency)

∀m
(
∃p, r castinfo(p,m, r)→ ∃t, y title(m, t, y)

)
.

Disjunctions in SQL. Another way to reduce the size of a T -mapping is to
identify pairs of rules whose bodies are equivalent up to filters w.r.t. constant
values. This optimisation deals with the rules introduced due to the so-called type
(discriminating) attributes [8] in database schemas. For example, the mapping
M for IMDb and MO contains six rules for subclasses of mo:Person:

mo:Actor(p)← castinfo(c, p,m, r), (r = 1),
· · ·

mo:Editor(p)← castinfo(c, p,m, r), (r = 6).

Then the compositionMMO contains six rules for mo:Person that differ only in
the last condition (r = k), 1 ≤ k ≤ 6. These can be reduced to a single rule:

mo:Person(p)← castinfo(c, p,m, r), (r = 1) ∨ · · · ∨ (r = 6).

Note that such disjunctions lend themselves to efficient evaluation by RDBMSs.

Materialised ABoxes and Semantic Index. In addition to working with
proper relational data sources, Ontop supports ABox storage in the form of
structureless universal tables: a binary relation CA[id, class-id] and a ternary
relation RA[id1, id2, property-id] represent class and property membership asser-
tions. The universal tables give rise to trivial mappings, and Ontop implements
a technique, the semantic index [24], that takes advantage of SQL features in
T -mappings for this scenario. The key observation is that since the IDs in the
universal tables CA and RA can be chosen by the system, each class and property
name in the TBox T can be assigned a numeric index and a set of numeric in-
tervals in such a way that the resulting T -mapping contains simple SQL queries
with interval filter conditions. For example, in IMDb, we have

mo:Actor v mo:Artist, mo:Artist v mo:Person, mo:Director v mo:Person;

so we can choose index 1 and interval [1,1] for mo:Actor, 2 and [1,2] for mo:Artist,
3 and [3,3] for mo:Director and 6 and [1,6] for mo:Person. This will generate a

T -mapping with, for instance,

mo:Person(p)← CA(p, class-id), (1 ≤ class-id ≤ 6),

mo:Artist(p)← CA(p, class-id), (1 ≤ class-id ≤ 2).

So, by choosing appropriate class and property IDs, we effectively construct
H-complete ABoxes without the expensive forward chaining procedure (and the
need to store large amounts of derived assertions). On the other hand, the se-
mantic index T -mappings are based on range expressions that can be evaluated
efficiently by RDBMSs using standard B-tree indexes [8].

2.3 Unfolding with Semantic Query Optimisation (SQO)

The unfolding procedure [22] applies SLD-resolution to qtw and the T -mapping,
and returns those rules whose bodies contain only database atoms (cf. partial
evaluation [18]). Ontop applies SQO [4] to rules obtained at the intermediate
steps of unfolding. In particular, it eliminates redundant self-Join operations
caused by reification of database relations by means of classes and properties.
Consider, for example, the CQ

q(t, y)← mo:Movie(m),mo:title(m, t),mo:year(m, y), (y > 2010).

It has no tree witnesses, and so qtw = q. By straightforwardly applying the
unfolding to qtw and the T -mapping M above, we obtain the query

q′tw(t, y)← title(m, t0, y0), title(m, t, y1), title(m, t2, y), (y > 2010),

which requires two (potentially) expensive Join operations. However, by using
the primary key m of title:

∀m ∀t1∀t2
(
∃y title(m, t1, y) ∧ ∃y title(m, t2, y)→ (t1 = t2)

)
,

∀m ∀y1∀y2
(
∃t title(m, t, y1) ∧ ∃t title(m, t, y2)→ (y1 = y2)

)
(a functional dependency with determinant m), we reduce two Join operations
in the first three atoms of q′tw to a single atom title(m, t, y):

q′′tw(t, y)← title(m, t, y), (y > 2010).

Note that these two Join operations were introduced to reconstruct the ternary
relation from its reification by means of the roles mo:title and mo:year.

The role of SQO in OBDA systems appears to be much more prominent
than in conventional RDBMSs, where it was initially proposed to optimise SQL
queries. While some of the SQO techniques reached industrial RDBMSs, it never
had a strong impact on the database community because it is costly compared
to statistics- and heuristics-based methods, and because most SQL queries are
written by highly-skilled experts (and so are nearly optimal anyway). In OBDA
scenarios, in contrast, SQL queries are generated automatically, and so SQO
becomes the only tool to avoid redundant and expensive Join operations [28].

A & S a1 a2 a3 a4 a5 s1 s2 s3 s4 s5

tree witnesses 1 1 0 1 0 0 0 0 0 0
CQs in qtw 2 2 1 2 1 1 1 1 1 1
atoms in q 2 3 5 3 5 1 3 5 5 7

atoms in qtw 2+2 1+3 5 2+3 5 1 1 3 2 4

LUBM∃
20 r1 r2 r3 r4 r5 q1 q2 q3 q4 q5 q6 q7 q8 q9

tree witnesses 0 0 0 0 0 1 1 0 1 0 0 0 3 1
CQs in qtw 1 1 1 1 1 2 2 1 2 1 1 1 1 1
atoms in q 2 3 6 3 4 8 4 6 8 5 8 13 13 34

atoms in qtw 2 1 4 1 2 4+6 3+4 5 5+8 4 6 12 6 33

Table 1. Tree-witness UCQ rewritings over H-complete ABoxes.

3 Experiments

In this section, we present the results of experiments conducted to evaluate the
performance of Ontop in comparison with other systems (for details see sites.

google.com/site/ontopiswc13). We begin by testing the tree-witness rewriter.

3.1 Tree Witnesses: The Topology of Ontop Rewritings

We ran the Ontop tree-witness rewriter on the usual set of ontologies and CQs:
Adolena (A) and StockExchange (S) [20] with the original queries a1–a5 and
s1–s5, respectively, and LUBM∃20 [19] with queries r1–r5 from the Requiem eval-
uation [20], q1–q6 from the combined approach evaluation [19], and q7–q9 from
the Clipper evaluation [30]. Our aim was to understand the size of the topo-
logical part of the rewritings that reflects matches into the anonymous part of
the canonical models (as opposed to the taxonomical one). Table 1 shows the
number of tree witnesses, the number of CQs in the rewriting, and the number
of atoms in the input query and in each of the CQs of the rewriting.

Note that these CQs and ontologies have very few tree witnesses. More pre-
cisely, in 67% of the cases there are no tree witnesses at all, and in 29% we have
only one. Even for the specially designed q8, the structure of tree witnesses is
simpler than in our example from Section 2.1 (e.g., they do not overlap). And
although q8 and q9 do have tree witnesses, the resulting UCQs contain only one
CQ since these tree witnesses are generated by other atoms of the queries. In
fact, all tree-witness rewritings in our experiments contain at most two CQs: one
of them is an optimised original CQ (in particular, by the domain/range optimi-
sation (4) in s2–s5, r2–r5, q1, q3, q5–q8) and the other is obtained by replacing
the atoms of the tree-witness with its generator. Thus, each of the CQs in the
rewritings is not larger than the input query and has a very similar structure.

To illustrate, consider the following subquery of q8:

q0(x0)← Publication(x0), publicationAuthor(x0, x11), Subj1Professor(x11),

worksFor(x11, x12), Department(x12),

r1 r2 r3 r4 r5 q1 q2 q3 q4 q5 q6 q7 q8 q9

UCQ (number of CQs)

Requiem 2 1 23 2 10 DNF 2 DNF 14,880 690 DNF DNF DNF DNF

Nyaya 2 1 23 2 10 DNF 2 DNF DNF 690 DNF DNF DNF DNF

IQAROS 2 1 23 2 10 DNF 1 15,120 14,400 690 23,552 DNF DNF DNF

Rapid 2 1 23 2 10 3,887 2 15,120 14,880 690 23,552 DNF 1 16

datalog (number of non-taxonomical rules)

Rapid 1 1 1 1 1 2 3 1 2 1 1 1 27 1
Clipper 1 1 1 1 1 8 7 1 5 1 1 1 512 16
tw-rewriter 1 1 1 1 1 2 2 1 2 1 1 1 1 1

Table 2. The size of rewritings over LUBM∃
20 (DNF = Did Not Finish in 600s).

0s

0.05s

1s

60s

600s

r1 r2 r3 r4 r5 q1 q2 q3 q4 q5 q6 q7 q8 q9

Requiem Nyaya IQAROS Rapid-UCQ Rapid tw-rewriting

Fig. 1. Rewriting time for queries over LUBM∃
20.

where x11, x12 do not occur in the rest of q8. This CQ has a tree witness com-
prising the last two atoms because of the LUBM∃20 axiom Faculty v ∃worksFor.
However, Subj1Professor is a subclass of Faculty, and so any of its instances is
always connected to Department by worksFor (either in the ABox or in the
anonymous part). Thus, the last two atoms of q0 do not affect its answers
and can be removed. The first atom is redundant by (4) with the domain ax-
iom ∃publicationAuthor v Publication, which results in the following rewriting:
q′0(x0) ← publicationAuthor(x0, x11), Subj1Professor(x11). As q0 represents a
natural and common pattern for expressing queries—select a Publication whose
publicationAuthor is a Subj1Professor, etc.—any OBDA system should be able
to detect such redundancies automatically.

For comparison, we computed the rewritings of the CQs over LUBM∃20 us-
ing Requiem [20], Nyaya [9], IQAROS (v 0.2) [29], Rapid (v 0.3) [5] and Clipper
(v 0.1) [7]. The first four return UCQ rewritings, the numbers of CQs in which are
shown in Table 2. The last two return nonrecursive datalog rewritings over arbi-
trary ABoxes. These rewritings consist of a number of ‘main’ rules and a number
of taxonomical rules for completing the ABoxes by subclasses/subproperties; to
compare with Ontop, Table 2 shows only the number of the ‘main’ rules. In-
terestingly, Clipper and Rapid return single-rule rewritings in the cases without
tree witnesses, but generate more rules than Ontop (e.g., q8 and q9) otherwise.

Figure 1 shows the time required for rewriting (it was impossible to sep-
arate rewriting from DLV execution in Clipper, but it terminated within 1.5s
on every query). The UCQ-based systems do not finish in many cases and re-

quire a substantial amount of memory (up to 1GB in some cases). In contrast,
the datalog-based systems and Ontop produce rewritings very quickly. Observe
that the rewritings returned by the four UCQ-based systems can be obtained
from the tree-witness rewritings by replacing each class/property with its sub-
classes/subproperties (IQAROS’s rewritings of q2 and possibly q4 are incorrect):
for instance, q7 gives 216,000 (= 303×23) CQs, q3 gives 15,120 (=4×5×21×36) CQs
and q1 gives 3,887 (= 23 + 2×4×21×23) CQs as Student, Faculty and Professor
have 23, 36 and 30 subclasses, respectively, worksFor has 2 subproperties, etc.
Such an operation (if needed) could be performed in fractions of seconds.

The experiments reported in this section imply that dealing efficiently with
class/property hierarchies is the most critical component of any OBDA system.
We discuss how Ontop copes with this task in the next section.

3.2 T -mappings: Class and Property Hierarchies

We compare the query execution time in Ontop, Stardog 1.2 [21] and OWLIM [3].
Both Stardog and OWLIM use internal data structures to store RDF triples.
Stardog is based on rewriting into UCQs (as we saw above, such systems can
run out of memory during the rewriting stage, even before accessing the data).
OWLIM is based on inference materialisation (forward chaining); but the imple-
mented algorithm is known to be incomplete for OWL 2 QL [3].

It was impossible to compare Ontop with other systems: Rapid and IQAROS
are just query rewriting algorithms; Clipper (v 0.1) supports only the DLV dat-
alog engine that reads queries and triples at the same time (which would be
a serious disadvantage for large datasets). The experiments were run on an
HP Proliant with 24 Intel Xeon 6-core 3.47GHz CPUs, 106GB RAM and a
1TB@15000rpm HD under 64-bit Ubuntu 12.04 with Java 7, MySQL 5.6 and
DB2 10.1.

Data as Triples: The Semantic Index We first compare the performance of
the three systems for the case where the data is stored in the form of triples. In
this case, Ontop uses universal tables, and the SQO optimisations do not play
any role. We took LUBM∃20 with the data created by the modified LUBM data
generator [19] for 50, 200 and 1000 universities (5% incompleteness) with 7m,
29m and 143m triples, respectively.

OWLIM requires a considerable amount of time for loading and materialising
the inferences—14min, 1h 23min and 8h 4min, respectively—expanding the data
by 93% and obtaining 13m, 52m and 252m triples. Neither Stardog nor Ontop
need this expensive loading stage. The results of executing the queries from
Section 3.1 are given in Table 3 (in order to reduce the influence of the result
size, which are quite large in some cases, we executed queries that counted the
number of distinct tuples rather than returned the tuples themselves). We note
first that Stardog runs out of memory on 50% of the queries, with a likely cause
being the query rewriting algorithm, which is an improved version of Requiem
(cf. Table 2). On the remaining queries, Stardog is fast, which is probably due

r1 r2 r3 r4 r5 q1 q2 q3 q4 q5 q6 q7 q8 q9

50 universities
DB2 0 0.03 0.50 0.01 0 25.2 0.47 0.39 0.04 1.37 0.07 0.51 0.13 0

O
n
to
p

MySQL 0 0.19 3.76 0.08 0 31.0 2.48 10.54 0.13 4.22 2.19 0.48 0.13 0
OWLIM 0.01 0.78 2.43 0.28 0.17 12.9 2.68 0.21 0.29 3.95 0.78 0.23 0.23 0.04
Stardog 0.01 0.79 1.16 0.34 0.10 DNF 0.10 DNF DNF DNF DNF DNF DNF 0.04
result size – 102k 12k 34k – 1.2m – 89 – 205k – – – –

200 universities
DB2 0 0.08 7.33 0.07 0 522.9 1.75 3.48 0.12 5.52 0.26 0.86 0.25 0

O
n
to
p

MySQL 0 1.21 14.6 0.32 0 260.4 9.30 34.02 0.49 16.11 8.45 1.66 0.54 0
OWLIM 0.01 3.10 9.28 0.94 0.79 46.4 10.52 0.89 15.15 16.91 3.32 0.92 0.92 0.05
Stardog 0.01 3.22 2.92 1.12 0.27 DNF 0.33 DNF DNF DNF DNF DNF DNF 0.06
result size – 410k 48k 137k – 4.6m – 399 – 825k – – – –

1000 universities
DB2 0 0.24 11.6 0.19 0 2761 3.29 11.3 0.58 12.7 1.15 5.38 1.23 0

O
n
to
p

MySQL 0 1.54 70.9 0.85 0 1232 90.9 185.3 2.37 132.7 2.86 7.75 2.48 0
OWLIM 0.01 18.9 63.6 6.40 3.38 308 65.7 5.11 94.3 105.7 2.76 5.84 5.79 0.10
Stardog 0.21 20.7 13.7 9.36 1.11 DNF 3.07 DNF DNF DNF DNF DNF DNF 0.17
result size – 2m 239k 685k – 23m – 2k – 4.1m – – – –

Table 3. Query execution time (in seconds) and the result size over LUBM∃
20.

to its optimised triple store. Unlike Stardog, both OWLIM and Ontop return
answers to all queries, and their performance is comparable. In fact, in 83% of
the cases Ontop with DB2 outperforms OWLIM.

It is to be emphasised that Ontop can work with a variety of database
engines and that, as these experiments demonstrate, Ontop with MySQL in
many case is worse in executing queries than with DB2 (but is still compet-
itive with OWLIM). Two techniques turned out to be crucial to improve the
performance of the engines. First, in the universal relations CA[id, class-id] and
RA[id1, id2, property-id], we store integer URI identifiers rather than URIs them-
selves, with a special relation URI[id, uri] serving as a dictionary to de-reference
the URI identifiers. Second, a significant improvement of performance was achi-
eved by creating indexes on sequences of attributes of the universal relations: for
example, CA has indexes on (id, class-id), (id) and (class-id). The full impact of
such indexes on storing data in the form of RDF triples is yet to be investigated.

Finally, we observe that some queries do not need evaluation because Ontop
simplifies them to empty queries: in fact, r1, r5 and q9 contain atoms that have
no instances in the generated data, and only 6 out of the 14 CQs return any
answers (which probably reflects the artificial nature of the benchmark).

These experiments confirm once again that rewritings into UCQs over arbi-
trary ABoxes can be prohibitively large even for high-performance triple stores
such as Stardog. The materialisation approach should ‘by definition’ cope with
large taxonomies. We have demonstrated that the semantic index used in Ontop

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

atoms in query 4 15 6+f 4+f 9 6 8 6 9+f 3+f
UCQ rewriting 2 48 2 1 24 2 4 16 4 1
tables in SQL 3 13 3 2 6 4 5 4 8 2
result size 6 14,688 15,010 2,224 1,921 84 4 59,211 48 26

Stardog result size 0 0 4,047 0 9 0 0 27,804 0 26

Ontop-DB2 0.003 0.626 0.495 0.355 7.525 0.005 0.001 0.699 0.167 0.358
Ontop-MySQL 0.005 6.138 0.679 0.571 9.190 0.009 0.023 3.563 0.460 0.457

OWLIM 0.005 0.562 5.413 2.833 0.681 0.009 0.007 4.307 0.046 0.836
Stardog 0.030 1.136 1.329 2.227 1.389 0.029 0.038 1.277 0.409 0.584

Table 4. Query and rewriting metrics, result sizes and execution times (in seconds).

is able to deal with this problem as efficiently as (and often better than) inference
materialisation, without the considerable overhead expense of the latter.

Ontop of Databases We now evaluate the performance of the T -mapping
approach to answering queries over OWL 2 QL ontologies with mappings to real-
world databases. We use the Movie Ontology (MO, www.movieontology.org) and
the data from the SQL version of the Internet Movie Database (IMDb, www.imdb.
com/interfaces). Both the database and ontology were developed independently
by third parties for purposes different from benchmarking; the mapping was
created by the Ontop development team. MO has 137 class and property names
and 157 inclusion axioms; the mapping contains 271 rules and the virtual ABox
has 42m assertions. We tested 10 natural queries to IMDb: e.g., q3 retrieves the
companies from East Asia and the movies they produced between 2006 and 2010.

The metrics of the queries and their rewritings, the numbers of returned tu-
ples, and the execution times by Ontop with DB2 and MySQL, OWLIM and
Stardog over the materialised ABox are shown in Table 4. The line ‘atoms in
query’ gives the number of atoms in the input query (+f denotes a filter ex-
pression). Each query coincides with its tree-witness rewriting (there are no tree
witnesses, and none of the atoms is redundant). The line ‘UCQ rewriting’ shows
the number of CQs in the rewritings over arbitrary ABoxes, which reflects the
size of class and property hierarchies. The resulting SQL query contains a single
Select-Project-Join component with the number of tables given by ‘tables
in SQL’—this corresponds to the number of Joins in the SQL query. Because of
the SQO, the SQL queries have fewer tables and Joins than the original one (or
the rewriting). For example, q3 with 6 atoms produces a single SPJ query with
3 tables (and one disjunction over 7 country codes rather than 7 subqueries):

SELECT DISTINCT Q3.name, Q1.title, Q1.production year
FROM title Q1, movie companies Q2, company name Q3
WHERE (Q1.id = Q2.movie id) AND (Q2.company id = Q3.id) AND
((’[tw]’ = Q3.country code) OR ... OR (’[kr]’ = Q3.country code)) AND
(Q1.production year <= 2010) AND (Q1.production year >= 2006)

Note that Stardog, on the same set of triples as OWLIM, returns fewer tuples

in all cases but q10, which may explain the better execution times (one of the
Stardog optimisations [21] removes empty CQs from the rewriting and may be
responsible for the missing tuples).

In 70% cases, Ontop with DB2 outperforms OWLIM (and is efficient even
with MySQL). Moreover, OWLIM takes 45min to load the data into the triple
store (and will have to do this again every time the data is changed). This
demonstrates that on-the-fly inference over real-world databases by means of the
tree-witness rewriting and T -mappings is efficient enough to successfully com-
pete with materialisation-based techniques. Moreover, the usual problems asso-
ciated with query-rewriting-based approaches disappear in Ontop: T -mappings
efficiently deal with hierarchical reasoning avoiding the exponential blowup, and
the SQO improves the performance of the produced SQL queries by taking ac-
count of the structure and integrity constraints of the database.

4 Conclusions

To conclude, we believe this paper shows that—despite the negative theoretical
results on the worst-case OWL 2 QL query rewriting and sometimes disappoint-
ing experiences of the first OBDA systems—high-performance OBDA is achiev-
able in practice when applied to real-world ontologies, queries and data stored
in relational databases. In such cases, query rewriting together with SQO and
SQL optimisations is fast, efficient and produces SQL queries of high quality.

Acknowledgements. We thank G. Orsi for providing Nyaya, G. Xiao for pro-
viding queries and the Ontop development team (J. Hardi, T. Bagosi, M. Slus-
nys) for the help with the experiments. This work was supported by the EU FP7
project Optique (grant 318338) and UK EPSRC project ExODA (EP/H05099X).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

3. Bishop, B., Bojanov, S.: Implementing OWL 2 RL and OWL 2 QL rule-sets for
OWLIM. In: Proc. of OWLED 2011. CEUR-WS, vol. 796 (2011)

4. Chakravarthy, U.S., Fishman, D.H., Minker, J.: Semantic query optimization in
expert systems and database systems. Benjamin-Cummings Publ. Co., Inc. (1986)

5. Chortaras, A., Trivela, D., Stamou, G.: Optimized query rewriting for OWL 2 QL.
In: Proc. of CADE-23. LNCS, vol. 6803, pp. 192–206. Springer (2011)

6. Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., Sun, X.:
Scalable grounded conjunctive query evaluation over large and expressive knowl-
edge bases. In: Proc. of ISWC 2008. LNCS, vol. 5318, pp. 403–418. Springer (2008)

7. Eiter, T., Ortiz, M., Šimkus, M., Tran, T.K., Xiao, G.: Query rewriting for Horn-
SHIQ plus rules. In: Proc. of AAAI 2012. AAAI Press (2012)

8. Elmasri, R., Navathe, S.: Fundamentals of Database Systems. Addison-Wesley, 6th
edn. (2010)

9. Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: Rewriting and optimization.
In: Proc. of ICDE 2011. pp. 2–13. IEEE Computer Society (2011)

10. Gottlob, G., Schwentick, T.: Rewriting ontological queries into small nonrecursive
datalog programs. In: Proc. of KR 2012. AAAI Press (2012)

11. Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., Pan, Y., Mei, J., Fokoue,
A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas, K., Feier, C., Hench,
G., Wetzstein, B., Keller, U.: Ontology reasoning with large data repositories.
In: Ontology Management, Semantic Web, Semantic Web Services, and Business
Applications, pp. 89–128. Springer (2008)

12. Kementsietsidis, A., Bornea, M., Dolby, J., Srinivas, K., Dantressangle, P., Udrea,
O., Bhattacharjee, B.: Building an efficient RDF store over a relational database.
In: Proc. of SIGMOD 2013. ACM (2013)

13. Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: Exponential lower
bounds and separation for query rewriting. In: Proc. of ICALP 2012, Part II.
LNCS, vol. 7392, pp. 263–274. Springer (2012)

14. Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: Query rewriting over
shallow ontologies. In: Proc. of DL 2013. CEUR-WS, vol. 1014 (2013)

15. Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive query answering with
OWL 2 QL. In: Proc. of KR 2012. AAAI Press (2012)

16. König, M., Leclère, M., Mugnier, M.L., Thomazo, M.: A sound and complete back-
ward chaining algorithm for existential rules. In: Proc. of RR. Springer (2012)

17. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to query answering in DL-Lite. In: Proc. of KR 2010. AAAI (2010)

18. Lloyd, J., Shepherdson, J.: Partial Evaluation in Logic Programming. The Journal
of Logic Programming 11(3–4), 217–242 (1991)

19. Lutz, C., Seylan, İ., Toman, D., Wolter, F.: The combined approach to OBDA:
Taming role hierarchies using filters. In: Proc. of SSWS+HPCSW 2012. (2012)

20. Pérez-Urbina, H., Motik, B., Horrocks, I.: A comparison of query rewriting tech-
niques for DL-lite. In: Proc. of DL 2009. CEUR-WS, vol. 477 (2009)

21. Pérez-Urbina, H., Rodŕıguez-Dı́az, E., Grove, M., Konstantinidis, G., Sirin, E.:
Evaluation of query rewriting approaches for OWL 2. In: Proc. of SSWS+HPCSW
2012. CEUR-WS, vol. 943 (2012)

22. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. Journal on Data Semantics 10, 133–173 (2008)

23. Rodŕıguez-Muro, M.: Tools and Techniques for Ontology Based Data Access in
Lightweight Description Logics. Ph.D. thesis, Free Univ. of Bozen-Bolzano (2010)

24. Rodŕıguez-Muro, M., Calvanese, D.: Dependencies: Making ontology based data
access work. In: Proc. of AMW 2011. CEUR-WS, vol. 749 (2011)

25. Rodŕıguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Query rewriting and
optimisation with database dependencies in Ontop. In: Proc. of DL 2013. (2013)

26. Rosati, R.: Prexto: Query rewriting under extensional constraints in DL-Lite. In:
Proc. of EWSC 2012. LNCS, vol. 7295, pp. 360–374. Springer (2012)

27. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
Proc. of KR 2010. AAAI Press (2010)

28. Sequeda, J., Miranker, D.: Ultrawrap: SPARQL execution on relational data. Tech.
Rep. TR-12-10, Dept. of Computer Science, University of Texas at Austin (2012)

29. Venetis, T., Stoilos, G., Stamou, G.: Query extensions and incremental query
rewriting for OWL 2 QL ontologies. Journal on Data Semantics (2013)

30. Xiao, G.: Personal communication (2013)

