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Abstract. We establish connections between the size of circuits and
formulas computing monotone Boolean functions and the size of first-
order and nonrecursive Datalog rewritings for conjunctive queries over
OWL2QL ontologies. We use known lower bounds and separation results
from circuit complexity to prove similar results for the size of rewritings
that do not use non-signature constants. For example, we show that, in
the worst case, positive existential and nonrecursive Datalog rewritings
are exponentially longer than the original queries; nonrecursive Datalog
rewritings are in general exponentially more succinct than positive exis-
tential rewritings; while first-order rewritings can be superpolynomially
more succinct than positive existential rewritings.

1 Introduction

First-order (FO) rewritability is the key concept of ontology-based data access
(OBDA), which is believed to lie at the foundations of the next generation of
information systems. A language L enjoys FO-rewritability if any conjunctive
query q over an ontology T , formulated in L, can be transformed into an FO-
formula q′ such that, for any data A, the certain answers to q over the knowl-
edge base (T ,A) can be found by querying q′ over A using a standard rela-
tional database management system (RDBMS). Ontology languages with this
property include the OWL2QL profile of the Web Ontology Language OWL2,
which is based on the DL-Lite family of description logics [11, 4], and frag-
ments of Datalog± such as linear or sticky sets of TGDs [9, 10]. Various rewriting
techniques have been implemented in the systems QuOnto [1], REQUIEM [19],
Presto [26], Nyaya [12] and Quest [25].

OBDA via FO-rewritability relies on the empirical fact that RDBMSs are
usually very efficient in practice. However, this does not mean that they can ef-
ficiently evaluate any given query: after all, for expression complexity, database
query answering is PSpace-complete for FO-queries and NP-complete for con-
junctive queries (CQs). Indeed, the first ‘näıve’ rewritings of CQs over OWL2QL
ontologies turned out to be too lengthy even for modern RDBMSs [11, 19]. The
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next step was to develop various rewriting optimisation techniques [26, 12, 23,
24]; however, they still produced exponential-size — O((|T | · |q|)|q|) — rewrit-
ings in the worst case. An alternative two-step combined approach to OBDA
with OWL2EL [18] and OWL2QL [17] first expands the data by applying
the ontology axioms and introducing new individuals required by the ontology,
and only then rewrites the query over the expanded data. Yet, even with these
extra resources a simple polynomial rewriting was constructed only for the frag-
ment of OWL2QL without role inclusions; the rewriting for the full language
remained exponential. A breakthrough seemed to come in [13], which showed
that one can construct, in polynomial time, a nonrecursive Datalog rewriting
for some fragments of Datalog± containing OWL2QL. However, this rewriting
uses the built-in predicate 6= and numerical constants that are not present in
the original query and ontology. Without additional constants, no FO-rewriting
for OWL2QL can be constructed in polynomial time [15] (it remained unclear,
however, whether such an FO-rewriting of polynomial size exists).

These developments bring forward a spectrum of theoretical and practical
questions that could influence the future of OBDA. What is the worst-case size
of FO- and nonrecursive Datalog rewritings for CQs over OWL2QL ontologies?
What is the type/shape/size of rewritings we should aim at to make OBDA with
OWL2QL efficient? What extra means (e.g., built-in predicates and constants)
can be used in the rewritings? In this paper, we investigate the worst-case size
of FO- and nonrecursive Datalog rewritings for CQs over OWL2QL ontologies
depending on the available means. We distinguish between ‘pure’ rewritings,
which cannot use constants that do not occur in the original query, and ‘impure’
ones, where such constants are allowed. Our results can be summarised as follows:

– An exponential blow-up is unavoidable for pure positive existential rewritings
and pure nonrecursive Datalog rewritings. Even pure FO-rewritings with =
can blow-up superpolynomially unless NP ⊆ P/poly.

– Pure nonrecursive Datalog rewritings are in general exponentially more suc-
cinct than pure positive existential rewritings.

– Pure FO-rewritings can be superpolynomially more succinct than pure pos-
itive existential rewritings.

– Impure positive existential rewritings can always be made polynomial, and
so they are exponentially more succinct than pure rewritings.

We obtain these results by first establishing connections between pure rewritings
for CQs over OWL2QL ontologies and circuits for monotone Boolean functions,
and then using known lower bounds and separation results for the circuit com-
plexity of such functions as Cliquen,k ‘a graph with n nodes contains a k-clique’
and Matching2n ‘a bipartite graph with n vertices in each part has a perfect
matching.’

2 Queries over OWL2QL Ontologies

By a signature, Σ, we understand in this paper any set of constant symbols
and predicate symbols (with their arity). Unless explicitly stated otherwise, Σ



does not contain any predicates with fixed semantics, such as = or 6=. In the
description logic (or OWL2QL) setting, constant symbols are called individual
names, ai, while unary and binary predicate symbols are called concept names,
Ai, and role names, Pi, respectively, where i ≥ 1. The language of OWL2QL is
built using these names in the following way. The roles R, basic concepts B and
concepts C of OWL2QL are defined by the grammar:

R ::= Pi | P−i , (Pi(x, y) | Pi(y, x))

B ::= ⊥ | Ai | ∃R, (⊥ | Ai(x) | ∃y R(x, y))

C ::= B | ∃R.B, (B(x) | ∃y (R(x, y) ∧B(y)))

where the formulas on the right give a first-order translation of the OWL2QL
constructs. An OWL2QL TBox, T , is a finite set of inclusions of the form

B v C, (∀x (B(x)→ C(x)))

R1 v R2, (∀x, y (R1(x, y)→ R2(x, y)))

B1 uB2 v ⊥, (∀x (B1(x) ∧B2(x)→ ⊥))

R1 uR2 v ⊥. (∀x, y (R1(x, y) ∧R2(x, y)→ ⊥))

Note that concepts of the form ∃R.B can only occur in the right-hand side of
concept inclusions in OWL2QL. An ABox, A, is a finite set of assertions of
the form Ak(ai) and Pk(ai, aj). T and A together form the knowledge base (KB)
K = (T ,A). The semantics for OWL2QL is defined in the usual way [6], based on
interpretations I = (∆I , ·I) with domain ∆I and interpretation function ·I . The
set of individuals inA is denoted by ind(A). For concepts or roles E1, E2, we write
E1 vT E2 if T |= E1 v E2; and we set [E] = {E′ | E vT E′ and E′ vT E}.

A conjunctive query (CQ) q(x) is an FO-formula ∃y ϕ(x,y), where ϕ is a
conjunction of atoms of the form Ak(t1) and Pk(t1, t2), and each ti is a term (an
individual or a variable from x or y). A tuple a ⊆ ind(A) is a certain answer to
q(x) over K = (T ,A) if I |= q(a) for all I |= K; in this case we write K |= q(a).

Query answering over OWL2QL KBs is based on the fact that, for any
consistent KB K = (T ,A), there is an interpretation CK such that, for all CQs
q(x) and a ⊆ ind(A), we have K |= q(a) iff CK |= q(a). The interpretation
CK, called the canonical model of K, can be constructed as follows. For each
pair [R], [B] with ∃R.B in T (we assume ∃R is just a shorthand for ∃R.>),
we introduce a fresh symbol w[RB] and call it the witness for ∃R.B. We write
K |= C(w[RB]) if ∃R− vT C or B vT C. Define a generating relation, ;, on the
set of these witnesses together with ind(A) by taking:

– a; w[RB] if a ∈ ind(A), [R] and [B] are vT -minimal with K |= ∃R.B(a) and
there is no b ∈ ind(A) with K |= R(a, b) ∧B(b);

– w[R′B′] ; w[RB] if, for some u, u ; w[R′B′], [R], [B] are vT -minimal with
K |= ∃R.B(w[R′B′]) and it is not the case that R′ vT R− and K |= B′(u).

If a ; w[R1B1] ; · · · ; w[RnBn], n ≥ 0, then we say that a generates the path
aw[R1B1] · · ·w[RnBn]. Denote by pathK(a) the set of paths generated by a, and



by tail(π) the last element in π ∈ pathK(a). Then CK is defined by taking:

∆CK =
⋃

a∈ind(A)

pathK(a), aCK = a, for a ∈ ind(A),

ACK = {π ∈ ∆CK | K |= A(tail(π))},
P CK = {(a, b) ∈ ind(A)× ind(A) | K |= P (a, b)} ∪

{(π, π · w[RB]) | tail(π) ; w[RB], R vT P} ∪
{(π · w[RB], π) | tail(π) ; w[RB], R vT P−}.

Theorem 1 ([11, 17]). For every OWL2QL KB K = (T ,A), every CQ q(x)
and every a ⊆ ind(A), K |= q(a) iff CK |= q(a).

Let Σ be a signature that can be used to formulate queries and ABoxes (re-
member that Σ does not contain any built-in predicates). Given an ABox A over
Σ, define IA to be the interpretation whose domain consists of all individuals
in Σ (even if they do not occur in ind(A)) and IA |= E(a) iff E(a) ∈ A, for all
predicates E(x).

Given a CQ q(x) and a TBox T , a first-order formula q′(x) over Σ is called
an FO-rewriting for q(x) and T over Σ if, for any ABox A over Σ and any
a ⊆ ind(A), we have (T ,A) |= q(a) iff IA |= q′(a). If q′ is an FO-rewriting of
the form ∃y ϕ(x,y), where ϕ is built from atoms using only ∧ and ∨, then we call
q′(x) a positive existential rewriting for q(x) and T over Σ (or a PE-rewriting,
for short). The size |q′| of q′ is the number of symbols in q′.

All known FO-rewritings for CQs and OWL2QL ontologies are of exponen-
tial size in the worst case. More precisely, for any CQ q and OWL2QL TBox T ,
there exists a PE-rewriting of size O((|T | · |q|)|q|) [11, 19, 12, 17]. One of the main
results of this paper is that this bound cannot be substantially improved in gen-
eral, even for FO-rewritings. On the other hand, we also show that FO-rewritings
can be superpolynomially more succinct than PE-rewritings.

We also consider rewritings in the form of nonrecursive Datalog queries. We
remind the reader that a Datalog program, Π, is a finite set of Horn clauses
∀x (A1 ∧ · · · ∧ Am → A0), where each Ai is an atom of the form P (t1, . . . , tl)
and each tj is either a variable from x or a constant. A0 is called the head of the
clause, and A1, . . . , Am its body ; all variables occurring in the head must also
occur in the body. A predicate P depends on a predicate Q in Π if Π contains a
clause whose head is P and whose body contains Q. Π is called nonrecursive if
this dependence relation for Π is acyclic. A nonrecursive Datalog query consists
of a nonrecursive Datalog program Π and a goal G, which is just a predicate.
Given an ABox A, a tuple a ⊆ ind(A) is a certain answer to (Π,G) over A if
Π,A |= G(a). The size |Π| of Π is the number of symbols in Π.

We distinguish between pure and impure Datalog queries [7]. In a pure query
(Π,G), the clauses in Π do not contain constant symbols in their heads. One
reason for considering only pure queries in OBDA is that impure ones can add
new facts to the database that do not follow from the intensional knowledge in
the background ontology. Impure nonrecursive Datalog queries are known to be
more succinct than pure ones.



Given a CQ q(x) and a TBox T , a pure nonrecursive Datalog query (Π,G)
is called a nonrecursive Datalog rewriting for q(x) and T over Σ (or an NDL-
rewriting, for short) if, for any ABox A over Σ and any a ⊆ ind(A), we have
(T ,A) |= q(a) iff Π,A |= G(a) (note that Π may define predicates that are
not in Σ, but may not use non-signature constants). Similarly to FO-rewritings,
known NDL-rewritings for OWL2QL are of exponential size [26, 12]. Here we
show that, in general, one cannot make NDL-rewritings shorter. On the other
hand, they can be exponentially more succinct than PE-rewritings.

The rewritings can be much shorter if non-signature predicates and constants
become available. As follows from [13], every CQ over an OWL2QL ontology
can be rewritten as a polynomial-size nonrecursive Datalog query if we can use
the inequality predicate and at least two distinct constants (cf. also [5], which
shows how two constants and = can be used to eliminate definitions from first-
order theories without an exponential blow-up). In fact, we observe that, using
equality and two distinct constants, any CQ over an OWL2QL ontology can be
rewritten into a PE-query of polynomial size.

3 Boolean Circuits, CNFs and OBDA

To establish the lower and upper bounds for the size of rewritings mentioned
above, we show first how the problem of constructing formulas and circuits that
compute monotone Boolean functions can be reduced to the problem of finding
FO- and NDL-rewritings for CQs over OWL2QL ontologies.

By an n-ary Boolean function, for n ≥ 1, we mean a function from {0, 1}n to
{0, 1}. A Boolean function f is monotone if f(α) ≤ f(α′), for all α ≤ α′, where
≤ is the component-wise relation ≤ on vectors of {0, 1}.

We remind the reader (for more details see, e.g., [3, 14]) that an n-input
Boolean circuit, C, is a directed acyclic graph with n sources, inputs, and one
sink, output. Every non-source node of C is called a gate and is labelled with
either ∧ or ∨, in which case it has two incoming edges, or with ¬, in which case
it has one incoming edge. A circuit is monotone if it contains only ∧ and ∨ gates.
Boolean formulas can be thought of as circuits in which every gate has at most
one outgoing edge. For an input α ∈ {0, 1}n, the output of C on α is denoted by
C(α), and C is said to compute an n-ary Boolean function f if C(α) = f(α),
for every α ∈ {0, 1}n. The number of nodes in C is the size of C, denoted |C|.

A family of Boolean functions is a sequence f1, f2, . . . , where each fn is an
n-ary Boolean function. We say that a family f1, f2, . . . is in the complexity class
NP if there exist polynomials p and T and, for each n ≥ 1, a Boolean circuit Cn

with n+ p(n) inputs such that |Cn| ≤ T (n) and, for each α ∈ {0, 1}n, we have

fn(α) = 1 iff Cn(α,β) = 1, for some β ∈ {0, 1}p(n).

The additional p(n) inputs for β in the Cn are called advice inputs.
Given a family f1, f2, . . . of monotone Boolean functions in NP, we construct

a sequence of OWL2QL TBoxes Tfn and CQs qfn without answer variables, as



well as ABoxes Aα, α ∈ {0, 1}n, with a single individual such that

(Tfn ,Aα) |= qfn iff fn(α) = 1, for all α ∈ {0, 1}n.

Then we show that rewritings for qfn and Tfn correspond to Boolean circuits
computing fn. The construction proceeds in two steps: first, we represent the fn

by polynomial-size CNFs (in a way similar to the Tseitin transformation [27]),
and then encode those CNFs in terms of OWL2QL query answering.

Let f1, f2, . . . be a family of Boolean functions in NP and C1,C2, . . . be
a family of circuits computing the fn (according to the definition above). We
consider the inputs x and the advice inputs y of Cn as Boolean variables; each
of the gates g1, . . . , g|Cn| of Cn is also thought of as a Boolean variable whose
value coincides with the output of the gate on a given input. We assume that
Cn only contains ¬- and ∧-gates, and so can be regarded as a set of equations
of the form

gi = ¬hi or gi = hi ∧ h′i,
where hi and h′i are the inputs of the gate gi, that is, either input variables x,
advice variables y or other gates g = (g1, . . . , g|Cn|). We assume g|Cn| to be
the output of Cn. Now, with each fn and each α = (α1, . . . , αn) ∈ {0, 1}n, we
associate the following formula in CNF:

ϕαfn(x,y, g) =
∧
αj=0

¬xj ∧ g|Cn| ∧
∧

gi=¬hi in Cn

[
(hi ∨ ¬gi) ∧ (¬hi ∨ gi)

]
∧

∧
gi=hi∧h′

i in Cn

[
(hi ∨ ¬gi) ∧ (h′i ∨ ¬gi) ∧ (¬hi ∨ ¬h′i ∨ gi)

]
.

The clauses of the last two conjuncts encode the correct computation of the
circuit: they are equivalent to gi ↔ ¬hi and gi ↔ hi ∧ h′i, respectively.

Lemma 1. If fn is a monotone Boolean function then fn(α) = 1 iff ϕαfn is
satisfiable, for each α ∈ {0, 1}n.

The second step of the reduction is to encode satisfiability of ϕαfn by means
of the CQ answering problem in OWL2QL. Denote ϕαfn for α = (0, . . . , 0) by
ϕfn . It is immediate from the definitions that, for each α ∈ {0, 1}n, the CNF
ϕαfn can be obtained from ϕfn by removing the clauses ¬xj for which αj = 1,
1 ≤ j ≤ n. The CNF ϕfn contains d ≤ 3|Cn| clauses C1, . . . , Cd with N = |Cn|
Boolean variables, which will be denoted by p1, . . . , pN .

Let P be a role name and let Ai, X
0
i , X1

i and Zi,j be concept names. Consider
the TBox Tfn containing the following inclusions, for 1 ≤ i ≤ N , 1 ≤ j ≤ d:

Ai−1 v ∃P−.X`
i , X`

i v Ai, for ` = 0, 1,

X0
i v Zi,j if ¬pi ∈ Cj ,

X1
i v Zi,j if pi ∈ Cj ,

Zi,j v ∃P.Zi−1,j ,
A0 uAi v ⊥, A0 u ∃P v ⊥,
A0 u Zi,j v ⊥, for (i, j) /∈ {(0, 1), . . . , (0, n)}.



It is not hard to check that |Tfn | = O(|Cn|2). Consider also the CQ

qfn = ∃y ∃z
[
A0(y0) ∧

N∧
i=1

P (yi, yi−1) ∧

d∧
j=1

(
P (yN , zN−1,j) ∧

N−1∧
i=1

P (zi,j , zi−1,j) ∧ Z0,j(z0,j)
)]
,

where y = (y0, . . . , yN ) and z = (z0,1, . . . , zN−1,1, . . . , z0,d, . . . , zN−1,d). Clearly,
|qfn | = O(|Cn|2). Note that Tfn is acyclic and qfn is tree-shaped and has no
answer variables. For each α = (α1, . . . , αn) ∈ {0, 1}n, we set

Aα =
{
A0(a)

}
∪
{
Z0,j(a) | 1 ≤ j ≤ n and αj = 1

}
.

C(Tfn ,Aα)

a
A0, Z0,1

X1
1 ,Z1,3

X0
1 , Z1,1

X1
2

X0
2

X1
2

X0
2

X1
3

X0
3 , Z3,3

X1
3

X0
3 , Z3,3

X1
3

X0
3 , Z3,3

X1
3

X0
3 , Z3,3

Z0,1

Z0,3

Z2,3Z1,3

Z0,3

Z2,3

Z1,3
Z0,3

Z2,3Z1,3

Z0,3

Z2,3

Z1,3
Z0,3

qfn

y0
A0

y1 y2 y3

z2,1z1,1z0,1
Z0,1

Z0,2

Z0,3

Z0,4

Z0,5

Fig. 1. Canonical model C(Tfn ,Aα) and query qfn for the Boolean function fn, n = 1,
computed by the circuit with one input x, one advice input y and a single ∧-gate.
Thus, N = 3, d = 5 and ϕfn(x, y, g) = ¬x ∧ g ∧ (x ∨ ¬g) ∧ (y ∨ ¬g) ∧ (¬x ∨ ¬y ∨ g).

Points in X`
i are also in Ai, for all 1 ≤ i ≤ N ; the arrows denote role P and the Zi,j

branches in the canonical model are shown only for j = 1, 3, i.e., for ¬x and (x ∨ ¬g).

We explain the intuition behind the Tfn , qfn and Aα using the example
of Fig. 1, where the query qfn and the canonical model of (Tfn ,Aα), with
Aα = {A0(a), Z0,1(a)}, are illustrated for some Boolean function. To answer qfn



in the canonical model, we have to check whether qfn can be homomorphically
mapped into it. The variables yi are clearly mapped to one of the branches of the
canonical model from a to a point in A3, say the lowest one, which corresponds
to the valuation for the variables in ϕαfn making all of them false. Now, there are
two possible ways to map variables z2,1, z1,1, z0,1 that correspond to the clause
C1 = ¬x1 in ϕfn . If they are sent to the same branch so that z0,1 7→ a then
Z0,1(a) ∈ Aα, whence the clause C1 cannot be in ϕαfn . Otherwise, they are
mapped to the points in a side-branch so that z0,1 67→ a, in which case ¬x1 must
be true under our valuation. Thus, we arrive at the following:

Lemma 2. (Tfn ,Aα) |= qfn iff ϕαfn is satisfiable, for all α ∈ {0, 1}n.

We now use this result to reveal a close correspondence between PE-rewritings
and monotone Boolean formulas, FO-rewritings and Boolean formulas, and be-
tween NDL-rewritings and monotone Boolean circuits.

Lemma 3. Let f1, f2, . . . be a family of monotone Boolean functions in NP,
and let f = fn, for some n.

(i) If q′f is a PE-rewriting for qf and Tf then there is a monotone Boolean
formula ψf computing f with |ψf | ≤ |q′f |.

(ii) If q′f is an FO-rewriting for qf and Tf over a signature with a single
constant then there is a Boolean formula χf computing f with |χf | ≤ |q′f |.

(iii) If (Πf , G) is an NDL-rewriting for qf and Tf then there is a monotone
Boolean circuit Cf computing f with |Cf | ≤ |Πf |.

The proof proceeds by eliminating quantifiers from the given rewriting and
replacing its predicates with propositional variables using the fact that, in the
ABoxes Aα, these predicates can only be true on the individual a. Lemmas 1
and 2 ensure that the resulting Boolean formula or circuit computes f .

The next lemma shows that, conversely, circuits computing f can be turned
into rewritings for qf and Tf over ABoxes with a single individual.

Lemma 4. Let f1, f2, . . . be a family of monotone Boolean functions in NP,
and let f = fn, for some n. The following holds for signatures Σ with a single
constant :

(i) Suppose q′ is an FO-sentence such that (Tf ,Aα) |= qf iff IAα |= q′, for
all α. Then

q′′ = ∃x
[
A0(x) ∧

(
q′ ∨

∨
A0uBvTf

⊥

B(x)
)]

is an FO-rewriting for qf and Tf with |q′′| = |q′|+O(|Cn|2).
(ii) Suppose (Π,G) is a pure NDL query with a propositional goal G such that

(Tf ,Aα) |= qf iff Π,Aα |= G, for all α. Then (Π ′, G′) is an NDL-rewriting for
Tf and qf with |Π ′| = |Π|+O(|Cn|2), where G′ is a fresh propositional variable
and Π ′ is obtained by extending Π with the following rules:

– ∀x (A0(x) ∧G→ G′),
– ∀x (A0(x) ∧B(x)→ G′), for all concepts B such that A0 uB vTf ⊥.

(In both statements above, B(x) denotes ∃y P (x, y) in the case of B = ∃P .)



We are in a position now to formulate our main theorem that connects the
size of circuits computing monotone Boolean functions with the size of rewritings
for the corresponding queries and ontologies. It follows from Lemmas 1–4.

Theorem 2. For any family f1, f2, . . . of monotone Boolean functions in NP,
there exist polynomial-size CQs qn and OWL2QL TBoxes Tn such that the
following holds:

(1) Let L(n) be a lower bound for the size of monotone Boolean formulas com-
puting fn. Then |q′n| ≥ L(n), for any PE-rewriting q′n for qn and Tn.

(2) Let L(n) and U(n) be a lower and an upper bound for the size of monotone
Boolean circuits computing fn. Then
– |Πn| ≥ L(n), for any NDL-rewriting (Πn, G) for qn and Tn;
– there exist a polynomial p and an NDL-rewriting (Πn, G) for qn and Tn

over a signature with a single constant such that |Πn| ≤ U(n) + p(n).
(3) Let L(n) and U(n) be a lower and an upper bound for the size of Boolean

formulas computing fn. Then
– |q′n| ≥ L(n), for any FO-rewriting q′n for qn and Tn over any signature

with a single constant ;
– there exist a polynomial p and an FO-rewriting q′n for qn and Tn over a

signature with a single constant such that |q′n| ≤ U(n) + p(n).

4 Rewritings Long and Short

We apply Theorem 2 to three concrete families of Boolean functions and show
that some queries and ontologies may only have very long rewritings, and some
rewritings can be exponentially or superpolynomially more succinct than others.

First we prove that one cannot avoid an exponential blow-up for PE- and
NDL-rewritings; moreover, even FO-rewritings can blow-up superpolynomially
for signatures with a single constant under the assumption that NP 6⊆ P/poly
(i.e., that NP-complete problems cannot be solved by polynomial-size circuits,
which is an open problem; see, e.g., [3]). This can be done using the func-
tion Cliquen,k of n(n − 1)/2 variables eij , 1 ≤ i < j ≤ n, which returns 1
iff the graph with vertices {1, . . . , n} and edges {{i, j} | eij = 1} contains a
k-clique. A series of papers, started by Razborov’s [22], gave an exponential

lower bound for the size of monotone circuits computing Cliquen,k: 2Ω(
√
k) for

k ≤ 1
4 (n/ log n)2/3 [2]. For monotone formulas, an even better lower bound is

known: 2Ω(k) for k = 2n/3 [21]. One can show that there is a nondeterminis-
tic circuit with n advice inputs and O(n2) gates that computes Cliquen,k. As
Cliquen,k is NP-complete, the question whether Cliquen,k can be computed
by a polynomial-size deterministic circuit is equivalent to NP ⊆ P/poly.

Theorem 3. There is a sequence of CQs qn of size O(n) and OWL2QL TBoxes
Tn of size O(n) such that :

– any PE-rewriting for qn and Tn is of size ≥ 2Ω(n1/4);



– any NDL-rewriting for qn and Tn is of size ≥ 2Ω((n/ logn)1/12);
– there does not exist a polynomial-size FO-rewriting for qn and Tn over a

signature with a single constant unless NP ⊆ P/poly.

By the Karp-Lipton theorem (see, e.g., [3]), NP ⊆ P/poly implies PH = Σp
2 .

So we can replace the assumption NP 6⊆ P/poly with PH 6= Σp
2 .

The next result shows that NDL-rewritings can be exponentially more suc-
cinct than PE-rewritings. Here we use the function Genn3 of n3 variables xijk,
1 ≤ i, j, k ≤ n, defined as follows. We say that 1 generates k ≤ n if either k = 1
or xijk = 1 and 1 generates both i and j. Genn3(x111, . . . , xnnn) returns 1 iff
1 generates n. Genn3 is clearly a monotone Boolean function computable by
polynomial-size monotone circuits. On the other hand, any monotone formula
computing Genn3 is of size 2n

ε

, for some ε > 0 [20].

Theorem 4. There is a sequence of CQs qn of size O(n) and OWL2QL TBoxes
Tn of size O(n) for which there exists a polynomial-size NDL-rewriting over a
signature with a single constant, but any PE-rewriting over this signature is of
size ≥ 2n

ε

, for some ε > 0.

Finally, we show that FO-rewritings can be superpolynomially more succinct
than PE-rewritings. We use the function Matching2n with n2 variables eij ,
1 ≤ i, j ≤ n, which returns 1 iff there is a perfect matching in the bipartite
graph G with vertices {v11 , . . . , v1n, v21 , . . . , v2n} and edges {{v1i , v2j } | eij = 1}, i.e.,
a subset E of edges in G such that every node in G occurs exactly once in E.
An exponential lower bound 2Ω(n) for the size of monotone formulas computing
Matching2n was obtained in [21]. However, there are non-monotone formulas
of size nO(logn) computing this function [8]. On the other hand, it can also be
computed by a nondeterministic circuit with n2 advice inputs and O(n2) gates.

Theorem 5. There is a sequence of CQs qn of size O(n) and OWL2QL TBoxes
Tn of size O(n) which has a polynomial-size FO-rewriting over a signature with a

single constant, but any PE-rewriting over this signature is of size ≥ 2Ω(2log
1/2 n).

In the proof of Theorem 3, we used the CQs qn = qCliquem,k
containing

no constant symbols. It follows that the theorem will still hold if we allow the
built-in predicates = and 6= in the rewritings, but disallow the use of constants
that do not occur in the original query. The situation changes drastically if =,
6= and two additional constants, say 0 and 1, are allowed in the rewritings. As
shown by Gottlob and Schwentick [13], in this case there is a polynomial-size
NDL-rewriting for any CQ and OWL2QL TBox. Roughly, the rewriting uses the
extra resources to encode in a succinct way the part of the canonical model that
is relevant to answering the given query. We call rewritings of this kind impure
(indicating thereby that they use predicates and constants that do not occur in
the original query and ontology). In fact, using the ideas of [5] and [13], one can
construct an impure polynomial-size PE-rewriting for any CQ and OWL2QL
TBox. Thus, we obtain the following:



Theorem 6. Impure PE- and NDL-rewritings for CQs and OWL2QL ontolo-
gies are exponentially more succinct than pure PE- and NDL-rewritings.

The difference between short impure and long pure rewritings appears to be
of the same kind as the difference between deterministic and nondeterministic
Boolean circuits: the impure rewritings can guess (using =, 0 and 1) what the
pure ones must specify explicitly. It is not clear, however, how the RDBMSs are
going to cope with such guesses in practice.

5 Conclusion

The exponential lower bounds for the size of ‘pure’ rewritings above may look
discouraging in the OBDA context. It is to be noted, however, that the ontolo-
gies and queries used in their proofs are extremely ‘artificial’ and never occur in
practice (see the analysis in [16]). As demonstrated by the existing description
logic reasoners (such as FaCT++, HermiT, Pellet, Racer), real-world ontologies
can be classified efficiently despite the high worst-case complexity of the clas-
sification problem. We believe that practical query answering over OWL2QL
ontologies can be feasible if supported by suitable optimisation and indexing
techniques. It also remains to be seen whether polynomial impure rewritings can
be used in practice. We conclude the paper by mentioning two open problems.
Our exponential lower bounds were proved for a sequence of pairs (qn, Tn). It is
unclear whether these bounds hold uniformly for all qn over the same T :

Question 1. Do there exist an OWL2QL TBox T and CQs qn such that any
pure PE- or NDL-rewritings for qn and T are of exponential size?

As we saw, both FO- and NDL-rewritings are more succinct than PE-rewritings.

Question 2. What is the relation between the size of FO- and NDL-rewritings?
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