
The DL-Lite Family and Relations

The DL-Lite Family and Relations

Alessandro Artale artale@inf.unibz.it
Diego Calvanese calvanese@inf.unibz.it
KRDB Research Centre, Free University of Bozen-Bolzano
Piazza Domenicani, 3 I-39100 Bolzano, Italy

Roman Kontchakov roman@dcs.bbk.ac.uk

Michael Zakharyaschev michael@dcs.bbk.ac.uk

Department of Computer Science and Information Systems, Birkbeck College
Malet Street, London WC1E 7HX, U.K.

Abstract

The recently introduced series of description logics under the common moniker ‘DL-
Lite’ has attracted attention of the description logic and semantic web communities due to
the low computational complexity of inference, on the one hand, and the ability to represent
conceptual modeling formalisms, on the other. The main aim of this article is to carry out
a thorough and systematic investigation of inference in extensions of the original DL-Lite
logics along five axes: by (i) adding the Boolean connectives and (ii) number restrictions to
concept constructs, (iii) allowing role hierarchies, (iv) allowing role disjointness, symmetry,
asymmetry, reflexivity, irreflexivity and transitivity constraints, and (v) adopting or drop-
ping the unique name assumption. We analyze the combined complexity of satisfiability
for the resulting logics, as well as the data complexity of instance checking and answering
positive existential queries. Our approach is based on embedding DL-Lite logics in suit-
able fragments of the one-variable first-order logic, which provides useful insights into their
properties and, in particular, computational behavior.

1

Artale, Calvanese, Kontchakov & Zakharyaschev

Contents

1 Introduction 3

2 The Extended DL-Lite Family of Description Logics 6
2.1 Syntax and Semantics of the Logics in the DL-Lite Family 7
2.2 DL-Lite for Conceptual Modeling . 12

3 Reasoning in DL-Lite Logics 14
3.1 Reasoning Problems . 14
3.2 Complexity Measures: Data and Combined Complexity 16
3.3 Remarks on the Complexity Classes LogSpace and AC0 17
3.4 Summary of Complexity Results . 18

4 The Landscape of DL-Lite Logics 19
4.1 The DL-Lite Family and OWL 2 . 21

5 Satisfiability: Combined Complexity 23
5.1 DL-LiteNbool and its Fragments: First-Order Perspective 23
5.2 DL-LiteHFcore is ExpTime-hard . 31
5.3 Reconciling Number Restrictions and Role Inclusions 36
5.4 Role Transitivity Constraints . 42

6 Instance Checking: Data Complexity 43
6.1 DL-LiteNbool, DL-LiteHbool and DL-Lite

(HN)
bool are in AC0 43

6.2 P- and coNP-hardness for Data Complexity 46

7 Query Answering: Data Complexity 52

8 DL-Lite without the Unique Name Assumption 57
8.1 DL-Lite

(HN)
α : Arbitrary Number Restrictions 58

8.2 DL-Lite
(HF)
α : Functionality Constraints . 60

8.3 Query Answering: Data Complexity . 62

9 Conclusion 63

References 67

2

The DL-Lite Family and Relations

1. Introduction

Description Logic (cf. Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2003 and
references therein) is a family of knowledge representation formalisms developed over the
past three decades and, in recent years, widely used in various application areas such as:

• conceptual modeling (Bergamaschi & Sartori, 1992; Calvanese et al., 1998b, 1999;
McGuinness & Wright, 1998; Franconi & Ng, 2000; Borgida & Brachman, 2003; Be-
rardi et al., 2005; Artale et al., 1996, 2007, 2007b),

• information and data integration (Beeri et al., 1997; Levy & Rousset, 1998; Goasdoue
et al., 2000; Calvanese et al., 1998a, 2002a, 2002b, 2008; Noy, 2004; Meyer et al.,
2005),

• ontology-based data access (Dolby et al., 2008; Poggi et al., 2008a; Heymans et al.,
2008),

• the Semantic Web (Heflin & Hendler, 2001; Horrocks et al., 2003).

Description logics (DLs, for short) underlie the standard Web Ontology Language OWL,1

which is now in the process of being standardized by the W3C in its second edition, OWL 2.
The widespread use of DLs as flexible modeling languages stems from the fact that,

similarly to more traditional modeling formalisms, they structure the domain of interest into
classes (or concepts, in the DL parlance) of objects with common properties. Properties
are associated with objects by means of binary relationships (or roles) to other objects.
Constraints available in standard DLs also resemble those used in conceptual modeling
formalisms for structuring information: is-a hierarchies (i.e., inclusions) and disjointness
for concepts and roles, domain and range constraints for roles, mandatory participation in
roles, functionality and more general numeric restrictions for roles, covering within concept
hierarchies, etc. In a DL knowledge base (KB), these constraints are combined to form a
TBox asserting intensional knowledge, while an ABox collects extensional knowledge about
individual objects, such as whether an object is an instance of a concept, or two objects are
connected by a role. The standard reasoning services over a DL KB include checking its
consistency (or satisfiability), instance checking (whether a certain individual is an instance
of a concept), and logic entailment (whether a certain constraint is logically implied by
the KB). More sophisticated services are emerging that can support modular development
of ontologies by checking, for example, whether one ontology is a conservative extension
of another with respect to a certain vocabulary (see, e.g., Ghilardi, Lutz, & Wolter, 2006;
Cuenca Grau, Horrocks, Kazakov, & Sattler, 2008; Kontchakov, Wolter, & Zakharyaschev,
2008; Kontchakov, Pulina, Sattler, Schneider, Seimer, Wolter, & Zakharyaschev, 2009).

Description logics have recently been used to provide access to large amounts of data
through a high-level conceptual interface, which is of relevance to both data integration and
ontology-based data access. In this setting, the TBox constitutes the conceptual, high-level
view of the information managed by the system, and the ABox is physically stored in an
external relational database and accessed using the standard relational database technology
(Poggi et al., 2008a; Calvanese et al., 2008). The fundamental inference service in this case

1. http://www.w3.org/2007/OWL/

3

Artale, Calvanese, Kontchakov & Zakharyaschev

is answering queries by taking into account the constraints in the TBox and the data stored
in the (external) ABox. The kind of queries that have most often been considered are
first-order conjunctive queries, which correspond to the commonly used Select-Project-
Join SQL queries. The key properties for such an approach to be viable in practice are
(i) efficiency of query evaluation, with the ideal target being traditional database query
processing, and (ii) that query evaluation can be done by leveraging the relational technology
already used for storing the data.

With these objectives in mind, a series of description logics—the DL-Lite family—has
recently been proposed and investigated by Calvanese, De Giacomo, Lembo, Lenzerini,
and Rosati (2005, 2006, 2008a), and later extended by Artale, Calvanese, Kontchakov,
and Zakharyaschev (2007a), Poggi, Lembo, Calvanese, De Giacomo, Lenzerini, and Rosati
(2008a). Most logics of the family meet the requirements above and, at the same time, are
capable of representing many important types of constraints used in conceptual modeling.
In particular, inference in various DL-Lite logics can be done efficiently both in the size
of the data (data complexity) and in the overall size of the KB (combined complexity): it
was shown for these logics that KB satisfiability is polynomial for combined complexity,
while answering queries is in AC0 for data complexity—which, roughly, means that, given
a conjunctive query over a KB, the query and the TBox can be rewritten (independently of
the ABox) into a union of conjunctive queries over the ABox alone. (It is to be emphasized
that the data complexity measure is very important in the application context of the DL-
Lite logics, since one can reasonably assume that the size of the data largely dominates the
size of the TBox.) Query rewriting techniques have been implemented in various systems
such as QuOnto2 (Acciarri, Calvanese, De Giacomo, Lembo, Lenzerini, Palmieri, & Rosati,
2005; Poggi, Rodriguez, & Ruzzi, 2008b), Owlgres (Stocker & Smith, 2008), ROWLKit
(Corona, Ruzzi, & Savo, 2009) and REQUIEM (Pérez-Urbina, Motik, & Horrocks, 2009).
It has also been demonstrated (Kontchakov et al., 2008) that developing, analyzing and re-
using DL-Lite ontologies (TBoxes) can be supported by efficient tools capable of checking
various types of entailment between such ontologies with respect to given vocabularies, in
particular, by minimal module extraction tools (Kontchakov et al., 2009)—which do not
yet exist for richer languages.

The significance of the DL-Lite family is testified by the fact that it forms the basis
of OWL 2 QL, one of the three profiles of OWL 2.3 The OWL 2 profiles are fragments of
the full OWL 2 language that have been designed and standardized for specific application
requirements. According to (the current version of) the official W3C profiles document, the
purpose of OWL 2 QL is to be the language of choice for applications that use very large
amounts of data and where query answering is the most important reasoning task.

The common denominator of the DL-Lite logics constructed so far is as follows: (i) quan-
tification over roles and their inverses is not qualified (in other words, in concepts of the
form ∃R.C we must have C = >) and (ii) the TBox axioms are concept inclusions that can-
not represent any kind of disjunctive information (say, that two concepts cover the whole
domain). The other DL-Lite-related dialects were designed—with the aim of capturing
more conceptual modeling constraints, but in a somewhat ad hoc manner—by extending
this ‘core’ language with a number of constructs such as global functionality constraints,

2. http://www.dis.uniroma1.it/quonto/

3. http://www.w3.org/TR/owl2-profiles/

4

The DL-Lite Family and Relations

role inclusions and restricted Boolean operators on concepts (see Section 4 for details).
Although some attempts have been made (Calvanese et al., 2006; Artale et al., 2007a;
Kontchakov & Zakharyaschev, 2008) to put the original DL-Lite logics into a more general
perspective and investigate their extensions with a variety of DL constructs required for
conceptual modeling, the resulting picture still remains rather fragmentary and far from
comprehensive. A systematic investigation of the DL-Lite family and relatives has become
even more urgent and challenging in view of the choice of the constructs to be included in
the specification of the OWL 2 QL profile4 (in particular, because OWL does not make the
unique name assumption, UNA, which used to be adopted in DL, and uses equalities and
inequalities between object names instead).

The main aim of this article is to fill in this gap and provide a thorough and comprehen-
sive understanding of the interaction between various DL-Lite constructs and their impact
on the computational complexity of reasoning. To achieve this goal, we consider a spectrum
of logics, classified according to five mutually orthogonal features:

(1) the presence or absence of role inclusion assertions;

(2) the form of the allowed concept inclusion assertions, where we consider four classes,
called core, Krom, Horn, and Bool, that show different computational properties;

(3) the form of the allowed numeric constraints, ranging from none, to global functionality
constraints only, and to arbitrary number restrictions;

(4) the presence or absence of the unique name assumption (and the equalities and in-
equalities between object names, if this assumption is dropped); and

(5) the presence or absence of standard role constraints such as disjointness, symmetry,
asymmetry, reflexivity, irreflexivity, and transitivity.

For all the resulting cases, we characterize the combined and data complexity of KB sat-
isfiability and instance checking, as well as the data complexity of query answering. The
obtained tight complexity results are summarized in Section 3.4 (Table 2 and Remark 3.1).

As already mentioned, the original motivation and distinguishing feature for the logics in
the DL-Lite family was their ‘lite’-ness in the sense of low computational complexity of the
reasoning tasks (query answering in AC0 for data complexity and tractable KB satisfiability
for combined complexity). In the broader perspective we take here, not all of our logics
meet this requirement, in particular, those with Krom or Bool concept inclusions.5 However,
we identify another distinguishing feature that can be regarded as the natural logic-based
characterization of the DL-Lite family: embeddability into the one-variable fragment of first-
order logic without equality and function symbols. This allows us to relate the complexity
of DL-Lite logics to the complexity of the corresponding fragments of first-order logic,
and thus to obtain a deep insight into the underlying logical properties of each DL-Lite
variant. For example, most upper complexity bound results established below follow from
this embedding and well-known results on the classical decision problem (see, e.g., Börger,
Grädel, & Gurevich, 1997) and descriptive complexity (see, e.g., Immerman, 1999).

4. http://www.w3.org/TR/owl2-profiles/#OWL_2_QL

5. Note, by the way, that logics with Bool concept inclusions turn out to be quite useful in conceptual
modeling and reasonably manageable computationally (Kontchakov et al., 2008).

5

Artale, Calvanese, Kontchakov & Zakharyaschev

One of the most interesting findings in this article is that number restrictions, even
expressed locally, instead of global role functionality, can be added to the original DL-Lite
logics (under the UNA and without role inclusions) ‘for free,’ that is, without changing
their computational complexity. The first-order approach shows that in most cases we can
also extend the DL-Lite logics with the role constraints mentioned above, again keeping the
same complexity. It also gives a framework to analyze the effect of adopting or dropping
the UNA and using (in)equalities between object names. For example, we observe that if
equality is allowed in the language of DL-Lite (which only makes sense without the UNA)
then query answering becomes LogSpace-complete for data complexity, and therefore not
first-order rewritable. It also turns out that dropping the UNA results in P-hardness of
reasoning (for both combined and data complexity) in the presence of functionality con-
straints (NLogSpace-hardness was shown by Calvanese et al., 2008), and NP-hardness if
arbitrary number restrictions are allowed.

Another interesting finding is the dramatic impact of role inclusions, when combined
with number restrictions (or even functionality constraints), on the computational com-
plexity of reasoning. As was already observed in (Calvanese et al., 2006), such a com-
bination increases the data complexity of instance checking from being in LogSpace to
NLogSpace-hard. We show here that the situation is actually even worse: for data com-
plexity, instance checking turns out to be P-complete in the case of core and Horn logics and
coNP-complete in the case of Krom and Bool logics; moreover, KB satisfiability, which is
NLogSpace-complete for combined complexity in the simplest ‘core’ case—i.e., efficiently
tractable, when role inclusions or number restrictions are used separately—becomes Exp-
Time-complete—i.e., provably intractable, when they are used together.

To retain both role inclusions and functionality constraints in the language and keep
complexity within the required limits, Poggi et al. (2008a) introduced another DL-Lite
dialect, called DL-LiteA, which restricts the interaction between role inclusions and func-
tionality constraints. Here we extend this result by showing that the DL-Lite logics with
such a limited interaction between role inclusions and number restrictions can still be em-
bedded into the one-variable fragment of first-order logic, and so exhibit the same behavior
as their fragments with only role inclusions or only number restrictions.

The article is structured in the following way. In Section 2, we introduce the logics of the
extended DL-Lite family and illustrate their features as conceptual modeling formalisms.
In Section 3, we discuss the reasoning services and the complexity measures we analyze
in what follows, and give an overview of the obtained complexity results. In Section 4,
we place the introduced DL-Lite logics in the context of the original DL-Lite family, and
discuss its relationship with OWL 2. In Section 5, we study the combined complexity of
KB satisfiability and instance checking, while in Section 6, we consider the data complexity
of these problems. In Section 7, we study the data complexity of query answering. In
Section 8, we analyze the impact of dropping the UNA and adding (in)equalities between
object names on the complexity of reasoning. Section 9 concludes the article.

2. The Extended DL-Lite Family of Description Logics

Description Logic (Baader et al., 2003) is a family of logics that have been studied and
used in knowledge representation and reasoning since the 1980s. In DLs, the elements of

6

The DL-Lite Family and Relations

the domain of interest are structured into concepts (unary predicates), and their properties
are specified by means of roles (binary predicates). Complex concept and role expressions
(or simply concepts and roles) are constructed, starting from a set of concept and role
names, by applying suitable constructs, where the set of available constructs depends on
the specific description logic. Concepts and roles can then be used in a knowledge base to
assert knowledge, both at the intensional level, in a so-called TBox (‘T’ for terminological),
and at the extensional level, in a so-called ABox (‘A’ for assertional). A TBox typically
consists of a set of axioms stating the inclusion between pairs of concepts or roles. In an
ABox, one can assert membership of objects (i.e., constants) in concepts, or that a pair of
objects is connected by a role. DLs are supported by reasoning services, such as satisfiability
checking and query answering, that rely on their logic-based semantics.

2.1 Syntax and Semantics of the Logics in the DL-Lite Family

We introduce now the (extended) DL-Lite family of description logics, which was initially
proposed with the aim of capturing typical conceptual modeling formalisms, such as UML
class diagrams and ER models (see Section 2.2 for details), while maintaining good com-
putational properties of standard DL reasoning tasks (Calvanese et al., 2005). We begin
by defining the logic DL-LiteHNbool , which can be regarded as the supremum of the original
DL-Lite family (Calvanese et al., 2005, 2006, 2007b) in the lattice of description logics.

DL-LiteHNbool. The language of DL-LiteHNbool contains object names a0, a1, . . . , concept names
A0, A1, . . . , and role names P0, P1, Complex roles R and concepts C of this language
are defined as follows:

R ::= Pk | P−k ,

B ::= ⊥ | Ak | ≥ q R,
C ::= B | ¬C | C1 u C2,

where q is a positive integer. The concepts of the form B will be called basic.
A DL-LiteHNbool TBox, T , is a finite set of concept and role inclusion axioms (or simply

concept and role inclusions) of the form:

C1 v C2 and R1 v R2,

and an ABox, A, is a finite set of assertions of the form:

Ak(ai), ¬Ak(ai), Pk(ai, aj) and ¬Pk(ai, aj).

Taken together, T and A constitute the DL-LiteHNbool knowledge base K = (T ,A). In the
following, we denote by role(K) the set of role names occurring in T and A, by role±(K)
the set {Pk, P−k | Pk ∈ role(K)}, and by ob(A) the set of object names in A. For a role R,
we set:

inv(R) =

{
P−k , if R = Pk,

Pk, if R = P−k .

As usual in description logic, an interpretation, I = (∆I , ·I), consists of a nonempty
domain ∆I and an interpretation function ·I that assigns to each object name ai an element

7

Artale, Calvanese, Kontchakov & Zakharyaschev

aIi ∈ ∆I , to each concept name Ak a subset AIk ⊆ ∆I of the domain, and to each role name
Pk a binary relation P Ik ⊆ ∆I × ∆I over the domain. Unless otherwise stated, we adopt
here the unique name assumption (UNA):

aIi 6= aIj for all i 6= j. (UNA)

However, we shall always indicate which of our results depend on the UNA and which do
not, and when they do depend on this assumption, we discuss also the consequences of
dropping it (see also Sections 4 and 8).

The role and concept constructs are interpreted in I in the standard way:

(P−k)I = {(y, x) ∈ ∆I ×∆I | (x, y) ∈ P Ik }, (inverse role)

⊥I = ∅, (the empty set)

(≥q R)I =
{
x ∈ ∆I |]{y ∈ ∆I | (x, y) ∈ RI} ≥ q

}
, (at least q R-successors)

(¬C)I = ∆I \ CI , (not in C)

(C1 u C2)I = CI1 ∩ CI2 , (both in C1 and in C2)

where]X denotes the cardinality of X. We will use standard abbreviations such as

C1 t C2 = ¬(¬C1 u ¬C2), > = ¬⊥, ∃R = (≥ 1R), ≤ q R = ¬(≥ q + 1R).

Concepts of the form ≤ q R and ≥ q R are called number restrictions, and those of the form
∃R are called existential concepts.

The satisfaction relation |= is also standard:

I |= C1 v C2 iff CI1 ⊆ CI2 , I |= R1 v R2 iff RI1 ⊆ RI2 ,
I |= Ak(ai) iff aIi ∈ AIk , I |= Pk(ai, aj) iff (aIi , a

I
j) ∈ P Ik ,

I |= ¬Ak(ai) iff aIi /∈ AIk , I |= ¬Pk(ai, aj) iff (aIi , a
I
j) /∈ P Ik .

A knowledge base K = (T ,A) is said to be satisfiable (or consistent) if there is an interpre-
tation, I, satisfying all the members of T and A. In this case we write I |= K (as well as
I |= T and I |= A) and say that I is a model of K (and of T and A).

The languages of the DL-Lite family we investigate in this article are obtained by re-
stricting the language of DL-LiteHNbool along three axes: (i) the Boolean operators (bool) on
concepts, (ii) the number restrictions (N) and (iii) the role inclusions, or hierarchies (H).

Similarly to classical logic, we adopt the following definitions. A DL-LiteHNbool TBox T
will be called a Krom TBox 6 if its concept inclusions are restricted to:

B1 v B2, B1 v ¬B2 or ¬B1 v B2 (Krom)

(here and below all the Bi and B are basic concepts). T will be called a Horn TBox if its
concept inclusions are restricted to:

l

k

Bk v B (Horn)

6. The Krom fragment of first-order logic consists of all formulas in prenex normal form whose quantifier-free
part is a conjunction of binary clauses.

8

The DL-Lite Family and Relations

(by definition, the empty conjunction is >). Finally, we will call T a core TBox if its
concept inclusions are restricted to:

B1 v B2 or B1 v ¬B2. (core)

As B1 v ¬B2 is equivalent to B1 u B2 v ⊥, core TBoxes can be regarded as sitting in the
intersection of Krom and Horn TBoxes.

Remark 2.1 We will sometimes use conjunctions on the right-hand side of concept inclu-
sions in these restricted languages: C v

d
k Bk. Clearly, this ‘syntactic sugar’ does not add

any extra expressive power.

DL-LiteHNkrom, DL-LiteHNhorn and DL-LiteHNcore. The fragments of DL-LiteHNbool with Krom,
Horn, and core TBoxes will be denoted by DL-LiteHNkrom, DL-LiteHNhorn and DL-LiteHNcore, re-
spectively. Other fragments are obtained by limiting the use of number restrictions and role
inclusions.

DL-LiteHα . The fragment of DL-LiteHNα , α ∈ {core, krom, horn, bool}, without number
restrictions ≥q R, for q ≥ 2, (but with role inclusions) will be denoted by DL-LiteHα . Note
that, in DL-LiteHα , we can still use existential concepts ∃R (that is, ≥1R).

DL-LiteHFα . Denote by DL-LiteHFα the fragment of DL-LiteHNα in which of all number
restrictions ≥q R, we have existential concepts (with q = 1) and only those with q = 2
that occur in concept inclusions of the form ≥2R v ⊥. Such an inclusion is called a
global functionality constraint because it states that role R is functional (more precisely, if
I |= (≥2R v ⊥) and both (x, y) ∈ RI and (x, z) ∈ RI , then y = z).

DL-LiteNα , DL-LiteFα and DL-Liteα. If role inclusions are excluded from the language,
then for each α ∈ {core, krom, horn, bool} we obtain three fragments: DL-LiteNα (with arbi-
trary number restrictions), DL-LiteFα (with functionality constraints and existential concepts
∃R), and DL-Liteα(without number restrictions different from ∃R).

As we shall see later on in this paper, the logics of the form DL-LiteHFα and DL-LiteHNα ,
even for α = core, turn out to be computationally rather costly because of the interaction
between role inclusions and functionality constraints (or, more generally, number restric-
tions). On the other hand, for the purpose of conceptual modeling one may need both of
these constructs; cf. the example in Section 2.2. A compromise can be found by artificially
limiting the interplay between role inclusions and number restrictions in a way similar to
the logic DL-LiteA proposed by Poggi et al. (2008a).

For a TBox T , let v∗T denote the reflexive and transitive closure of the relation{
(R,R′), (inv(R), inv(R′)) | R v R′ ∈ T

}
and let R ≡∗T R′ iff R v∗T R′ and R′ v∗T R. Say that R′ is a proper sub-role of R in T if
R′ v∗T R and R′ 6≡∗T R.

9

Artale, Calvanese, Kontchakov & Zakharyaschev

DL-Lite
(HN)
α . We now introduce the logics DL-Lite

(HN)
α , α ∈ {core, krom, horn, bool},

which, on the one hand, restrict the logics DL-LiteHNα by limiting the interaction between
role inclusions and number restrictions in order to reduce complexity of reasoning, and, on
the other hand, include additional constructs, such as limited qualified existential quan-
tifiers, role disjointness, (a)symmetry and (ir)reflexivity constraints, which increase the
expressive power of the logics but do not affect their computational properties.

DL-Lite
(HN)
α TBoxes T must satisfy the conditions (A1)–(A3) below. (We remind

the reader that an occurrence of a concept on the right-hand (left-hand) side of a concept
inclusion is called negative if it is in the scope of an odd (even) number of negations ¬;
otherwise the occurrence is called positive.)

(A1) T may contain only positive occurrences of qualified number restrictions ≥ q R.C,
where C is a conjunction of concepts allowed on the right-hand side of α-concept
inclusions;

(A2) if ≥ q R.C occurs in T , then T does not contain negative occurrences of number
restrictions ≥ q′R or ≥ q′ inv(R) with q′ ≥ 2;

(A3) if R has a proper sub-role in T , then T does not contain negative occurrences of
≥ q R or ≥ q inv(R) with q ≥ 2.

(It follows that no DL-Lite
(HN)
α TBox can contain both, say, a functionality constraint

≥2R v ⊥ and an occurrence of ≥q R.C, for any q ≥ 1.)
Additionally, DL-Lite

(HN)
α TBoxes can contain role constraints (or axioms) of the form:

Dis(R1, R2), Asym(Pk), Sym(Pk), Irr(Pk), and Ref(Pk).

The meaning of these new constructs is defined as usual: for an interpretation I = (∆I , ·I),

• (≥q R.C)I =
{
x ∈ ∆I |]{y ∈ CI | (x, y) ∈ RI} ≥ q

}
;

• I |= Dis(R1, R2) iff RI1 ∩RI2 = ∅ (roles R1 and R2 are disjoint);

• I |= Asym(Pk) iff P Ik ∩ (P−k)I = ∅ (role Pk is asymmetric);

• I |= Sym(Pk) iff P Ik = (P−k)I (Pk is symmetric);

• I |= Irr(Pk) iff (x, x) /∈ P Ik for all x ∈ ∆I (Pk is irreflexive);

• I |= Ref(Pk) iff (x, x) ∈ P Ik for all x ∈ ∆I (Pk is reflexive).

It is to be emphasized that these extra constructs are often used in conceptual modeling
and their introduction in DL-Lite

(HN)
α is motivated by the OWL 2 QL proposal. (Note that

DL-Lite
(HN)
α contains both DL-LiteHα and DL-LiteNα as its proper fragments.)

10

The DL-Lite Family and Relations

role role number concept inclusions
constraints inclusions restrictions core Krom Horn Bool

∃R DL-Litecore DL-Litekrom DL-Litehorn DL-Litebool

no no ∃R/funct. DL-LiteFcore DL-LiteFkrom DL-LiteFhorn DL-LiteFbool
≥ q R DL-LiteNcore DL-LiteNkrom DL-LiteNhorn DL-LiteNbool
∃R DL-LiteHcore DL-LiteHkrom DL-LiteHhorn DL-LiteHbool

no yes ∃R/funct. DL-LiteHFcore DL-LiteHFkrom DL-LiteHFhorn DL-LiteHFbool

≥ q R DL-LiteHNcore DL-LiteHNkrom DL-LiteHNhorn DL-LiteHNbool

disj.
(a)sym.
(ir)ref.

yes
∃R.C/funct.a) DL-Lite(HF)

core DL-Lite
(HF)
krom DL-Lite

(HF)
horn DL-Lite

(HF)
bool

≥ q R.C a) DL-Lite(HN)
core DL-Lite

(HN)
krom DL-Lite

(HN)
horn DL-Lite

(HN)
bool

disj.
(a)sym.
(ir)ref.
tran.

yes
∃R.C/funct.a) DL-Lite(HF)+

core DL-Lite
(HF)+

krom DL-Lite
(HF)+

horn DL-Lite
(HF)+

bool

≥ q R.C a) DL-Lite(HN)+

core DL-Lite
(HN)+

krom DL-Lite
(HN)+

horn DL-Lite
(HN)+

bool

a) restricted by (A1)–(A3).

Table 1: The extended DL-Lite family.

DL-Lite
(HN)+

α . For α ∈ {bool, horn, krom, core}, denote by DL-Lite
(HN)+

α the extension
of DL-Lite

(HN)
α with role transitivity constraints of the form Tra(Pk), the meaning of which

is as expected:

• I |= Tra(Pk) iff (x, y) ∈ P Ik and (y, z) ∈ P Ik imply (x, z) ∈ P Ik , for all x, y, z ∈ ∆I

(Pk is transitive).

We remind the reader of the standard restriction limiting the use of transitive roles in DLs
(see, e.g., Horrocks, Sattler, & Tobies, 2000):

• only simple roles R are allowed in concepts of the form ≥ q R, for q ≥ 2,

where by a simple role in a given TBox T we understand a role without transitive sub-roles
(including itself). In particular, if T contains Tra(P) then P and P− are not simple, and
so T cannot contain occurrences of concepts of the form ≥ q P and ≥ q P−, for q ≥ 2.

DL-Lite
(HF)
α and DL-Lite

(HF)+

α . We also define languages DL-Lite
(HF)
α as sub-languages

of DL-Lite
(HN)
α , in which only number restrictions of the form ∃R, ∃R.C and functionality

constraints ≥2R v ⊥ are allowed—provided, of course, that they satisfy (A1)–(A3); in
particular, ∃R.C is not allowed ifR is functional. As before, DL-Lite

(HF)+

α are the extensions
of DL-Lite

(HF)
α with role transitivity constraints (satisfying the restriction above).

Thus, the extended DL-Lite family we consider in this article consists of 40 different
logics collected in Table 1. The inclusions between these logics are shown in Figure 1.
They are obtained by taking the product of the left- and right-hand parts of the picture,
where the subscript α on the right-hand part ranges over {core, krom, horn, bool}, i.e., the
subscripts on the left-hand part, and similarly, the superscript β on the left-hand part
ranges over { ,F ,N ,H,HF ,HN , (HF), (HN), (HF)+, (HN)+}, i.e., the superscripts on
the right-hand part.

11

Artale, Calvanese, Kontchakov & Zakharyaschev

DL-Liteβcore

DL-Liteβkrom

DL-Liteβhorn

DL-Liteβbool

@@I �
�
�
���

�
�
�� @@I

DL-LiteHα

6

DL-LiteHFα

6

DL-LiteHNα

DL-Liteα

6

DL-LiteFα

6

DL-LiteNα

DL-Lite(HF)
α

6

DL-Lite(HN)
α

DL-Lite(HF)+

α

6

DL-Lite(HN)+

α

PPi

PPi

PPi

��1

��1

-

-

���
���

���
�
��

Figure 1: Language inclusions in the extended DL-Lite family.

The position of these logics relative to other DL-Lite logics known in the literature and
the OWL 2 QL profile will be discussed in Section 4. And starting from Section 5, we begin
a thorough investigation of the computational properties of the logics in the extended DL-
Lite family, both with and without the UNA. But before that we illustrate the expressive
power of the DL-Lite logics by a concrete example.

2.2 DL-Lite for Conceptual Modeling

A tight correspondence between conceptual modeling formalisms, such as the ER model
and UML class diagrams, and various description logics has been pointed out in various
papers, e.g., (Calvanese et al., 1998b, 1999; Borgida & Brachman, 2003; Berardi et al.,
2005). Here we give an example showing how DL-Lite logics can be used for conceptual
modeling purposes; for more details see (Artale et al., 2007b).

Let us consider the UML class diagram depicted in Figure 2 and representing (a portion
of) a company information system. According to the diagram, all managers are employees
and partitioned into area managers and top managers. This information can be represented
by means of the following concept inclusions (where in brackets we specify the minimal
DL-Lite language the inclusion belongs to):

Manager v Employee (DL-Litecore)
AreaManager v Manager (DL-Litecore)
TopManager v Manager (DL-Litecore)

AreaManager v ¬TopManager (DL-Litecore)
Manager v AreaManager t TopManager (DL-Litebool)

Each employee has two functional attributes, empCode and salary, with integer values.
Unlike OWL, here we do not distinguish between abstract objects and data values. Hence
we model a data type, such as Integer , by means of a concept. Similarly, a data property,
such as employee’s salary, is modeled by means of a role. So, the functional attribute salary

12

The DL-Lite Family and Relations

empCode: Integer
salary: Integer

Employee

Manager

AreaManager

TopManager

1..1

1..*

boss

projectName: String

Project
3..*

1..1

1..1

worksOn

manages

1..*

{disjoint, complete}

Figure 2: A UML class diagram.

can be represented as follows:

Employee v ∃salary (DL-Litecore)
∃salary− v Integer (DL-Litecore)

≥ 2 salary v ⊥ (DL-LiteFcore)

The binary relationship worksOn has Employee as its domain and Project as its range:

∃worksOn v Employee (DL-Litecore)
∃worksOn− v Project (DL-Litecore)

(similarly for boss with Employee and Manager). Each employee works on a project and
has exactly one boss, while a project must involve at least three employees:

Employee v ∃worksOn (DL-Litecore)
Employee v ∃boss (DL-Litecore)

≥ 2 boss v ⊥ (DL-LiteFcore)

Project v ≥ 3 worksOn− (DL-LiteNcore)

A top manager manages exactly one project and also works on that project, while a project
is managed by exactly one top manager:

∃manages v TopManager (DL-Litecore)
∃manages− v Project (DL-Litecore)

TopManager v ∃manages (DL-Litecore)
Project v ∃manages− (DL-Litecore)

≥ 2 manages v ⊥ (DL-LiteFcore)

≥ 2 manages− v ⊥ (DL-LiteFcore)

manages v worksOn (DL-LiteHcore)

13

Artale, Calvanese, Kontchakov & Zakharyaschev

All in all, the only languages in the extended DL-Lite family capable of representing the
UML class diagram in Figure 2 are DL-LiteHNbool and DL-Lite

(HN)
bool . Note, however, that except

for the covering constraint, Manager v AreaManager t TopManager , all other concept
inclusions in the DL-Lite translation of the UML class diagram belong to variants of the
‘core’ fragments DL-LiteHNcore and DL-Lite

(HN)
core . It is not hard to imagine a situation where

one needs DL-Litehorn concept inclusions to represent integrity constraints over UML class
diagrams, for example, to express (together with the above axioms) that ‘no chief executive
officer may work on five projects and be a manager of one of them:’

CEO u (≥ 5 worksOn) u ∃manages v ⊥ (DL-LiteNhorn)

In the context of UML class diagrams, the Krom fragment DL-Litekrom (with its variants)
seems to be useless: it extends DL-Litecore with concept inclusions of the form ¬B1 v B2

or, equivalently, > v B1 t B2, which are rarely used in conceptual modeling. Indeed,
this would correspond to partitioning the whole domain of interest in just two parts, while
more general and useful covering constraints of the form B v B1 t · · · tBk require the full
Bool language. On the other hand, the Krom fragments are important for pinpointing the
borderlines of various complexity classes over the description logics of the DL-Lite family
and their extensions; see Table 2.

3. Reasoning in DL-Lite Logics

We discuss now the reasoning problems we consider for the logics of the extended DL-Lite
family, their mutual relationships, and the complexity measures we adopt. We also provide
an overview of the complexity results obtained in this article.

3.1 Reasoning Problems

We will concentrate on three fundamental and standard reasoning tasks for the logics L of
the DL-Lite family: satisfiability (or consistency), instance checking, and query answering.

For a DL L in our DL-Lite family, we define an L-concept inclusion as any concept
inclusion allowed in L. Similarly, we define the notions of L-KB and L-TBox. Finally,
define an L-concept as any concept that can occur on the right-hand side of an L-concept
inclusion or a conjunction of such concepts.

Satisfiability. The KB satisfiability problem is to check, given an L-KB K, whether there
is a model of K. Clearly, satisfiability is the minimal requirement for any ontology. As is
well known in DL (Baader et al., 2003), many other reasoning tasks for description logics
are reducible to the satisfiability problem. Consider, for example, the subsumption problem:
given an L-TBox T and an L-concept inclusion C1 v C2, decide whether T |= C1 v C2, that
is, for every model I of T , we have CI1 ⊆ CI2 . To reduce this problem to (un)satisfiability,
take a fresh concept name A, a fresh object name a, and set K = (T ′,A), where

T ′ = T ∪ {A v C1, A v ¬C2} and A = {A(a)}.

It is easy to see that T |= C1 v C2 iff K is not satisfiable. For core, Krom and Horn KBs, if
C2 =

d
kDk, where each Dk is a (possibly negated) basic concept, checking unsatisfiability

14

The DL-Lite Family and Relations

of K amounts to checking unsatisfiability of each of the KBs Kk = (Tk,A), where Tk =
T ∪ {A v C1, A v ¬Dk} (for Horn KBs, replace A v ¬B with the equivalent A uB v ⊥).

The concept satisfiability problem—given an L-TBox T and an L-concept C, decide
whether CI 6= ∅ in a model I of T—is also easily reducible to KB satisfiability. Indeed,
take a fresh concept name A, a fresh object name a, and set K = (T ′,A), where

T ′ = T ∪ {A v C} and A = {A(a)}.

Then C is satisfiable with respect to T iff K is satisfiable.

Instance checking. The instance checking problem is to decide, given an object name a,
an L-concept C and an L-KB K = (T ,A), whether K |= C(a), that is, aI ∈ CI , for every
model I of K. Instance checking is also reducible to (un)satisfiability: an object a is an
instance of an L-concept C in every model of K = (T ,A) iff the KB K′ = (T ′,A′), with

T ′ = T ∪ {A v ¬C} and A′ = A ∪ {A(a)},

is not satisfiable, where A is a fresh concept name. For core, Krom and Horn KBs, if
C =

d
kDk, where each Dk is a (possibly negated) basic concept, we can proceed as for

subsumption: checking the unsatisfiability of K′ amounts to checking the unsatisfiability of
each KB K′k = (T ′k ,A′) with T ′k = T ∪ {A v ¬Dk}.

Conversely, KB satisfiability is reducible to the complement of instance checking: K is
satisfiable iff K 6|= A(a), for a fresh concept name A and a fresh object a.

Query answering. A positive existential query q(x1, . . . , xn) is any first-order formula
ϕ(x1, . . . , xn) constructed by means of conjunction, disjunction and existential quantifica-
tion starting from atoms of the from Ak(t) and Pk(t1, t2), where Ak is a concept name, Pk
a role name, and t, t1, t2 are terms taken from the list of variables y0, y1, . . . and the list of
object names a0, a1, . . . (i.e., ϕ is a positive existential formula). More precisely,

t ::= yi | ai,

ϕ ::= Ak(t) | Pk(t1, t2) | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∃yi ϕ.

The free variables of ϕ are called distinguished variables of q and the bound ones are non-
distinguished variables of q. We write q(x1, . . . , xn) for a query with distinguished variables
x1, . . . , xn. A conjunctive query is a positive existential query that contains no disjunction
(it is constructed from atoms by means of conjunction and existential quantification only).

Given a query q(~x) = ϕ(~x) with ~x = x1, . . . , xn and an n-tuple ~a of object names, we
write q(~a) for the result of replacing every occurrence of xi in ϕ(~x) with the ith member of
~a. Queries containing no distinguished variables will be called ground (they are also known
as Boolean).

Let I = (∆I , ·I) be an interpretation. An assignment a in ∆I is a function associating
with every variable y an element a(y) of ∆I . We will use the following notation: aI,ai = aIi
and yI,a = a(y). The satisfaction relation for positive existential formulas with respect to

15

Artale, Calvanese, Kontchakov & Zakharyaschev

a given assignment a is defined inductively by taking:

I |=a Ak(t) iff tI,a ∈ AIk ,

I |=a Pk(t1, t2) iff (tI,a1 , tI,a2) ∈ P Ik ,
I |=a ϕ1 ∧ ϕ2 iff I |=a ϕ1 and I |=a ϕ2,

I |=a ϕ1 ∨ ϕ2 iff I |=a ϕ1 or I |=a ϕ2,

I |=a ∃yi ϕ iff I |=b ϕ, for some assignment b in ∆I that may differ from a on yi.

For a ground query q(~a), the satisfaction relation does not depend on the assignment a,
and so we write I |= q(~a) instead of I |=a q(~a). The answer to such a query is either ‘yes’
or ‘no.’

For a KB K = (T ,A), we say that a tuple ~a of object names from A is a certain answer
to q(~x) with respect to K, and write K |= q(~a), if I |= q(~a) whenever I |= K. The query
answering problem can be formulated as follows: given an L-KB K = (T ,A), a query q(~x),
and a tuple ~a of object names from A, decide whether K |= q(~a).

Note that the instance checking problem is a special case of query answering: an object
a is an instance of an L-concept C with respect to a KB K iff the answer to the query A(a)
with respect to K′ is ‘yes,’ where K′ = (T ′,A) and T ′ = T ∪ {C v A}, with A a fresh
concept name. For Horn-concepts B1 u · · · uBk, we consider the query A1(a) ∧ · · · ∧Ak(a)
with respect to K′, where K′ = (T ′,A) and T ′ = T ∪ {B1 v A1, . . . , Bk v Ak}, with
the Ai fresh concept names. Similarly, we deal with Krom-concepts D1 u · · · uDk, where
each Di is a possibly negated basic concept. For core-concepts, the reduction holds just for
conjunctions of basic concepts.

3.2 Complexity Measures: Data and Combined Complexity

The computational complexity of the reasoning problems discussed above can be analyzed
with respect to different complexity measures, which depend on those parameters of the
problem that are regarded to be the input (i.e., can vary) and those that are regarded to
be fixed. For satisfiability and instance checking, the parameters to consider are the size
of the TBox T and the size of the ABox A, that is the number of symbols in T and A,
denoted |T | and |A|, respectively. The size |K| of the knowledge K = (T ,A) is simply given
by |T |+ |A|. For query answering, one more parameter to consider would be the size of the
query. However, in our analysis we adopt the standard database assumption that the size
of queries is always bounded by some reasonable constant and, in any case, negligible with
respect to both the size of the TBox and the size of the ABox. Thus we do not count the
query as part of the input.

Hence, we consider our reasoning problems under two complexity measures. If the whole
KB K is regarded as an input, then we deal with combined complexity. If, however, only
the ABox A is counted as an input, while the TBox T (and the query) is regarded to be
fixed, then our concern is data complexity (Vardi, 1982). Combined complexity is of interest
when we are still designing and testing the ontology. On the other hand, data complexity is
preferable in all those cases where the TBox is fixed or its size (and the size of the query) is
negligible compared to the size of the ABox, which is the case, for instance, in the context
of ontology-based data access (Calvanese, De Giacomo, Lembo, Lenzerini, Poggi, & Rosati,

16

The DL-Lite Family and Relations

2007) and other data intensive applications (Decker, Erdmann, Fensel, & Studer, 1999; Noy,
2004; Lenzerini, 2002; Calvanese et al., 2008). Since the logics of the DL-Lite family were
tailored to deal with large data sets stored in relational databases, data complexity of both
instance checking and query answering is of particular interest to us.

3.3 Remarks on the Complexity Classes LogSpace and AC0

In this paper, we deal with the following complexity classes:

AC0 (LogSpace ⊆ NLogSpace ⊆ P ⊆ NP ⊆ ExpTime.

Their definitions can be found in the standard textbooks (e.g., Garey & Johnson, 1979;
Papadimitriou, 1994; Vollmer, 1999; Kozen, 2006). Here we only remind the reader of the
two smallest classes LogSpace and AC0.

A problem belongs to LogSpace if there is a two-tape Turing machine M such that,
starting with an input of length n written on the read-only input tape,M stops in an accept-
ing or rejecting state having used at most log n cells of the (initially blank) read/write work
tape. A LogSpace transducer is a three-tape Turing machine that, having started with an
input of length n written on the read-only input tape, writes the result (of polynomial size)
on the write-only output tape using at most log n cells of the (initially blank) read/write
work tape. A LogSpace-reduction is a reduction computable by a LogSpace transducer;
the composition of two LogSpace transducers is also a LogSpace transducer (Kozen,
2006, Lemma 5.1).

The formal definition of the complexity class AC0 (see, e.g., Boppana & Sipser, 1990;
Vollmer, 1999 and references therein) is based on the circuit model, where functions are
represented as directed acyclic graphs built from unbounded fan-in And, Or and Not
gates (i.e., And and Or gates may have an unbounded number of incoming edges). For
this definition we assume that decision problems are encoded in the alphabet {0, 1} and so
can be regarded as Boolean functions. AC0 is the class of problems definable using a family
of circuits of constant depth and polynomial size, which can be generated by a deterministic
Turing machine in logarithmic time (in the size of the input); the latter condition is called
LogTime-uniformity. Intuitively, AC0 allows us to use polynomially many processors but
the run-time must be constant. A typical example of an AC0 problem is the evaluation
of first-order queries over databases (or model checking of first-order sentences over finite
models), where only the database (first-order model) is regarded as the input and the query
(first-order sentence) is assumed to be fixed (Abiteboul, Hull, & Vianu, 1995; Vollmer,
1999). The undirected graph reachability problem is known to be in LogSpace (Reingold,
2008) but not in AC0. A Boolean function f : {0, 1}n → {0, 1} is called AC0-reducible (or
constant-depth reducible) to a function g : {0, 1}n → {0, 1} if there is a (LogTime-uniform)
family of constant-depth circuits built from And, Or, Not and g gates that computes f .
In this case we say that there is an AC0-reduction. Note that all the reductions considered
in Section 3.1 are AC0-reductions. Unless otherwise indicated, in what follows we write
‘reduction’ for ‘AC0-reduction.’

17

Artale, Calvanese, Kontchakov & Zakharyaschev

Complexity

Languages UNA Combined complexity Data complexity

Satisfiability Instance checking Query answering

DL-Lite[|H]
core NLogSpace ≥ [A] in AC0 in AC0

DL-Lite
[|H]
horn yes/no

P ≤ [Th.8.2] ≥ [A] in AC0 in AC0 ≤ [C]

DL-Lite
[|H]
krom NLogSpace ≤ [Th.8.2] in AC0 coNP ≥ [B]

DL-Lite
[|H]
bool NP ≤ [Th.8.2] ≥ [A] in AC0 ≤ [Th.8.3] coNP

DL-Lite[F|N|(HF)|(HN)]
core NLogSpace in AC0 in AC0

DL-Lite
[F|N|(HF)|(HN)]
horn yes

P ≤ [Th.5.8, 5.13] in AC0 in AC0 ≤ [Th.7.1]

DL-Lite
[F|N|(HF)|(HN)]
krom NLogSpace ≤ [Th.5.7,5.13] in AC0 coNP

DL-Lite
[F|N|(HF)|(HN)]
bool NP ≤ [Th.5.6, 5.13] in AC0 ≤ [Cor.6.2] coNP

DL-Lite
[F|(HF)]
core/horn P ≤ [Cor.8.8] ≥ [Th.8.7] P ≥ [Th.8.7] P

DL-Lite
[F|(HF)]
krom P ≤ [Cor.8.8] P coNP

DL-Lite
[F|(HF)]
bool no NP P ≤ [Cor.8.8] coNP

DL-Lite
[N|(HN)]
core/horn NP ≥ [Th.8.4] coNP ≥ [Th.8.4] coNP

DL-Lite
[N|(HN)]
krom/bool NP ≤ [Th.8.5] coNP coNP

DL-LiteHFcore/horn ExpTime ≥ [Th.5.10] P ≥ [Th.6.7] P ≤ [D]

DL-LiteHFkrom/bool yes/no
ExpTime coNP ≥ [Th.6.5] coNP

DL-LiteHNcore/horn ExpTime coNP ≥ [Th.6.6] coNP

DL-LiteHNkrom/bool ExpTime ≤ [F] coNP coNP ≤ [E]

[A] complexity of the respective fragment of propositional Boolean logic
[B] follows from (Schaerf, 1993)
[C] (Calvanese et al., 2006)
[D] follows from (Hustadt, Motik, & Sattler, 2005; Eiter, Gottlob, Ortiz, & Šimkus, 2008)
[E] follows from (Ortiz, Calvanese, & Eiter, 2006, 2008; Glimm, Horrocks, Lutz, & Sattler, 2007)
[F] follows from (Tobies, 2001)

Table 2: Complexity of DL-Lite logics (all the complexity bounds save ‘in AC0’ are tight).
DL-Lite[β1|···|βn]

α means any of DL-Liteβ1
α , . . . , DL-Liteβn

α

(in particular, DL-Lite[|H]
α is either DL-Liteα or DL-LiteHα).

DL-Liteβcore/horn means DL-Liteβcore or DL-Liteβhorn (likewise for DL-Liteβkrom/bool).
‘≤ [X]’ (‘≥ [X]’) means that the upper (respectively, lower) bound follows from [X].

3.4 Summary of Complexity Results

In this article, our aim is to investigate (i) the combined and data complexity of the satisfi-
ability and instance checking problems and (ii) the data complexity of the query answering
problem for the logics of the extended DL-Lite family, both with and without the UNA.
The obtained and known results for the first 32 logics from Table 1 (the logics DL-Lite

(HF)+

α

and DL-Lite
(HN)+

α are not included) are summarized in Table 2 (we remind the reader that
satisfiability and instance checking are reducible to the complements of each other and that

18

The DL-Lite Family and Relations

instance checking is a special case of query answering). In fact, all of the results in the
table follow from the lower and upper bounds marked with [≥] and [≤], respectively (by
taking into account the hierarchy of languages of the DL-Lite family): for example, the
NLogSpace membership of satisfiability in DL-LiteNkrom in Theorem 5.7 implies the same
upper bound for DL-LiteFkrom, DL-Litekrom, DL-LiteNcore, DL-LiteFcore and DL-Litecore because
all of them are sub-languages of DL-LiteNkrom.

Remark 3.1 Two further complexity results are to be noted (they are not included in
Table 2):

(i) If equality between object names is allowed in the language of DL-Lite, which only
makes sense if the UNA is dropped, then the AC0 memberships in Table 2 are re-
placed by LogSpace-completeness (see Section 8, Theorem 8.3 and 8.9); inequality
constraints do not affect the complexity.

(ii) If we extend any of our languages with role transitivity constraints then the com-
bined complexity of satisfiability remains the same, while for data complexity, instance
checking and query answering become NLogSpace-hard (see Lemma 6.3), i.e., the
membership in AC0 for data complexity is replaced by NLogSpace-completeness,
while all other complexity results remain the same.

In either case, the property of first-order rewritability—that is, the possibility of rewriting
a given query q and a given TBox T into a single first-order query q′ returning the certain
answers to q over (T ,A) for every ABox A, which ensures that the query answering problem
is in AC0 for data complexity—is lost.

Detailed proofs of our results will be given in Sections 5–8. For the variants of logics
involving number restrictions, all upper bounds hold also under the assumption that the
numbers q in concepts of the form ≥ q R are given in binary. (Intuitively, this follows from
the fact that in our proofs we only use those numbers that explicitly occur in the KB.) All
lower bounds remain the same for the unary coding, since in the corresponding proofs we
only use numbers not exceeding 4.

In the next section we consider our DL-Lite family in a more general context by identi-
fying its place among other DL-Lite-related logics, in particular the OWL 2 profiles.

4. The Landscape of DL-Lite Logics

The original family of DL-Lite logics was created with two goals in mind: to identify
description logics that, on the one hand, are capable of representing some basic features
of conceptual modeling formalisms (such as UML class diagrams and ER diagrams) and,
on the other hand, are computationally tractable, in particular, matching the AC0 data
complexity of database query answering.

As we saw in Section 2.2, to represent UML class diagrams one does not need the typi-
cal quantification constructs of the basic description logic ALC (Schmidt-Schauß & Smolka,
1991), namely, universal restriction ∀R.C and qualified existential quantification ∃R.C: one
can always take the role filler C to be >. Indeed, domain and range restrictions for a
relationship P can be expressed by the concepts inclusions ∃P v B1 and ∃P− v B2, re-
spectively. Thus, almost all concept inclusions required for capturing UML class diagrams

19

Artale, Calvanese, Kontchakov & Zakharyaschev

are of the form B1 v B2 or B1 v ¬B2. These observations motivated the introduction by
Calvanese et al. (2005) of the first DL-Lite logic, which in our new nomenclature corre-
sponds to DL-LiteFcore. The main results of Calvanese et al. (2005) were a polynomial-time
upper bound for the combined complexity of KB satisfiability and a LogSpace upper
bound for the data complexity of conjunctive query answering (under the UNA). These
results were extended by Calvanese et al. (2006) to two larger languages: DL-LiteFhorn and
DL-LiteHhorn, which were originally called DL-Liteu,F and DL-Liteu,R, respectively. Cal-
vanese et al. (2007b) introduced another member of the DL-Lite family (named DL-LiteR),
which extended DL-LiteHcore with role disjointness axioms of the form Dis(R1, R2). The
computational behavior of the new logic turned out to be the same as that of DL-LiteHcore.
It may be worth mentioning that DL-LiteHcore covers the DL fragment of RDFS (Klyne &
Carroll, 2004; Hayes, 2004). Note also that Calvanese et al. (2006) considered the variants
of both DL-Liteu,F and DL-Liteu,R with arbitrary n-ary relations (not only the usual binary
roles) and showed that query answering in them is still in LogSpace for data complexity.
Artale et al. (2007b) demonstrated how n-ary relations can be represented in DL-LiteFcore
by means of reification. We conjecture that similar results can be obtained for the other
DL-Lite logics introduced in this paper.

A further variant of DL-Lite, called DL-LiteA (‘A’ for attributes), was introduced by
Poggi et al. (2008a) with the aim of capturing as many features of conceptual modeling
formalisms as possible, while still maintaining the computational properties of the basic
variants of DL-Lite. One of the features in DL-LiteA, borrowed from conceptual modeling
formalisms and adopted also in OWL, is the distinction between (abstract) objects and data
values, and consequently, between concepts (sets of objects) and datatypes (sets of data
values), and between roles (i.e., object properties in OWL, relating objects with objects)
and data properties (relating objects with data values). However, as far as the results in this
paper are concerned, the distinction between concepts and datatypes, and between roles
and data properties has no impact on reasoning whatsoever, since datatypes can simply
be treated in the same way as concepts (that are disjoint from the proper concepts), and
similarly for data properties. Instead, more relevant for reasoning is the possibility to
express in DL-LiteA both role inclusions and functionality, i.e., DL-LiteA includes both
DL-LiteHcore and DL-LiteFcore, but not DL-LiteHFcore.

As we have already mentioned, role inclusions and functionality constraints cannot be
combined in an unrestricted way without losing the good computational properties: in
Theorems 5.10 and 6.7, we prove that satisfiability of DL-LiteHFcore KBs is ExpTime-hard
for combined complexity, while instance checking is data-hard for P (NLogSpace-hardness
was shown by Calvanese et al., 2006). In DL-LiteA, to keep query answering in AC0 for
data complexity and satisfiability in NLogSpace for combined complexity, functional roles
(and attributes) are not allowed to be specialized, i.e., used positively on the right-hand side
of role (and attribute) inclusion axioms. So, condition (A3) is a slight generalization of this
restriction. DL-LiteA also allows axioms of the form B v ∃R.C for non-functional roles R,
which is covered by conditions (A1) and (A2). Thus, DL-LiteA is a proper fragment of both
DL-Lite

(HF)
core and DL-Lite

(HN)
horn . We show in Sections 5.3 and 7 that these three languages

enjoy very similar computational properties under the UNA: tractable satisfiability and
query answering in AC0.

20

The DL-Lite Family and Relations

.

.

b DL-Litecore

b DL-Liteℛ = DL-Liteℋcore b DL-Liteℛ,⊓ = DL-Liteℋhorn

b DL-LiteA

b DL-Lite+
A b DL-Lite+

A,⊓

b DL-Liteℱ = DL-Liteℱcore b DL-Liteℱ,⊓ = DL-Liteℱhornin AC0

P

coNP

b DL-LiteNcore

b DL-Lite
(ℋℱ)
core

b DL-Lite
(ℋN)
core

b DL-Lite
(ℋN)
horn

b DL-Lite
(ℋℱ)
horn

b DL-LiteNhorn

b DL-Liteℋℱhorn
b DL-Liteℋℱcore

b Horn-SℋℐQ
b DL-Litekrom

b . . .

b DL-LiteℋNkrom

b DL-Litebool

b . . .

b DL-LiteℋNbool
b DL-LiteℋNhorn

b DL-LiteℋNcore

b SℋℐQ

in AC0

P

coNP

DL-Litecore
DL-LiteR = DL-LiteHcore DL-LiteR,u = DL-LiteHhorn

DL-LiteA

DL-Lite+
A DL-Lite+

A,u

DL-LiteF = DL-LiteFcore DL-LiteF,u = DL-LiteFhorn

DL-LiteNcore

DL-Lite
(HF)
core

DL-Lite
(HN)
core DL-Lite

(HN)
horn

DL-Lite
(HF)
horn

DL-LiteNhorn

DL-LiteHFhornDL-LiteHFcore

Horn-SHIQ
DL-Litekrom

. . .

DL-LiteHNkrom

DL-Litebool

. . .

DL-LiteHNbool

DL-LiteHNhornDL-LiteHNcore

SHIQ

Figure 3: The DL-Lite family and relations.

We conclude this section with a picture in Figure 3 illustrating the landscape of DL-
Lite-related logics by grouping them according to the data complexity of positive existential
query answering under the UNA. The original eight DL-Lite logics, called by Calvanese
et al. (2007b) ‘the DL-Lite family,’ are shown in the bottom sector of the picture (the logics
DL-Lite+

A and DL-Lite+
A,u extend DL-LiteA and DL-LiteA,u with identification constraints,

which are out of the scope of this article). Their nearest relatives are the logic DL-Lite
(HN)
horn

and its fragments, which are all in AC0 as well. The next layer contains the logics DL-LiteHFcore

and DL-LiteHFhorn, in which query answering is data-complete for P (no matter whether the
UNA is adopted or not). In fact, these logics are fragments of the much more expressive DL
Horn-SHIQ, which was shown to enjoy the same data complexity of query answering by
Eiter et al. (2008). It remains to be seen whether polynomial query answering is practically
feasible (recent experiments with the DL EL (Lutz, Toman, & Wolter, 2008) indicate that
this may be indeed the case). Finally, very distant relatives of the DL-Lite family comprise
the upper layer of the picture, where query answering is data-complete for coNP, that is,
the same as for the very expressive DL SHIQ.

4.1 The DL-Lite Family and OWL 2

The upcoming version 2 of the Web Ontology Language OWL7 defines three profiles,8 that
is, restricted versions of the language that suit specific needs. The DL-Lite family, notably
DL-LiteHcore (or the original DL-LiteR), is at the basis of one of these OWL 2 profiles, called
OWL 2 QL. According to http://www.w3.org/TR/owl2-profiles/, ‘OWL 2 QL is aimed at
applications that use very large volumes of instance data, and where query answering is the

7. http://www.w3.org/2007/OWL/

8. In logic, profiles would be called fragments as they are defined by placing restrictions on the OWL 2
syntax only.

21

Artale, Calvanese, Kontchakov & Zakharyaschev

most important reasoning task. In OWL 2 QL, [. . .] sound and complete conjunctive query
answering can be performed in LogSpace with respect to the size of the data (assertions)
[and] polynomial time algorithms can be used to implement the ontology consistency and
class expression subsumption reasoning problems. The expressive power of the profile is
necessarily quite limited, although it does include most of the main features of conceptual
models such as UML class diagrams and ER diagrams.’ In this section, we briefly discuss
the results obtained in this article in the context of additional constructs that are present
in OWL 2.

A very important difference between the DL-Lite family and OWL is the status of the
unique name assumption (UNA): this assumption is quite common in data management,
and hence adopted in the DL-Lite family, but not adopted in OWL. Instead, the OWL
syntax provides explicit means for stating that object names, say a and b, are supposed to
denote the same individual, a ≈ b, or that they should be interpreted differently, a 6≈ b (in
OWL, these constructs are called sameAs and differentFrom).

The complexity results we obtain for logics of the form DL-LiteHα do not depend on
whether or not we adopt the UNA (because every model of a DL-LiteHα KB without UNA
can be ‘untangled’ into a model of the same KB respecting the UNA; see Lemma 8.10).
However, this is not the case for the logics DL-LiteFα and DL-LiteNα , where there is an
obvious interaction between the UNA and number restrictions (cf. Table 2). For example,
under the UNA, instance checking for DL-LiteFcore is in AC0 for data complexity, whereas
dropping this assumption results in a much higher complexity: in Section 8, we prove that
it is P-complete. The addition of the equality construct ≈ to DL-LiteHcore and DL-LiteHhorn
slightly changes the data complexity of query answering and instance checking, as it rises
from AC0 to LogSpace; see Section 8. What is more important, however, is that in this
case we loose first-order rewritability of query answering and instance checking, and as a
result cannot use the standard database query engines in a straightforward manner.

Since the OWL 2 profiles are defined as syntactic restrictions without changing the
basic semantic assumptions, it was chosen not to include in the OWL 2 QL profile any
construct that interferes with the UNA and which, in the absence of the UNA, would cause
higher complexity. That is why OWL 2 QL does not include number restrictions, not even
functionality constraints. Also, keys (the mechanism of identifying objects by means of
the values of their properties) are not supported, although they are an important notion
in conceptual modeling. Indeed, keys can be considered as a generalization of functionality
constraints (Toman & Weddell, 2005, 2008; Calvanese, De Giacomo, Lembo, Lenzerini, &
Rosati, 2007a, 2008b), since asserting a unary key, i.e., one involving only a single role R,
is equivalent to asserting the functionality of the inverse of R. Hence, in the absence of the
UNA, allowing keys would change the computational properties.

As we have already mentioned, some other standard OWL constructs, such as role dis-
jointness, (a)symmetry and (ir)reflexivity constraints, can be added to the DL-Lite logics
without changing their computational behavior. Role transitivity constraints, Tra(R), as-
serting that R must be interpreted as a transitive role, can also be added to DL-Lite

(HN)
horn but

this leads to the increase of the data complexity for all reasoning problems to NLogSpace,
although satisfiability remains in P for combined complexity. These results can be found
in Section 5.3.

22

The DL-Lite Family and Relations

Of other constructs of OWL 2 that so far are not supported by the DL-Lite logics we
mention nominals (i.e., singleton concepts), Boolean operators on roles, and role chains.

5. Satisfiability: Combined Complexity

DL-LiteHNbool is clearly a sub-logic of the description logic SHIQ, the satisfiability problem
for which is known to be ExpTime-complete (Tobies, 2001).

In Section 5.1 we show, however, that the satisfiability problem for DL-LiteNbool KBs is
reducible to the satisfiability problem for the one-variable fragment, QL1, of first-order logic
without equality and function symbols. As satisfiability of QL1-formulas is NP-complete
(see, e.g., Börger et al., 1997) and the logics under consideration contain full Booleans on
concepts, satisfiability of DL-LiteNbool KBs is NP-complete as well. We shall also see that the
translations of Horn and Krom KBs into QL1 belong to the Horn and Krom fragments of
QL1, respectively, which are known to be P- and NLogSpace-complete (see, e.g., Papadim-
itriou, 1994; Börger et al., 1997). In Section 5.2, we will show how to simulate the behavior of
polynomial-space-bounded alternating Turing machines by means of DL-LiteHFcore KBs. This
will give the (optimal) ExpTime lower bound for satisfiability of KBs in all the languages
of our family containing unrestricted occurrences of both functionality constraints and role
inclusions. In Section 5.3, we extend the embedding into QL1, defined in Section 5.1, to the
logic DL-Lite

(HN)
bool , thereby establishing the same upper bounds as for DL-LiteNbool and its

fragments. Finally, in Section 5.4 we investigate the impact of role transitivity constraints.

5.1 DL-LiteNbool and its Fragments: First-Order Perspective

Our aim in this section is to construct a reduction of the satisfiability problem for DL-LiteNbool
KBs to satisfiability of QL1-formulas. We will do this in two steps: first we present a lengthy
yet quite ‘natural’ and transparent (yet exponential) reduction ·†, and then we shall see from
the proof that this reduction can be substantially optimized to a linear reduction ·‡.

Let K = (T ,A) be a DL-LiteNbool KB. Recall that role±(K) denotes the set of direct and
inverse role names occurring in K and ob(A) the set of object names occurring in A. For
R ∈ role±(K), let QRT be the set of natural numbers containing 1 and all the numbers q
for which the concept ≥ q R occurs in T (recall that the ABox does not contain number
restrictions). Note that |QRT | ≥ 2 if T contains a functionality constraint for R.

With every object name ai ∈ ob(A) we associate the individual constant ai of QL1 and
with every concept name Ai the unary predicate Ai(x) from the signature of QL1. For each
role R ∈ role±(K), we introduce |QRT |-many fresh unary predicates

EqR(x), for q ∈ QRT .

The intended meaning of these predicates is as follows: for a role name Pk,

• EqPk(x) and EqP−k (x) represent the sets of points with at least q distinct Pk-successors
and at least q distinct Pk-predecessors, respectively. In particular, E1Pk(x) and
E1P

−
k (x) represent the domain and range of Pk, respectively.

Additionally, for every pair of roles Pk, P−k ∈ role±(K), we take two fresh individual con-
stants

dpk and dp−k

23

Artale, Calvanese, Kontchakov & Zakharyaschev

of QL1, which will serve as ‘representatives’ of the points from the domains of Pk and
P−k , respectively (provided that they are not empty). Let dr(K) =

{
dr | R ∈ role±(K)

}
.

Furthermore, for each pair of object names ai, aj ∈ ob(A) and each R ∈ role±(K), we take
a fresh propositional variable Raiaj of QL1 to encode the ABox assertion R(ai, aj).9

By induction on the construction of a DL-LiteNbool concept C we define the QL1-formula
C∗:

⊥∗ = ⊥, (Ai)∗ = Ai(x), (≥q R)∗ = EqR(x),
(¬C)∗ = ¬C∗(x), (C1 u C2)∗ = C∗1 (x) ∧ C∗2 (x).

The DL-LiteNbool TBox T corresponds then to the QL1-sentence ∀x T ∗(x), where

T ∗(x) =
∧

C1vC2∈T

(
C∗1 (x)→ C∗2 (x)

)
. (1)

The ABox A is translated into the following pair of QL1-sentences

A†1 =
∧

Ak(ai)∈A

Ak(ai) ∧
∧

¬Ak(ai)∈A

¬Ak(ai), (2)

A†2 =
∧

Pk(ai,aj)∈A

Pkaiaj ∧
∧

¬Pk(ai,aj)∈A

¬Pkaiaj . (3)

For every role R ∈ role±(K), we need two QL1-formulas:

εR(x) = E1R(x)→ inv(E1R)(inv(dr)), (4)

δR(x) =
∧

q,q′∈QR
T , q′>q

q′>q′′>q for no q′′∈QR
T

(
Eq′R(x)→ EqR(x)

)
, (5)

where (by overloading the inv operator),

inv(EqR) =

{
EqP

−
k , if R = Pk,

EqPk, if R = P−k ,
and inv(dr) =

{
dp−k , if R = Pk,

dpk, if R = P−k .

Formula (4) says that if the domain of R is not empty then its range is not empty either:
it contains the constant inv(dr), the ‘representative’ of the domain of inv(R).

We also need formulas representing the relationship of the propositional variables Raiaj
with the unary predicates for the role domain and range: for a role R ∈ role±(K), let R† be
the following QL1-sentence

∧
ai∈ob(A)

∧
q∈QR

T

∧
aj1

,...,ajq∈ob(A)

jk 6=jk′ for k 6=k′

(q∧
k=1

Raiajk → EqR(ai)
)
∧

∧
ai,aj∈ob(A)

(
Raiaj → inv(R)ajai

)
, (6)

9. In what follows, we slightly abuse notation and write R(ai, aj) ∈ A to indicate that Pk(ai, aj) ∈ A if
R = Pk, or Pk(aj , ai) ∈ A if R = P−k .

24

The DL-Lite Family and Relations

where inv(R)ajai is the propositional variable P−k ajai if R = Pk and Pkajai if R = P−k .
Note that the first conjunct of (6) is the only part of the translation that relies on the UNA.

Finally, for the DL-LiteNbool knowledge base K = (T ,A), we set

K† = ∀x
[
T ∗(x) ∧

∧
R∈role±(K)

(
εR(x) ∧ δR(x)

)]
∧

[
A†1 ∧ A†2 ∧

∧
R∈role±(K)

R†
]
.

Thus, K† is a universal sentence of QL1.

Example 5.1 Consider, for example, the KB K = (T ,A) with

T =
{
A v ∃P−, ∃P− v A, A v ≥ 2P, > v ≤ 1P−, ∃P v A

}
and A = {A(a), P (a, a′)}. Then we obtain the following first-order translation:

K† = ∀xχ(x) ∧ A(a) ∧ Paa′ ∧(
Paa′ → E1P (a)

)
∧
(
Paa→ E1P (a)

)
∧(

Pa′a→ E1P (a′)
)
∧
(
Pa′a′ → E1P (a′)

)
∧(

P−aa′ → E1P
−(a)

)
∧
(
P−aa→ E1P

−(a)
)
∧(

P−a′a→ E1P
−(a′)

)
∧
(
P−a′a′ → E1P

−(a′)
)
∧(

Paa′ ∧ Paa→ E2P (a)
)
∧
(
Pa′a ∧ Pa′a′ → E2P (a′)

)
∧(

P−aa′ ∧ P−aa→ E2P
−(a)

)
∧
(
P−a′a ∧ P−a′a′ → E2P

−(a′)
)
∧(

Paa′ ↔ P−a′a
)
∧
(
Pa′a↔ P−aa′

)
∧
(
Paa↔ P−aa

)
∧
(
Pa′a′ ↔ P−a′a′

)
.

where

χ(x) =
(
A(x)→ E1P

−(x)
)
∧
(
E1P

−(x)→ A(x)
)
∧
(
A(x)→ E2P (x)

)
∧(

> → ¬E2P
−(x)

)
∧
(
E1P (x)→ A(x)

)
∧(

E1P (x)→ E1P
−(dp−)

)
∧
(
E1P

−(x)→ E1P (dp)
)
∧(

E2P (x)→ E1P (x)
)
∧
(
E2P

−(x)→ E1P
−(x)

)
. (7)

Theorem 5.2 A DL-LiteNbool knowledge base K = (T ,A) is satisfiable iff the QL1-sentence
K† is satisfiable.

Proof (⇐) If K† is satisfiable then there is a model M of K† whose domain consists of
all the constants occurring in K†—i.e., ob(A) ∪ dr(K) (say, an Herbrand model of K†). We
denote this domain by D and the interpretations of the (unary) predicates P , propositional
variables p and constants a of QL1 in M by PM, pM and aM, respectively. Thus, for every
constant a, we have aM = a. Let D0 be the set of all constants a, a ∈ ob(A). Without loss
of generality we may assume that D0 6= ∅.

We construct an interpretation I for DL-LiteNbool based on some domain ∆I ⊇ D0 that
will be inductively defined as the union

∆I =
∞⋃
m=0

Wm, where W0 = D0.

25

Artale, Calvanese, Kontchakov & Zakharyaschev

The interpretations of the object names ai in I are given by their interpretations in M,
namely, aIi = aM

i ∈ W0. Each set Wm+1, for m ≥ 0, is constructed by adding to Wm some
new elements that are fresh copies of certain elements from D \D0. If such a new element
w′ is a copy of w ∈ D \D0 then we write cp(w′) = w, while for w ∈ D0 we let cp(w) = w.
The set Wm \Wm−1, for m ≥ 0, will be denoted by Vm (for convenience, let W−1 = ∅, so
that V0 = D0).

The interpretations AIk of concept names Ak in I are defined by taking

AIk =
{
w ∈ ∆I | M |= A∗k[cp(w)]

}
. (8)

The interpretation P Ik of a role name Pk in I will be defined inductively as the union

P Ik =
∞⋃
m=0

Pmk , where Pmk ⊆Wm ×Wm,

along with the construction of ∆I . First, for a role R ∈ role±(K), we define the required
R-rank r(R, d) of a point d ∈ D by taking

r(R, d) = max
(
{0} ∪ { q ∈ QRT | M |= EqR[d] }

)
.

It follows from (5) that if r(R, d) = q then, for every q′ ∈ QRT , we have M |= Eq′R[d]
whenever q′ ≤ q, and M |= ¬Eq′R[d] whenever q < q′. We also define the actual R-rank
rm(R,w) of a point w ∈ ∆I at step m by taking

rm(R,w) =

{
]{w′ ∈Wm | (w,w′) ∈ Pmk }, if R = Pk,

]{w′ ∈Wm | (w′, w) ∈ Pmk }, if R = P−k .

For the basis of induction we set, for each role name Pk ∈ role(K),

P 0
k =

{
(aM
i , a

M
j) ∈W0 ×W0 | M |= Pkaiaj

}
. (9)

Observe that, by (6), for all R ∈ role±(K) and w ∈W0,

r0(R,w) ≤ r(R, cp(w)). (10)

Suppose now that Wm and the Pmk , for m ≥ 0, have already been defined. If we had
rm(R,w) = r(R, cp(w)), for all roles R ∈ role±(K) and points w ∈ Wm, then the interpre-
tation I we need would be constructed. However, in general this is not the case because
there may be some ‘defects’ in the sense that the actual rank of some points is smaller than
the required rank.

For a role name Pk ∈ role(K), consider the following two sets of defects in Pmk :

Λmk =
{
w ∈ Vm | rm(Pk, w) < r(Pk, cp(w))

}
,

Λm−k =
{
w ∈ Vm | rm(P−k , w) < r(P−k , cp(w))

}
.

The purpose of, say, Λmk is to identify those ‘defective’ points w ∈ Vm from which precisely
r(Pk, cp(w)) distinct Pk-arrows should start (according to M), but some arrows are still
missing (only rm(Pk, w) many arrows exist). To ‘cure’ these defects, we extend Wm and
Pmk respectively to Wm+1 and Pm+1

k according to the following rules:

26

The DL-Lite Family and Relations

(Λmk) Let w ∈ Λmk , q = r(Pk, cp(w)) − rm(Pk, w) and d = cp(w). We have M |= Eq′Pk[d]
for some q′ ∈ QRT with q′ ≥ q > 0. Then, by (5), M |= E1Pk[d] and, by (4),
M |= E1P

−
k [dp−k]. In this case we take q fresh copies w′1, . . . , w

′
q of dp−k (and set

cp(w′i) = dp−k , for 1 ≤ i ≤ q), add them to Wm+1 and add the pairs (w,w′i), 1 ≤ i ≤ q,
to Pm+1

k .

(Λm−k) Let w ∈ Λm−k , q = r(P−k , cp(w))− rm(P−k , w) and d = cp(w). Then M |= Eq′P
−
k [d]

for some q′ ∈ QRT with q′ ≥ q > 0. So, by (5), we have M |= E1P
−
k [d] and, by (4),

M |= E1Pk[dpk]. Take q fresh copies w′1, . . . , w
′
q of dpk (and set cp(w′i) = dpk, for

1 ≤ i ≤ q), add them to Wm+1 and add the pairs (w′i, w), 1 ≤ i ≤ q, to Pm+1
k .

Example 5.3 Consider again the KBK and its first-order translationK† from Example 5.1.
Consider also a model M of K† with the domain D = {a, a′, dp, dp−}, where

AM = (E1P)M = (E1P
−)M = (E2P)M = D, (E2P

−)M = ∅,
(Paa′)M = (P−a′a)M = t.

We begin the construction of the interpretation I of K by setting W0 = V0 = D0 = {a, a′}
and P 0 = {(a, a′)}. Then we compute the required and actual ranks r(R,w) and r0(R,w),
for R ∈ {P, P−} and w ∈ V0:

(i) r(P, a) = 2 and r0(P, a) = 1, (ii) r(P, a′) = 2 and r0(P, a′) = 0,
(iii) r(P−, a) = 1 and r0(P−, a) = 0, (iv) r(P−, a′) = 1 and r0(P−, a′) = 1.

At the next step, we draw a P -arrow from a to a fresh copy of dp− to cure defect (i), draw
two P -arrows from a′ to two more fresh copies of dp− in order to cure defects (ii), and finally
we take a fresh copy of dp and connect it to a by a P -arrow, thereby curing defect (iii).

One more step of this ‘unraveling’ construction is shown in Figure 4.

Observe the following important property of the construction: for m,m0 ≥ 0, w ∈ Vm0

and R ∈ role±(K),

rm(R,w) =


0, if m < m0,

q, if m = m0, for some q ≤ r(R, cp(w)),
r(R, cp(w)), if m > m0.

(11)

To prove this property, consider all possible cases:

• If m < m0 then the point w has not been added to Wm yet, i.e., w /∈Wm, and so we
have rm(R,w) = 0.

• If m = m0 and m0 = 0 then rm(R,w) ≤ r(R, cp(w)) follows from (10).

• If m = m0 and m0 > 0 then w was added at step m0 to cure a defect of some point
w′ ∈ Wm0−1. This means that there is Pk ∈ role(K) such that either (w′, w) ∈ Pm0

k

and w′ ∈ Λm0−1
k or (w,w′) ∈ Pm0

k and w′ ∈ Λ(m0−1)−
k . Consider the former case. We

have cp(w) = dp−k . Since fresh witnesses are picked up every time the rule (Λm0−1
k)

27

Artale, Calvanese, Kontchakov & Zakharyaschev

.

.

a

a′

dp

dp−

V0

V1 V2

Figure 4: Unraveling model M (first three steps).

is applied, rm0(P−k , w) = 1, rm0(Pk, w) = 0 and rm0(R,w) = 0, for every R 6= Pk, P
−
k .

So it suffices to show that r(P−k , dp
−
k) ≥ 1. Indeed, as M |= EqPk[cp(w′)] for some

q ∈ QRT , we have, by (5), M |= E1Pk[cp(w′)], and so, by (4), M |= E1P
−
k [dp−k]. By the

definition of r, we have r(P−k , dp
−
k) ≥ 1. The latter case is considered analogously.

• If m = m0 + 1 then, for each role name Pk, all defects of w are cured at step m0 + 1
by applying the rules (Λm0

k) and (Λm0−
k). Therefore, rm0+1(R,w) = r(R, cp(w)).

• If m > m0 +1 then (11) follows from the observation that new arrows involving w can
only be added at step m0 + 1, that is, for all m ≥ 0 and each role name Pk ∈ role(K),

Pm+1
k \ Pmk ⊆ Vm × Vm+1 ∪ Vm+1 × Vm. (12)

It follows that, for all R ∈ role±(K), q ∈ QRT and w ∈ ∆I , we have:

M |= EqR[cp(w)] iff w ∈ (≥ q R)I . (13)

Indeed, if M |= EqR[cp(w)] then, by definition, r(R, cp(w)) ≥ q. Let w ∈ Vm0 . Then,
by (11), rm(R,w) = r(R, cp(w)) ≥ q, for all m > m0. It follows from the definition of
rm(R,w) and RI that w ∈ (≥ q R)I . Conversely, let w ∈ (≥ q R)I and w ∈ Vm0 . Then,
by (11), q ≤ rm(R,w) = r(R, cp(w)), for all m > m0. So, by the definition of r(R, cp(w))
and (5), M |= EqR[cp(w)].

By induction on the construction of concepts C in K one can readily see that, for every
w ∈ ∆I , we have

M |= C∗[cp(w)] iff w ∈ CI . (14)

Indeed, the basis is trivial for B = ⊥ and follows from (8) for B = Ak and from (13)
for B = ≥ q R, while the induction step for the Booleans (C = ¬C1 and C = C1 u C2)
immediately follows from the induction hypothesis.

28

The DL-Lite Family and Relations

Finally, we show that for each ψ ∈ T ∪ A,

M |= ψ† iff I |= ψ.

The case ψ = C1 v C2 follows from (14); for ψ = Ak(ai) and ψ = ¬Ak(ai) from the
definition of AIk . For ψ = Pk(ai, aj) and ψ = ¬Pk(ai, aj), we have (aIi , a

I
j) ∈ P Ik iff, by (12),

(aIi , a
I
j) ∈ P 0

k iff, by (9), M |= Pkaiaj .
Thus, we have established that I |= K.
(⇒) Conversely, suppose that I |= K is an interpretation with domain ∆I . We construct

a model M of K† based on the same ∆I . For every ai ∈ ob(A), we let aM
i = aIi and, for

every R ∈ role±(K), we take some d ∈ (≥ 1R)I if (≥ 1R)I 6= ∅ and an arbitrary element
d ∈ ∆I otherwise, and let drM = d. Next, for every concept name Ak, we let AM

k = AIk
and, for every role R ∈ role±(K) and q ∈ QRT , we set EqRM = (≥ q R)I . Finally, for every
role R ∈ role±(K) and every pair of objects ai, aj ∈ ob(A), we define (Raiaj)M to be true
iff I |= R(ai, aj). One can readily check that M |= K†. Details are left to the reader. q

The first-order translation K† of K is obviously too lengthy to provide us with reasonably
low complexity results: |K†| ≤ |K|+ (2+ q2

T) · |role(K)|+ 2 · |role(K)| · |ob(A)|qT . However, it
follows from the proof above that a lot of information in this translation is redundant and
can be safely omitted.

Now we define a more concise translation K‡ of K = (T ,A) into QL1 by taking:

K‡ = ∀x
[
T ∗(x) ∧

∧
R∈role±(K)

(
εR(x) ∧ δR(x)

)]
∧ A†1 ∧ A‡2 ,

where T ∗(x), εR(x), δR(x) and A†1 are defined as before by means of (1), (4), (5) and (2),
respectively, and

A‡2 =
∧

a∈ob(A)

∧
R∈role±(K)

∃a′∈ob(A) R(a,a′)∈A

EqR,aR(a) ∧
∧

¬Pk(ai,aj)∈A

(¬Pk(ai, aj))⊥, (15)

where qR,a is the maximum number in QRT such that there are qR,a many distinct ai with
R(a, ai) ∈ A (here we use the UNA) and (¬Pk(ai, aj))⊥ = ⊥ if Pk(ai, aj) ∈ A and >
otherwise. Now both the size of A‡2 and the size of K‡ are linear in the size of A and K,
respectively, no matter whether the numbers are coded in unary or in binary.

More importantly, the translation ·‡ can actually be done in LogSpace. Indeed, this
is trivially the case for T ∗(x), εR(x), δR(x), A†1 and the last conjunct of A‡2 . As for
the first conjunct of A‡2 then, for R ∈ role±(K) and a ∈ ob(A), the maximum qR,a in
QRT such that there are qR,a many distinct ai with R(a, ai) ∈ A, can be computed using
log min(maxQRT , |ob(A)|) + log |ob(A)| cells. Initially we set q = 0, and then enumerate all
object names ai in A incrementing the current q each time we find R(a, ai) ∈ A. We stop if
q = maxQRT or we reach the end of the object name list. The resulting qR,a is the maximum
number in QRT not exceeding q.

Example 5.4 The translation K‡ of the KB K from Example 5.1 looks as follows:

K‡ = ∀xχ(x) ∧ A(a) ∧ E1P (a) ∧ E1P
−(a′),

where χ(x) is defined by (7).

29

Artale, Calvanese, Kontchakov & Zakharyaschev

Corollary 5.5 A DL-LiteNbool KB K is satisfiable iff the QL1-sentence K‡ is satisfiable.

Proof The claim follows from the fact that K† is satisfiable iff K‡ is satisfiable. Indeed, if
M |= K† then clearly M |= K‡. Conversely, if M |= K‡ then one can construct a new model
M′ based on the same domain D as M by taking:

• AM′
k = AM

k , for all concept names Ak;

• EqRM′ = EqR
M, for all R ∈ role±(K) and q ∈ QRT ;

• (Raiaj)M′ is true iff R(ai, aj) ∈ A;

• aM′
i = aM

i , for all ai ∈ ob(A);

• drM′ = drM, for all R ∈ role±(K).

We claim that M′ |= K†. Indeed, EqRM′ = EqR
M, for every R ∈ role±(K) and q ∈ QRT . It

follows then that M′ |= ∀x T ∗(x) and M′ |= ∀x εR(x). By definition, M′ |= A†1 , M′ |= A†2

and M′ |= ∀x δR(x). It remains to show that M′ |= R†. Suppose M′ |=
∧q
i=1Raaji , that

is R(a, aji) ∈ A, for distinct aj1 , . . . , ajq , and q ∈ QRT . Clearly, we have q ≤ qR,a and
M |= EqR(a) and thus M′ |= EqR(a). q

As an immediate consequence of Corollary 5.5, the facts that the translation ·‡ can be
done in LogSpace, that the satisfiability problem for QL1-formulas is NP-complete and
that DL-Litebool contains all the Booleans—and so can encode full propositional logic—we
obtain the following result:

Theorem 5.6 Satisfiability of DL-LiteNbool, DL-LiteFbool and DL-Litebool knowledge bases is
NP-complete for combined complexity.

Observe now that if K is a DL-LiteNkrom KB then K‡ is in the Krom fragment of QL1.

Theorem 5.7 Satisfiability of DL-LiteNα , DL-LiteFα and DL-Liteα knowledge bases, where
α ∈ {core, krom}, is NLogSpace-complete for combined complexity.

Proof As the satisfiability problem for Krom formulas with the prefix of the form ∀x (as
in K‡) is NLogSpace-complete (see, e.g., Börger et al., 1997, Exercise 8.3.7) and ·‡ is a
LogSpace reduction, satisfiability is in NLogSpace for all the logics mentioned in the
theorem. As for the lower bound, it suffices to recall that the NLogSpace-hardness for
satisfiability of propositional Krom formulas is proved in (Börger et al., 1997) by reduction
of the directed graph reachability problem using only ‘core’ propositional formulas, and so
satisfiability in all of the above logics is NLogSpace-hard. q

If K is a DL-LiteNhorn KB then K‡ belongs to the universal Horn fragment of QL1.

Theorem 5.8 Satisfiability of DL-LiteNhorn, DL-LiteFhorn and DL-Litehorn KBs is P-complete
for combined complexity.

30

The DL-Lite Family and Relations

Proof As QL1 contains no function symbols and K‡ is universal, satisfiability of K‡ is
LogSpace-reducible to satisfiability of a set of propositional Horn formulas, namely, the
formulas that are obtained from K‡ by replacing x with each of the constants occurring
in K‡. It remains to recall that the satisfiability problem for propositional Horn formulas
is P-complete (see, e.g., Papadimitriou, 1994), which gives the required upper bound for
DL-LiteNhorn and lower bound for DL-Litehorn. q

5.2 DL-LiteHFcore is ExpTime-hard

Unfortunately, the translation ·‡ constructed in the previous section cannot be extended
to logics of the form DL-LiteHNα with both number restrictions and role inclusions. In this
section we show that the satisfiability problem for DL-LiteHFcore KBs is ExpTime-hard, which
matches the upper bound for satisfiability of DL-LiteHNbool KBs even under binary coding of
natural numbers (Tobies, 2001).

Note first that, although intersection is not allowed on the left-hand side of DL-LiteHFcore

concept inclusions, in certain cases (when the right-hand side is consistent) we can ‘simulate’
it by using role inclusions and functionality constraints. Suppose that a knowledge base K
contains a concept inclusion of the form C1 u C2 v C. Define a new KB K′ by replacing
this axiom in K with the following set of new axioms, where R1, R2, R3, R12, R23 are fresh
role names:

C1 v ∃R1 C2 v ∃R2, (16)
R1 v R12, R2 v R12, (17)

≥ 2R12 v ⊥, (18)
∃R−1 v ∃R

−
3 , (19)

∃R3 v C, (20)
R3 v R23, R2 v R23, (21)

≥ 2R−23 v ⊥. (22)

Lemma 5.9 (i) If I |= K′ then I |= K, for every interpretation I.
(ii) If I |= K and CI 6= ∅ then there is a model I ′ of K′ which has the same domain as

I and agrees with it on every symbol from K.

Proof (i) Suppose that I |= K′ and x ∈ CI1 ∩ CI2 . By (16), there is y with (x, y) ∈ RI1 ,
and so y ∈ (∃R−1)I , and there is z with (x, z) ∈ RI2 . By (17), {(x, y), (x, z)} ⊆ RI12, whence
y = z in view of (18). By (19), y ∈ (∃R−3)I and hence there is u with (u, y) ∈ RI3 and
u ∈ (∃R3)I . By (20), u ∈ CI . By (21), (u, y) ∈ RI23 and (x, y) ∈ RI23. Finally, it follows
from (22) that u = x, and so x ∈ CI . Thus, I |= K.

(ii) Take some point c ∈ CI and define an extension I ′ of I to the new role names by
setting:

• RI′1 = {(x, x) | x ∈ CI1 },

• RI′2 = {(x, x) | x ∈ CI2 },

31

Artale, Calvanese, Kontchakov & Zakharyaschev

• RI′3 = {(x, x) | x ∈ (C1 u C2)I} ∪ {(c, x) | x ∈ (C1 u ¬C2)I},

• RI′12 = RI
′

1 ∪RI
′

2 and RI
′

23 = RI
′

2 ∪RI
′

3 .

It is readily seen that I ′ satisfies all the axioms (16)–(22), and so I ′ |= K′. q

We are now in a position to prove the following:

Theorem 5.10 Satisfiability of DL-LiteHFcore KBs is ExpTime-hard for combined complexity
(with or without the UNA).

Proof We will prove this theorem in two steps. First we consider the logic DL-LiteHFhorn

and show how to encode the behavior of polynomial-space-bounded alternating Turing ma-
chines (ATMs, for short) by means of DL-LiteHFhorn KBs. As APSpace = ExpTime, where
APSpace is the class of problems recognized by polynomial-space-bounded ATMs (see, e.g.,
Kozen, 2006), this will establish ExpTime-hardness of satisfiability for DL-LiteHFhorn. Then,
using Lemma 5.9, we will show how to get rid of conjunctions on the left-hand side of the
concept inclusions involved in this encoding of ATMs and thus establish ExpTime-hardness
of DL-LiteHFcore.

Without loss of generality, we can consider only ATMs M with binary computational
trees. This means that, for every non-halting state q and every symbol a from the tape
alphabet, M has precisely two instructions of the form

(q, a) ;0
M (q′, a′, d′) and (q, a) ;1

M (q′′, a′′, d′′), (23)

where d′, d′′ ∈ {→,←} and → (resp., ←) means ‘move the head right (resp., left) one cell’.
We remind the reader that each non-halting state ofM is either an and-state or an or-state.

Given such an ATMM, a polynomial function p(n) such that every run ofM on every
input of length n does not use more than p(n) tape cells, and an input word ~a = a1, . . . , an,
we construct a DL-LiteHFhorn knowledge base KM,~a with the following properties: (i) the size
of KM,~a is polynomial in the size of M, ~a, and (ii) M accepts ~a iff KM,~a is not satisfiable.
Denote by Q the set of states and by Σ the tape alphabet of M.

To encode the instructions of M, we need the following roles:

• Sq, S0
q , S

1
q , for each q ∈ Q: informally, x ∈ (∃S−q)I , for some interpretation I, means

that x represents a configuration of M with the state q, and x ∈ (∃Skq)I means that
the next state, according to the transition ;k

M, is q, where k ∈ {0, 1};

• Hi, H
0
i , H

1
i , for each i ≤ p(n): x ∈ (∃H−i)I means that x represents a configuration of

M where the head scans the ith cell, and x ∈ (∃Hk
i)I that, according to the transition

;k
M, k ∈ {0, 1}, in the next configuration the head scans the ith cell;

• Cia, C0
ia, C

1
ia, for each i ≤ p(n) and each a ∈ Σ: x ∈ (∃C−ia)I means that x represents

a configuration of M where the ith cell contains a, and x ∈ (∃Ckia)I that, according
to ;k

M, k ∈ {0, 1}, in the next configuration the ith cell contains a.

This intended meaning can be encoded using the following concept inclusions: for every
instruction (q, a) ;k

M (q′, a′,→) of M and every i < p(n),

∃S−q u ∃H−i u ∃C
−
ia v ∃H

k
i+1 u ∃Skq′ u ∃Ckia′ , (24)

32

The DL-Lite Family and Relations

and for every instruction (q, a) ;k
M (q′, a′,←) of M and every i, 1 < i ≤ p(n),

∃S−q u ∃H−i u ∃C
−
ia v ∃H

k
i−1 u ∃Skq′ u ∃Ckia′ . (25)

To preserve the symbols on the tape that are not in the active cell, we use the following
concept inclusions, for k ∈ {0, 1}, i, j ≤ p(n) with j 6= i, and a ∈ Σ:

∃H−j u ∃C
−
ia v ∃C

k
ia. (26)

To ‘synchronize’ our roles, we need two more (functional) roles Tk and a number of role
inclusions to be added to the TBox: for all k ∈ {0, 1}, i ≤ p(n), q ∈ Q, and a ∈ Σ,

Ckia v Cia, Hk
i v Hi, Skq v Sq, (27)

Ckia v Tk, Hk
i v Tk, Skq v Tk, (28)

≥ 2Tk v ⊥. (29)

It remains to encode the acceptance conditions forM on ~a. This can be done with the help
of the role names Yk, for k ∈ {0, 1}, and the concept name A:

∃S−q v A, q an accepting state, (30)

Yk v Tk, (31)
≥ 2T−k v ⊥, (32)
∃T−k uA v ∃Y

−
k , (33)

∃S−q u ∃Yk v A, q an or-state, (34)

∃S−q u ∃Y0 u ∃Y1 v A, q an and-state. (35)

The TBox T of the DL-LiteHFhorn knowledge base KM,~a we are constructing consists of the
axioms (24)–(35) together with the auxiliary axiom

A uD v ⊥, (36)

where D is a fresh concept name. The ABox A of KM,~a is comprised of the following
assertions, for some object names s and u:

Sq0(u, s), q0 the initial state, (37)
H1(u, s), (38)
Ciai(u, s), i ≤ p(n), ai the ith symbol on the input tape, (39)
D(s). (40)

Clearly, KM,~a = (T ,A) is a DL-LiteHFhorn KB and its size is polynomial in the size of M, ~a.

Lemma 5.11 The ATM M accepts ~a iff the KB KM,~a is not satisfiable.

Proof (⇒) Suppose that M accepts ~a but I |= KM,~a for some interpretation I. Then we
can reconstruct the full computation tree for M on ~a by induction in the following way.

33

Artale, Calvanese, Kontchakov & Zakharyaschev

Let the root of the tree be the point sI . By (37)–(39), s represents the initial config-
uration of M on ~a in accordance with the intended meaning of the roles Sq0 , H1 and Ciai

explained above (it does not matter if, for instance, we also have sI ∈ (∃H−5)I).
Assume now that we have already found a point x ∈ ∆I representing some configuration

c = b1, . . . , bi−1, (q, bi), bi+1, . . . , bp(n), (41)

where q is the current non-halting state and the head scans the ith cell containing bi. This
means that we have

x ∈ (∃S−q)I ∩ (∃H−i)I and x ∈ (∃C−jbj)I , for all j ≤ p(n).

Assume also that M contains two instructions of the form (23) for (q, bi), that is q is non-
halting. If we have (q, bi) ;k

M (q′, b′,→), for k = 0 or 1, then, by (24) and (26), there are
points ys, yh and yj , for j ≤ p(n), in ∆I such that

(x, ys) ∈ (Skq′)
I , (x, yh) ∈ (Hk

i+1)I , (x, yi) ∈ (Ckib′)
I , (x, yj) ∈ (Ckjbj)I , for j 6= i.

By (28)–(29), S0
q′ , H

0
i+1, C0

ib′i
and the C0

jbj
, j 6= i, are all sub-roles of the functional role Tk,

and so all the points ys, yh and yj coincide; we denote this point by xk. By (27), we then
have:

(x, xk) ∈ T Ik , xk ∈ (∃S−q′)
I ∩ (∃H−i+1)I ∩ (∃C−ib′)

I and xk ∈ (∃C−jbj)I , for j 6= i.

Similarly, if we have (q, bi) ;k
M (q′′, b′′,←), for k = 0 or 1, then, by (25) and (26), there is

a point xk ∈ ∆I such that

(x, xk) ∈ T Ik , xk ∈ (∃S−q′′)
I ∩ (∃H−i−1)I ∩ (∃C−ib′′)

I and xk ∈ (∃C−jbj)I , for j 6= i.

Thus, for k = 0, 1, xk is a Tk-successor of x representing the configuration ck of M after it
has executed (q, bi) ;k

M (q′′, b′′, d) in c; in this case ck is called the k-successor of c.
According to (30), every point in the constructed computation tree for M on ~a repre-

senting a configuration with an accepting state is in AI . Suppose now, inductively, that
x represents some configuration c of the form (41), q is an or-state, xk represents the k-
successor of c and (x, xk) ∈ T Ik , for k = 0, 1, and one of the xk, say x0, is in AI . In
view of (33), we have x0 ∈ (∃Y −0)I . As T−0 is functional by (32) and Y0 is a sub-role of
T0 by (31), (x, x0) ∈ Y I0 , and so, by (34), x ∈ AI . The case of x being an and-state is
considered analogously with the help of (35).

Since M accepts ~a, we then conclude that sI ∈ AI , contrary to (36) and (40).
(⇐) Conversely, suppose now thatM does not accept ~a. Consider the full computation

tree (∆, <0 ∪ <1) with nodes labeled with configurations ofM in such a way that the root
is labeled with the initial configuration

(q0, a1), a2, . . . , an, an+1, . . . , ap(n),

(where the ai, for n+1 ≤ i ≤ p(n), are all ‘blank’), and if some node x in the tree is labeled
with a non-halting c of the form (41) andM contains two instructions of the form (23), then
x has one <0-successor labeled with the 0-successor of c and one <1-successor labeled with
the 1-successor of c. (It should be emphasized that (∆, <0 ∪ <1) is a tree, where different
nodes may be labeled with the same configuration.)

We use this tree to construct an interpretation I = (∆I , ·I) as follows:

34

The DL-Lite Family and Relations

• ∆I = ∆ ∪ {u}, for some u /∈ ∆;

• sI is the root of ∆ and uI = u;

• DI = {sI};

• (x, xk) ∈ (Skq′)
I , (x, xk) ∈ (Hk

i+1)I , (x, xk) ∈ (Ckib′)
I , and (x, xk) ∈ (Ckjbj)I , for j 6= i,

iff x is labeled with c of the form (41), (q, bi) ;k
M (q′, b′,→) and x <k xk, for k = 0, 1;

• (x, xk) ∈ (Skq′)
I , (x, xk) ∈ (Hk

i−1)I , (x, xk) ∈ (Ckib′)
I , and (x, xk) ∈ (Ckjbj)I , for j 6= i,

iff x is labeled with c of the form (41), (q, bi) ;k
M (q′, b′,←) and x <k xk, for k = 0, 1;

• (u, sI) ∈ (Sq0)I , (u, sI) ∈ (H1)I , (u, sI) ∈ (Ciai)
I , i ≤ p(n) and over ∆ the extensions

for the roles Sq, Hi and Cia are defined according to (27);

• T Ik = <k, for k = 0, 1;

• Y I0 , Y I1 and AI are defined inductively:

– Induction basis: if x ∈ ∆ is labeled with an accepting configuration, then x ∈ AI .
– Induction step: (i) if x <k xk, for k = 0, 1, and xk ∈ AI , then (x, xk) ∈ Y Ik ; (ii) if
x is an or-state (respectively, and-state) and (x, xk) ∈ Y Ik for some (respectively,
all) k ∈ {0, 1}, then x ∈ AI .

It follows from the given definition that I |= KM,~a. Details are left to the reader. q

The lemma we have just proved establishes that satisfiability of DL-LiteHFhorn KBs is
ExpTime-hard. Our next aim is to show how one can eliminate the conjunctions in the
left-hand side of the TBox axioms (24)–(26), (33)–(35). We will do this with the help of
Lemma 5.9. Before applying it, we check first that if KM,~a is satisfiable then it is satisfiable
in an interpretation I such that I |= KM,~a and CI 6= ∅, for every C occurring in an
axiom of the form C1 u C2 v C in K. Consider, for instance, axiom (24) and assume that
I |= KM,~a, but (∃Skq′)I = ∅. Then, we can construct a new interpretation I ′ by adding two
new points, say x and y, to the domain of I, and setting (x, y) ∈ (Skq′)

I′ , (x, y) ∈ (Sq′)I
′
,

(x, y) ∈ (Tk)I
′
. Furthermore, if q′ is an accepting state, we also set y ∈ AI′ and (x, y) ∈ Y I′k .

One can readily check that I ′ is still a model for KM,~a. The other conjuncts of (24) and
the remaining axioms are considered analogously.

After an application of Lemma 5.9 to an axiom of the form C1uC2 v C with C2 = C ′2uC ′′2
we obtain, by (16)–(22), a new KB K′ with the concept inclusion of the form C ′2uC ′′2 v ∃R1,
which also requires treatment by means of the same lemma. To be able to do this, we again
have to check that K′ is satisfiable in some interpretation I ′′ with (∃R1)I

′′ 6= ∅. Suppose
that I ′ |= K′ and (∃R1)I

′
= ∅. Then we can construct I ′′ by adding two new points, say x

and y, to the domain of I ′, adding x to CI
′

and (x, y) to each of RI
′

1 , RI
′

12, RI
′

23 and RI
′

3 . It
is readily seen that I ′′ |= K′.

It is to be noted that the proof above does not depend on whether the UNA is adopted
or not. q

As an immediate consequence we obtain:

35

Artale, Calvanese, Kontchakov & Zakharyaschev

Corollary 5.12 Satisfiability of DL-LiteHFα and DL-LiteHNα KBs with or without the UNA
is ExpTime-complete for combined complexity, where α ∈ {core, krom, horn, bool}.

5.3 Reconciling Number Restrictions and Role Inclusions

As we have seen in the previous section, the unrestricted interaction between number re-
strictions and role inclusions allowed in the logics of the form DL-LiteHNα results in high
combined complexity of satisfiability. In Section 6.2, we shall see that the data complexity
of instance checking and query answering also becomes unacceptably high for these logics.
A quick look at the proof of Theorem 5.10 reveals the ‘culprit:’ the interplay between role
inclusions R1 v R, R2 v R and functionality constraints ≥2R v ⊥, which effectively mean
that if R1(x, y) and R2(x, z) then y = z. In this section we study the case when such an
interplay is not allowed.

Recall from Section 2.1 that DL-Lite
(HN)
α TBoxes T , for α ∈ {core, krom, horn, bool},

satisfy the following conditions:

(A1) T may contain only positive occurrences of qualified number restrictions ≥ q R.C,
where C is a conjunction of concepts allowed on the right-hand side of α-concept
inclusions;

(A2) if ≥ q R.C occurs in T , then T does not contain negative occurrences of number
restrictions ≥ q′R or ≥ q′ inv(R) with q′ ≥ 2;

(A3) if R has a proper sub-role in T , then T does not contain negative occurrences of
≥ q R or ≥ q inv(R) with q ≥ 2.

DL-Lite
(HN)
α TBoxes can contain role constraints such as Dis(R1, R2), Asym(Pk), Sym(Pk),

Irr(Pk), and Ref(Pk).
Our main aim in this section is to prove the following theorem and develop the technical

tools we need to investigate the data complexity of reasoning with DL-Lite
(HN)
bool and its

sublogics later on in the paper.

Theorem 5.13 For combined complexity, (i) satisfiability of DL-Lite
(HN)
bool KBs is NP-

complete; (ii) satisfiability of DL-Lite
(HN)
horn KBs is P-complete; and (iii) satisfiability of

DL-Lite
(HN)
krom and DL-Lite

(HN)
core KBs is NLogSpace-complete.

Let us consider first the sub-language of DL-Lite
(HN)
bool without qualified number restric-

tions and the role constraints mentioned above; we denote it by DL-Lite
(HN)−

bool . This sub-

language is required for purely technical reasons. In Section 7, we will also use DL-Lite
(HN)−

horn ,
but we do not need the core or Krom fragments.

Suppose we are given a DL-Lite
(HN)−

bool KB K = (T ,A). Let Id be a distinguished
role name. We will use it to simulate the identity relation required for encoding the role
constraints. We assume that either K does not contain Id at all or satisfies the following
conditions:

(Id1) Id(ai, aj) ∈ A iff i = j, for all ai, aj ∈ ob(A),

36

The DL-Lite Family and Relations

(Id2)
{
> v ∃Id, Id− v Id

}
⊆ T , and QId

T = QId−
T = {1},

(Id3) Id is only allowed in role inclusions of the form Id− v Id and Id v R.

In what follows, without loss of generality, we will assume that

(Q) QRT ⊆ QR
′
T whenever R v∗T R′

(for if this is not the case we can always add the missing numbers to QR
′
T , e.g., by introducing

fictitious concept inclusions of the form ⊥ v ≥ q R′).
Now, in the same way as in Section 5.1, we define two translations ·†e and ·‡e of K into

the one-variable fragment QL1 of first-order logic. The former translation, ·†e , retains the
information about the relationships between ABox objects, and we show that every model
of K†e can again be ‘unraveled’ into a model of K. We define ·†e by taking:

K†e = ∀x
[
T ∗(x) ∧ T R(x) ∧

∧
R∈role±(K)

(
εR(x) ∧ δR(x)

)]
∧

[
A†1 ∧ A†2 ∧

∧
R∈role±(K)

R† ∧
∧

RvR′∈T
ai,aj∈ob(A)

(
Raiaj → R′aiaj

)]
,

where T ∗(x), A†1 , A†2 , εR(x), δR(x) and R† are as in (1)–(6) and

T R(x) =
∧

RvR′∈T or
inv(R)vinv(R′)∈T

∧
q∈QR

T

(
EqR(x)→ EqR

′(x)
)
. (42)

The following lemma is an analogue of Theorem 5.2:

Lemma 5.14 A DL-Lite
(HN)−

bool KB K is satisfiable iff the QL1-sentence K†e is satisfiable.

Proof The proof basically follows the lines of the proof of Theorem 5.2 with some modifica-
tions. We present a modified unraveling construction here; the converse direction is exactly
the same as in Theorem 5.2.

In each equivalence class [Ri] = {Rj | Ri ≡∗T Rj} we select a single role (a representative
of that class) and denote it by rep∗T (Ri). When extending Pmk to Pm+1

k , we use the following
modified ‘curing’ rules:

(Λmk) If Pk 6= rep∗T (Pk) do nothing: the defects are cured for rep∗T (Pk). Otherwise, let
w ∈ Λmk , q = r(Pk, cp(w)) − rm(Pk, w) and d = cp(w). We have M |= Eq′Pk[d] for
some q′ ≥ q > 0. Then, by (5), M |= E1Pk[d] and, by (4), M |= E1P

−
k [dp−k]. In this

case we take q fresh copies w′1, . . . , w
′
q of dp−k (and set cp(w′i) = dp−k , for 1 ≤ i ≤ q),

add them to Wm+1 and

• add the pairs (w,w′i), 1 ≤ i ≤ q, to each Pm+1
j with Pk v∗T Pj (including

Pj = Pk);

• add the pairs (w′i, w), 1 ≤ i ≤ q, to each Pm+1
j with P−k v

∗
T Pj ;

• if Id occurs in K, add the pairs (w′i, w
′
i), 1 ≤ i ≤ q, to each Pm+1

j with Id v∗T Pj .

37

Artale, Calvanese, Kontchakov & Zakharyaschev

(Λm−k) This rule is the mirror image of (Λmk): Pk and dp−k are replaced everywhere with
P−k and dpk, respectively; see the proof of Theorem 5.2.

It follows from this definition that Id never has any defects and is interpreted in the resulting
interpretation I by the identity relation IdI =

{
(w,w) | w ∈ ∆I

}
; the interpretations of

roles respect all the role inclusions, i.e., RI1 ⊆ RI2 whenever R1 v∗T R2.
It remains to show that the constructed interpretation I is indeed a model of K.

First, (11) trivially holds for Id as both the required and actual ranks are equal to 1. Sec-
ond, (11) holds for R such that R 6= Id and R has no proper sub-roles: the proof is exactly
the same as in Theorem 5.2, taking into account that we cure defects only for a single role in
each equivalence class and that, by (42), for all R′ ∈ [R], we have r(R′, cp(w)) = r(R, cp(w))
and r(inv(R), cp(w)) = r(inv(R′), cp(w)). It follows that (13) holds for Id and any role R
without proper sub-roles. However, (13) does not necessarily hold for roles R with proper
sub-roles: as follows from the construction, the actual rank may be greater than the required
rank, in which case we only have the following:

if M |= EqR[cp(w)] then w ∈ (≥ q R)I .

However, this is enough for our purposes. By induction on the structure of concepts and
using (A3), one can show that I |= C1 v C2 whenever M |= ∀x (C∗1 (x)→ C∗2 (x)), for each
concept inclusion C1 v C2 ∈ T , and therefore, I |= T . We also have I |= A (see the proof
of Theorem 5.2) and thus I |= K. q

Remark 5.15 It follows from the proofs of Theorem 5.2 and Lemma 5.14 that, for the
DL-Lite

(HN)−

bool KB K = (T ,A), every model M of K‡e induces a model IM of K with the
following properties:

(ABox) For all ai, aj ∈ ob(A), we have (aIM
i , aIM

j) ∈ RIM iff R(ai, aj) ∈ CleT (A), where

CleT (A) =
{
R2(ai, aj) | R1(ai, aj) ∈ A, R1 v∗T R2

}
.

(forest) The object names a ∈ ob(A) induce a partitioning of ∆IM into disjoint labeled
trees Ta = (Ta, Ea, `a) with nodes Ta, edges Ea, root aIM , and a labeling function
`a : Ea → role±(K) \ {Id, Id−}.

(copy) There is a function cp : ∆IM → ob(A) ∪ dr(K) such that

• cp(aIM) = a for a ∈ ob(A), and

• cp(w) = dr if, for some a and w′ ∈ Ta, (w′, w) ∈ Ea and `a(w′, w) = inv(R).

(iso) For each R ∈ role±(K), all labeled subtrees generated by elements w ∈ ∆IM with
cp(w) = dr are isomorphic.

(concept) w ∈ BIM iff M |= B∗[cp(w)], for each basic concept B in K and each w ∈ ∆IM .

38

The DL-Lite Family and Relations

(role) IdIM =
{

(w,w)
∣∣ w ∈ ∆IM

}
and, for every other role name Pk,

P IM
k =

{
(aIM
i , aIM

j) | R(ai, aj) ∈ A, R v∗T Pk
}
∪

{
(w,w) | Id v∗T Pk

}
∪⋃

a∈ob(A)

{
(w,w′) ∈ Ea | `a(w,w′) = R, R v∗T Pk

}
.

Such a model will be called an untangled model of K (the untangled model of K induced by
M, to be more precise).

The translation ·†e generalizes ·† and thus suffers from the same exponential blowup. So
we define an optimized translation, ·‡e , which is linear in the size of K, by taking:

K‡e = ∀x
[
T ∗(x) ∧ T R(x) ∧

∧
R∈role±(K)

(
εR(x) ∧ δR(x)

)]
∧ A†1 ∧ A‡2e ,

where T ∗(x), T R(x), εR(x), δR(x) and A†1 are defined by (1), (42), (4), (5) and (2),
respectively, and

A‡2e =
∧

a∈ob(A)

∧
R∈role±(K)

∃a′∈ob(A) R(a,a′)∈CleT (A)

EqeR,a
R(a) ∧

∧
¬Pk(ai,aj)∈A

(¬Pk(ai, aj))⊥e , (43)

where qeR,a is the maximum number in QRT such that there are qeR,a many distinct ai with
R(a, ai) ∈ CleT (A) (here we use the UNA) and (¬Pk(ai, aj))⊥e = ⊥ if Pk(ai, aj) ∈ CleT (A)
and > otherwise; cf. (15). We note again that if QRT = {1}, for all roles R ∈ role±(K), then
the translation does not depend on whether the UNA is adopted or not.

The following corollary is proved similarly to Corollary 5.5:

Corollary 5.16 A DL-Lite
(HN)−

bool KB K is satisfiable iff the QL1-sentence K‡e is satisfiable.

It should be clear that the translation ·‡e can be computed in NLogSpace (for combined
complexity). Indeed, this is readily seen for T ∗(x), T R(x), εR(x), δR(x), and A†1 . In
order to compute A‡2e , we need to be able to check whether R(ai, aj) ∈ CleT (A): this test
can be performed by a non-deterministic algorithm using logarithmic space in |role±(K)|
(it is basically the same as the standard directed graph reachability problem, which is
NLogSpace-complete; see, e.g., Kozen, 2006); it can be done using N · log |role±(K)| +
2 log |ob(A)| cells on the work tape, where N is a constant (in fact, N = 3 is enough: one
has to store R, the current role R′ and the path length for the graph reachability subroutine,
which is also bounded by log |role±(K)|). Therefore, the translation ·‡e can be computed
by an NLogSpace transducer.

Now we show how satisfiability of DL-Lite
(HN)
bool KBs can be easily reduced to satisfiability

of DL-Lite
(HN)−

bool KBs. First, we assume that DL-Lite
(HN)
bool KBs contain no role symmetry

and asymmetry constraints because Asym(Pk) can be equivalently replaced with Dis(Pk, P−k)
and Sym(Pk) with P−k v Pk (it should be noted that the introduction of P−k v Pk in the
TBox does not violate (A3)). The following lemma allows us to get rid of qualified number
restrictions as well as role disjointness, reflexivity and irreflexivity constraints:

39

Artale, Calvanese, Kontchakov & Zakharyaschev

Lemma 5.17 For every DL-Lite
(HN)
bool KB K′ = (T ′,A′), one can construct a DL-Lite

(HN)−

bool

KB K = (T ,A) such that

• every untangled model IM of K is a model of K′, provided that

there are no R1(ai, aj), R2(ai, aj) ∈ CleT (A) with Dis(R1, R2) ∈ T ′,
there is no R(ai, ai) ∈ CleT (A) with Irr(R) ∈ T ′;

(44)

• every model I ′ of K′ gives rise to a model I of K based on the same domain as I ′ and
such that I agrees with I ′ on all symbols from K′.

If K′ is a DL-Lite
(HN)
horn KB then K is a DL-Lite

(HN)−

horn KB.

Proof First, for every pair R, C such that ≥ q R.C occurs in T ′, we introduce a fresh role
name RC . Then we replace each (positive) occurrence of ≥ q R.C in T ′ with ≥ q RC and
add the following concept and role inclusions to the TBox:

∃R−C v C and RC v R.

We repeat this procedure until all the occurrences of qualified number restrictions are elim-
inated. Denote by T ′′ the resulting TBox. Observe that (A1) and (A2) ensure that T ′′
satisfies (A3). We also notice that C occurs only on the right-hand side of those extra
axioms and thus T ′′ belongs to the same fragment as T ′. It should be clear that, since the
≥ q R.C occur only positively, every model of T ′′ is a model of T ′. Conversely, for every
model I ′ of T ′, there is a model I ′′ of T ′′ based on the same domain such that I ′′ coincides
with I ′ on all symbols in T ′ and RI

′′
C = {(w, u) ∈ RI′ | u ∈ CI′}, for each new role RC . So,

without loss of generality we may assume that T ′ = T ′′.
Let

T ′ = T ′0 ∪ T ′ref ∪ T ′irref ∪ T ′disj,

where T ′ref, T ′irref and T ′disj are the sets of role reflexivity, irreflexivity and disjointness con-

straints in T ′ and T ′0 is the remaining DL-Lite
(HN)−

bool TBox. Let

T ′1 =
{
> v ∃Id, Id− v Id

}
∪
{

Id v P | Ref(P) ∈ T ′ref
}
,

A′1 =
{

Id(ai, ai) | ai ∈ ob(A′)
}
.

We construct K by modifying the DL-Lite
(HN)−

bool KB K0 = (T ′0 ∪ T ′1 ,A′ ∪ A′1) in two steps:
Step 1. For every reflexivity constraint Ref(P) ∈ T ′ref, take a fresh role name SP and

• add a new role inclusion SP v P to the TBox;

• replace every basic concept B in T ′0 with BSP , which is defined inductively as follows:

– ASP = A, for each concept name A,

– (≥ q R)SP = ≥ q R, for each role R /∈ {P, P−},
– (≥ q P)SP = ≥ (q − 1)SP and (≥ q P−)SP = ≥ (q − 1)S−P , for q ≥ 2,

– (∃P)SP = > and (∃P−)SP = >;

40

The DL-Lite Family and Relations

• replace R(ai, aj) ∈ A′ such that R ≡∗T ′ P with SP (ai, aj) whenever i 6= j.

Intuitively, we split the role P into its irreflexive part SP and Id. Note that if P has a
reflexive proper sub-role then, by (A3), there are no restrictions on the maximal number
of P -successors and P -predecessors, and therefore on SP if Ref(P) ∈ T ′. Let (T1,A) be the
resulting DL-Lite

(HN)−

bool KB. Clearly, (T1,A) satisfies (Id1)–(Id3). Observe that

CleT1(A) �role(K′) = CleT ′0∪T ′1
(A′), (45)

where �role(K′) means the restriction to the role names in K′.
Let IM be an untangled model of (T1,A). We show that IM |= T ′0 . Consider a role P

with Ref(P) ∈ T ′. Notice that SP has no proper sub-roles in T1 and IdIM is disjoint with
SIM
P . Thus, SIM

P ∪ IdIM ⊆ P IM and

(*) (BSP)IM ⊆ BIM , for B = ≥ q R with q ≥ 2, whenever Ref(P) ∈ T ′, R ∈ {P, P−} and
P has a proper sub-role in T ′.

If P has no proper sub-roles in T ′ (i.e., no proper sub-roles in T1 different from SP and Id)
then we have SIM

P ∪ IdIM = P IM . So, for all basic concepts B in T ′0 not covered by (*), we
have BIM = (BSP)IM . It follows from (A3) that IM |= T ′0 .
Step 2. Next we take into account the set D = T ′disj ∪ {Dis(Pk, Id) | Irr(Pk) ∈ T ′irref}
of disjointness constraints by modifying the KB (T1,A) constructed at the previous step.
Observe that ∃R1 v ⊥ is a logical consequence of any T ∪{Dis(R1, R2)} whenever R1 v∗T R2.
Let T = T1 ∪ T2, where T2 is defined by taking

T2 =
{
∃R1 v ⊥

∣∣ R1 v∗T1 R2 and either Dis(R1, R2) ∈ D or Dis(R2, R1) ∈ D
}
.

By (role), for any untangled model IM of (T ,A) and R1, R2 ∈ role±(K), IM |= Dis(R1, R2)
if there are no R1(ai, aj), R2(ai, aj) ∈ CleT1(A), which, by (45), means that there are no
R1(ai, aj), R2(ai, aj) ∈ CleT ′0∪T ′1

(A′). So, if (44) holds then every untangled model IM of

(T ,A) is also a model of T1 ∪ D and thus, IM |= T ′disj. As IdIM is the identity relation,
we have IM |= T ′ref ∪ T ′irref. By (45), IM |= A′ and as we have shown above, IM |= T ′0 .
Therefore, IM |= K′.

Conversely, suppose I ′ is a model of K′. Let I be an interpretation such that IdI

is the identity relation, SIP = P I
′ \ IdI

′
, for all P with Ref(P) ∈ T ′, and AI = AI

′
,

P I = P I
′

and aI = aI
′
, for all concept, role and object names A, P and a in K′. Clearly,

I |= (T ′0 ∪ T ′1 ,A′ ∪ A′1). By the definition of the SP , I |= T1 and, since I |= D, we obtain
I |= T2 and thus I |= T . By (45), I |= A, whence I |= K. q

Now, as follows from Lemma 5.17, given a DL-Lite
(HN)
α KB K′, for α ∈ {krom, horn,

bool}, we can compute the DL-Lite
(HN)−

bool KB K using a LogSpace transducer (which is
essentially required for checking whether R ≡∗T ′ P). We immediately obtain Theorem 5.13
from Lemma 5.14 by observing that, for each α ∈ {krom, horn, bool}, K‡e belongs to the
respective first-order fragment and that condition (44) can be checked in NLogSpace

(computing CleT (A) requires directed graph accessibility checks). The result for DL-Lite
(HN)
core

follows from the corresponding result for DL-Lite
(HN)
krom .

41

Artale, Calvanese, Kontchakov & Zakharyaschev

5.4 Role Transitivity Constraints

We now consider the languages DL-Lite
(HN)+

α , α ∈ {core, krom, horn, bool}, which extend
DL-Lite

(HN)
α with role transitivity constraints of the form Tra(Pk). We remind the reader

that a role is called simple (see, e.g., Horrocks et al., 2000) if it has no transitive sub-roles
(including itself) and that only simple roles R are allowed in concepts of the form ≥ q R, for
q ≥ 2. In particular, if T contains Tra(P) then P and P− are not simple, and so T cannot
contain occurrences of concepts of the form ≥ q P and ≥ q P−, for q ≥ 2.

For a DL-Lite
(HN)+

α KB K = (T ,A), define the transitive closure TraT (A) of A by
taking

TraT (A) = A ∪
{
P (ai1 , ain) | ∃ai2 . . . ain−1 P (ai1 , aij+1) ∈ A, 1 ≤ j < n, Tra(P) ∈ T

}
.

Clearly, TraT (A) can be computed in NLogSpace: for each pair (ai, aj) of objects in ob(A),
we add P (ai, aj) to TraT (A) iff there is a P -path of length < |ob(A)| between ai and aj in
A (recall that the directed graph reachability problem is NLogSpace-complete).

Lemma 5.18 A DL-Lite
(HN)+

α KB (T ,A) is satisfiable iff the DL-Lite
(HN)
α KB (T ′,A′) is

satisfiable, where T ′ results from T by removing all the transitivity axioms and

A′ = CleT (TraT (CleT (A))).

Proof Indeed, if the KB (T ′,A′) is satisfiable then we construct a model I for it as described
in the proofs of Lemmas 5.14 and 5.17 and then take the transitive closure of P I for every P
with Tra(P) ∈ T (and update each RI with P v∗T R). As P and P− are simple, T contains
no axioms imposing upper bounds on the number of P -successors and predecessors, and so
the resulting interpretation must be a model of (T ,A). The converse direction is trivial. q

We note that an analogue of Remark 5.15 also holds in this case: just replace CleT (A)
with CleT (TraT (CleT (A))) in (ABox) and take the transitive closure for each transitive sub-
role in (role).

Remark 5.19 It should be noted that there are two different reasons for the reduction in
Lemma 5.18 to be in NLogSpace rather than in LogSpace (as the reduction ·‡ is). First,
in order to compute CleT (A), for each pair of ai, aj , one has to find a path in the directed
graph induced by the role inclusion axioms. Second, in order to compute TraT (CleT (A)), one
has to find a path in the graph induced by the ABox A itself. So, if we are concerned with
the data complexity, CleT (A) can be computed in LogSpace (in fact, in AC0, as we shall
see in Section 6.1) because the role inclusion graph (and hence its size) does not depend on
A. The second reason, however, is more ‘dangerous’ for data complexity as we shall see in
Section 6.1.

As a consequence of Lemma 5.18 and Theorem 5.13 we obtain the following:

Corollary 5.20 For combined complexity, (i) satisfiability of DL-Lite
(HN)+

bool KBs is NP-

complete; (ii) satisfiability of DL-Lite
(HN)+

horn KBs is P-complete; and (iii) satisfiability of

DL-Lite
(HN)+

krom and DL-Lite
(HN)+

core KBs is NLogSpace-complete.

42

The DL-Lite Family and Relations

Note again that if the KBs do not contain number restrictions of the form ≥q R, for
q ≥ 2, (as in the extensions of the DL-LiteHα languages) then the result does not depend on
the UNA.

Remark 5.21 It should be noted that role disjointness, symmetry, asymmetry and tran-
sitivity role constraints can be added to any of the logics DL-LiteHFα and DL-LiteHNα , for
α ∈ {core, krom, horn, bool}, without changing the combined complexity of their satisfia-
bility problems (which, by Corollary 5.12, are all ExpTime-complete). Indeed, as follows
from (Glimm et al., 2007, Theorem 10), KB satisfiability in the extension of SHIQ with role
conjunction is in ExpTime if the length of role conjunctions is bounded by some constant
(in our case, this constant is 2 because Dis(R1, R2) can be encoded by ∃(R1 u R2).> v ⊥;
Asym(R) is dealt with similarly). We conjecture that role reflexivity and irreflexivity con-
straints do not change complexity either.

6. Instance Checking: Data Complexity

So far we have assumed the whole KB K = (T ,A) to be the input for the satisfiability prob-
lem. According to the classification suggested by Vardi (1982), we have been considering
its combined complexity. Two other types of complexity for knowledge bases are:

• the schema (or TBox) complexity, where only the TBox T is regarded to be the input,
while the ABox A is assumed to be fixed; and

• the data (or ABox) complexity, where only the ABox A is regarded to be the input.

It is easy to see that the schema complexity of the satisfiability problem for all our logics
considered above coincides with the corresponding combined complexity. In this section,
we analyze the data complexity of satisfiability and instance checking.

6.1 DL-LiteNbool, DL-LiteHbool and DL-Lite
(HN)
bool are in AC0

In what follows, without loss of generality we assume that all role and concept names of
a given knowledge base K = (T ,A) occur in its TBox and write role(T), role±(T) and
dr(T) instead of role(K), role±(K) and dr(K), respectively; the set of concept names in T
is denoted by con(T). In this section we reduce satisfiability of DL-Lite

(HN)
bool KBs to model

checking in first-order logic. To this end, we fix a signature containing two unary predicates
Ak and Ak, for each concept name Ak, and two binary predicates Pk and Pk, for each role
name Pk.

Consider first the case of a DL-Lite
(HN)−

bool KB K. We represent the ABox A of K as
a first-order model AA of the above signature. The domain of AA is ob(A) and, for all
ai, aj ∈ ob(A) and all predicates Ak, Ak, Pk and Pk in the signature,

AA |= Ak[ai] iff Ak(ai) ∈ A, AA |= Ak[ai] iff ¬Ak(ai) ∈ A,
AA |= Pk[ai, aj] iff Pk(ai, aj) ∈ A, AA |= Pk[ai, aj] iff ¬Pk(ai, aj) ∈ A.

Now we construct a first-order sentence ϕT in the same signature such that (i) ϕT depends
on T but does not depend on A, and (ii) AA |= ϕT iff K‡e is satisfiable.

43

Artale, Calvanese, Kontchakov & Zakharyaschev

To simplify presentation, we denote by ext(T) the extension of T with the following
concept inclusions:

• ≥ q′R v ≥ q R, for all R ∈ role±(T) and q, q′ ∈ QRT such that q′ > q and q′ > q′′ > q
for no q′′ ∈ QRT , and

• ≥ q R v ≥ q R′, for all q ∈ QRT and R v R′ ∈ T or inv(R) v inv(R′) ∈ T .

Clearly, (ext(T))∗(x) is equivalent (in first-order logic) to T ∗(x)∧T R(x)∧
∧
R∈role±(T) δR(x);

see (1), (5) and (42).
Let Bcon(T) be the set of basic concepts occurring in T (i.e., concepts of the form A

and ≥ q R, for A ∈ con(T), R ∈ role±(T) and q ∈ QRT). To indicate which basic concepts
hold or do not hold on a domain element of a first-order model of K‡e , we use functions
ξ : Bcon(T) → {>,⊥}, which will be called types. Denote by Tp the set of all such types
(there are 2|Bcon(T)| of them). For a complex concept C, we define ξ(C) by induction:
ξ(¬C) = ¬ξ(C) and ξ(C1 u C2) = ξ(C1) ∧ ξ(C2). The propositional variable-free formula

ξT =
∧

C1vC2∈ext(T)

(
ξ(C1)→ ξ(C2)

)
ensures that the type ξ is consistent with concept and role inclusions in T . It should be
emphasized that ξT is built from ⊥ and > using the Boolean connectives and therefore does
not depend on a particular domain element of AA. The following formula is true if a given
element of AA is of type ξ (see A†1 and A‡2e ; (2) and (43), respectively):

ξ∗(x) =
∧

Ak∈con(T)

(
(Ak(x)→ ξ(Ak)) ∧ (Ak(x)→ ¬ξ(Ak))

)
∧

∧
R∈role±(T)

∧
q∈QR

T

(
EqR

T (x)→ ξ(≥ q R)
)
∧

∧
Pk∈role(T)

∀x∀y
(
P Tk (x, y) ∧ Pk(x, y)→ ⊥

)
,

where EqRT (x) and RT (x, y), for R ∈ role±(T), are abbreviations defined by

EqR
T (x) = ∃y1 . . . ∃yq

(∧
1≤i<j≤q

(yi 6= yj) ∧
∧

1≤i≤q
RT (x, yi)

)
, (46)

RT (x, y) =
∨

Pkv∗T R
Pk(x, y) ∨

∨
P−k v

∗
T R

Pk(y, x). (47)

Clearly, we have R(ai, aj) ∈ CleT (A) iff AA |= RT [ai, aj] and AA |= EqR
T [a] iff a has at

least q distinct R-successors in CleT (A) (and thus in every model of K).
Without loss of generality we may assume that role±(T) = {R1, . . . , Rk} 6= ∅. Denote

by Tpk the set of k-tuples ~ξ containing a type ξdri ∈ Tp for each role Ri ∈ role±(T). We
then set

ϕT =
∨

~ξ∈Tpk

∀xϑ~ξT (x),

44

The DL-Lite Family and Relations

where

ϑ
(ξdr1

,...,ξdrk
)

T (x) =
∨
ξ∈Tp

(
ξ∗(x) ∧ ξT ∧

∧
Ri∈role±(T)

ξTdri ∧

∧
Ri∈role±(T)

((
ξ(∃Ri) ∨

∨
S∈role±(T)

ξds(∃Ri)
)
→ ξinv(dri)(∃inv(Ri))

))
.

To explain the meaning of the subformulas of ϕT , assume that (T ,A) is satisfiable. In order
to construct a model M for K‡e from the first-order model AA, we have to specify the basic
concepts that contain a given constant of K‡e . In other words, we have to select a type for
each dri ∈ dr(T) and each a ∈ ob(A). The formula ϕT says that one can select a k-tuple
of types ~ξ = (ξdr1 , . . . , ξdrk) ∈ Tpk such that one of its disjuncts is true in AA. Such a
k-tuple fixes the ‘witness’ part of the model M, consisting of the dri, and determines the
basic concepts these dri belong to. Then each disjunct of ϕT says that (having fixed the
‘witness’ part of the model), for every a ∈ ob(A), there is a type ξ (determining the basic
concepts a belongs to) such that

• ξ is consistent with the information about a in A (cf. ξ∗(x));

• ξ is also consistent with the concept and role inclusions of T (cf. ξT);

• each of the ξdr1 , . . . , ξdrk is consistent with the concept and role inclusions of T
(cf. ξTdri);

• each role Ri with a nonempty domain (i.e., either ξ or any of ξds is > on ∃Ri) has
a nonempty range, in particular, ξinv(dri)(∃inv(Ri)) = >; see also εR(x) as defined
by (4).

Lemma 6.1 AA |= ϕT iff K‡e is satisfiable.

Proof (⇒) Fix some ~ξ = (ξdr1 , . . . , ξdrk) ∈ Tpk such that AA |= ∀xϑ
~ξ
T (x). Then, for each

a ∈ ob(A), fix some type such that the respective disjunct of ϑ
~ξ
T (x) holds on a in AA and

denote it by ξa. Define a first-order model M over the domain ob(A) ∪ dr(T) by taking:

• M |= B∗[c] iff ξc(B) = >, for all c ∈ ob(A) ∪ dr(T) and B ∈ Bcon(T)

(B∗ is the unary predicate for B as defined on p. 24). It is easy to check that M |= K‡e .
(⇐) Suppose now that K‡e is satisfiable. Then there is a model M of K‡e with domain

ob(A) ∪ dr(T). To see that AA |= ϕT , it suffices to take the functions ξdri and ξa defined
by:

• ξdri(B) = > iff M |= B∗[dri], for dri ∈ dr(T) and B ∈ Bcon(T),

• ξa(B) = > iff M |= B∗[a], for a ∈ ob(A) and B ∈ Bcon(T).

Details are left to the reader. q

It follows from Lemmas 6.1 and 5.17 and Corollary 5.16 that we have:

45

Artale, Calvanese, Kontchakov & Zakharyaschev

Corollary 6.2 The satisfiability and instance checking problems for DL-LiteNbool, DL-LiteHbool
and DL-Lite

(HN)
bool KBs are in AC0 for data complexity.

Proof DL-LiteNbool and DL-LiteHbool are sub-languages of DL-Lite
(HN)−

bool , and for them the
result immediately follows from Lemma 6.1 and Corollary 5.16. For a DL-Lite

(HN)
bool KB

K′ = (T ′,A′), by Lemma 5.17, we construct a DL-Lite
(HN)−

bool KB K = (T ,A) such that
K′ is satisfiable iff K is satisfiable and (44) holds. The latter condition corresponds to the
following first-order sentence

γT ′ =
∧

Dis(R1,R2)∈T ′
∀x∀y

(
RT1 (x, y) ∧RT2 (x, y)→ ⊥

)
∧

∧
Irr(Pk)∈T ′

∀x
(
P Tk (x, x)→ ⊥

)
,

evaluated in AA. Therefore, K′ is satisfiable iff AA |= ϕT ∧ γT ′ . Let ψ = ϕT ∧ γT ′ and ψ′

be the result of replacing each SP (t1, t2), for Ref(P) ∈ T ′, with P (t1, t2)∧ (t1 6= t2); see the
proof of Lemma 5.17. It remains to observe that AA |= ψ iff AA′ |= ψ′. q

As before, this result does not depend on the UNA for any member of the DL-Lite family
that has no number restrictions of the form ≥ q R, for q ≥ 2 (in particular, for DL-LiteHbool
and its fragments).

We also note that transitive roles cannot be included in our languages for free if we are
concerned with the data complexity:

Lemma 6.3 Satisfiability and instance checking of DL-Litecore KBs extended with role tran-
sitivity constraints are NLogSpace-hard for data complexity.

Proof Suppose we are given a directed graph. Let P be a role name. Define an ABox
A by taking P (ai, aj) ∈ A iff there is an edge (ai, aj) in the graph. Then a node an is
reachable from a node a0 iff the DL-Litecore ABox A ∪ {¬P (a0, an)} is not satisfiable in
models with transitive P . This encoding immediately gives the claim of the lemma because
the directed graph reachability problem is NLogSpace-complete, NLogSpace is closed
under the complement (see, e.g., Kozen, 2006) and the TBox {Tra(P)} does not depend on
the input. q

On the other hand, as the reduction of Lemma 5.18 is computable in NLogSpace, we
obtain the following:

Corollary 6.4 Satisfiability and instance checking of DL-Lite
(HN)+

bool KBs are NLogSpace-
complete for data complexity.

Proof The upper bound is obtained by applying the NLogSpace reduction of Lemma 5.18
and using Corollary 6.2. The lower bound follows from Lemma 6.3. q

6.2 P- and coNP-hardness for Data Complexity

Let us now turn to the data complexity of instance checking for the DL-Lite logics with
arbitrary number restrictions and role inclusions. As follows from the results of Ortiz et al.

46

The DL-Lite Family and Relations

(2006) for SHIQ, instance checking (and in fact query answering) for DL-LiteHNbool is in
coNP for data complexity, while the results of Hustadt et al. (2005) and Eiter et al. (2008)
for Horn-SHIQ imply a polynomial-time upper bound for DL-LiteHFhorn.

Here we show that these upper bounds are optimal in the following sense: on the one
hand, instance checking in DL-LiteHFcore is P-hard for data complexity; on the other hand, it
becomes coNP-hard for DL-LiteHNcore (that is, if we allow arbitrary number restrictions—in
fact, ≥ 2R is enough). Note that the results of this section do not depend on whether we
adopt the UNA or not.

Theorem 6.5 The instance checking (and query answering) problem for DL-LiteHFkrom KBs
is data-hard for coNP (with or without the UNA).

Proof The proof is by reduction of the non-satisfiability problem for 2+2CNF, which is
known to be coNP-complete (Schaerf, 1993). Given a 2+2CNF formula

ϕ =
n∧
k=1

(ak,1 ∨ ak,2 ∨ ¬ak,3 ∨ ¬ak,4),

where each ak,j is one of the propositional variables a1, . . . , am, we construct a KB (T ,Aϕ)
whose TBox T does not depend on ϕ. We will use the object names f , ck, for 1 ≤ k ≤ n,
and ai, for 1 ≤ i ≤ m, role names S, Sf and Pj , Pj,t, Pj,f, for 1 ≤ j ≤ 4, and concept names
A, D.

Define Aϕ to be the set of the following assertions, for 1 ≤ k ≤ n:

S(f, ck), P1(ck, ak,1), P2(ck, ak,2), P3(ck, ak,3), P4(ck, ak,4),

and let T consist of the axioms

≥ 2Pj v ⊥, for1 ≤ j ≤ 4, (48)
Pj,f v Pj , Pj,t v Pj , for 1 ≤ j ≤ 4, (49)

¬∃Pj,t v ∃Pj,f, for 1 ≤ j ≤ 4, (50)
∃P−j,f v ¬A, ∃P−j,t v A, for 1 ≤ j ≤ 4, (51)

∃P1,f u ∃P2,f u ∃P3,t u ∃P4,t v ∃S−f , (52)
≥ 2S− v ⊥, (53)

Sf v S, (54)
∃Sf v D. (55)

Note that axiom (52) does not belong to DL-LiteHFkrom because of the conjunctions in its
left-hand side. However, it can be eliminated with the help of Lemma 5.9. So let us prove
that (T ,Aϕ) |= D(f) iff ϕ is not satisfiable.

(⇐) Suppose that ϕ is not satisfiable and I |= (T ,Aϕ). Define an assignment a of the
truth values t and f to propositional variables by taking a(ai) = t iff aIi ∈ AI . As ϕ is false
under a, there is k, 1 ≤ k ≤ n, such that a(ak,1) = a(ak,2) = f and a(ak,3) = a(ak,4) = t.
In view of (50), for each j, 1 ≤ j ≤ 4, we have cIk ∈ (∃Pj,t)I ∪ (∃Pj,f)I , and by (49),
cIk ∈ (∃Pj)I . Therefore, by (48) and (51), cIk ∈ (∃Pj,t)I if a(ak,j) = t and cIk ∈ (∃Pj,f)I if

47

Artale, Calvanese, Kontchakov & Zakharyaschev

a(ak,j) = f, and hence, by (52), cIk ∈ (∃S−f)I . Then by (53) and (54), we have fI ∈ (∃Sf)I ,
from which, by (55), fI ∈ DI . It follows that (T ,Aϕ) |= D(f).

(⇒) Conversely, suppose that ϕ is satisfiable. Then there is an assignment a such that
a(ak,1) = t or a(ak,2) = t or a(ak,3) = f or a(ak,4) = f, for all 1 ≤ k ≤ n. Define I by taking

• ∆I =
{
xi | 1 ≤ i ≤ m

}
∪
{
yk | 1 ≤ k ≤ n

}
∪
{
z
}

,

• aIi = xi, for 1 ≤ i ≤ m, cIk = yk, for 1 ≤ k ≤ n, fI = z,

• AI =
{
xi | a(ai) = t

}
∪
{
yk | 1 ≤ k ≤ n

}
∪
{
z
}

,

• P Ij,t =
{

(yk, aIk,j) | 1 ≤ k ≤ n, a(ak,j) = t
}
∪
{

(xi, xi) | a(ai) = t
}
∪
{

(z, z)
}

,

• P Ij,f =
{

(yk, aIk,j) | 1 ≤ k ≤ n, a(ak,j) = f
}
∪
{

(xi, xi) | a(ai) = f
}

,

• P Ij = P Ij,t ∪ P Ij,f, for 1 ≤ j ≤ 4,

• SIf =
{

(z, yk) | a(ak,1 ∨ ak,2 ∨ ¬ak,3 ∨ ¬ak,4) = f
}

= ∅,

• SI =
{

(z, yk) | 1 ≤ k ≤ n
}

,

• DI =
{
z | a(ϕ) = f

}
= ∅.

It is not hard to check that I |= (T ,Aϕ) and I 6|= D(f). q

Theorem 6.6 The instance checking (and the query answering) problem for DL-LiteHNcore

KBs is data-hard for coNP (with or without the UNA).

Proof The proof is again by reduction of the non-satisfiability problem for 2+2CNF. The
main difference from the previous one is that DL-LiteHNcore, unlike DL-LiteHFkrom, cannot express
‘covering conditions’ like (50). It turns out, however, that we can use number restrictions
to represent constraints of this kind. Given a 2+2CNF formula ϕ, we take the same ABox
Aϕ constructed in the proof of Theorem 6.5. The (ϕ independent) TBox T , describing the
meaning of any such representation of ϕ in terms of Aϕ, is also defined in the same way as
in that proof, except that the axiom (50) is now replaced by the following set of axioms:

Tj,1 v Tj , Tj,2 v Tj , Tj,3 v Tj , (56)
≥ 2T−j v ⊥, (57)

∃Pj v ∃Tj,1, ∃Pj v ∃Tj,2, (58)
∃T−j,1 u ∃T

−
j,2 v ∃T

−
j,3, (59)

≥ 2Tj v ∃Pj,t ∃Tj,3 v ∃Pj,f, (60)

where Tj , Tj,1, Tj,2, Tj,3 are fresh role names, for each j, 1 ≤ j ≤ 4. Note that axioms (52)
and (59) do not belong to DL-LiteHNcore because of the conjunctions in their left-hand side, but
we can easily eliminate them using Lemma 5.9. So it remains to prove that (T ,Aϕ) |= D(f)
iff ϕ is not satisfiable.

48

The DL-Lite Family and Relations

(⇐) Suppose that ϕ is not satisfiable and I |= (T ,Aϕ). Define an assignment a of the
truth values t and f to propositional variables by taking a(ai) = t iff aIi ∈ AI . As ϕ is
false under a, there is k, 1 ≤ k ≤ n, such that a(ak,1) = a(ak,2) = f, a(ak,3) = a(ak,4) = t.
For each j, 1 ≤ j ≤ 4, we have cIk ∈ (∃Pj)I ; by (58), cIk ∈ (∃Tj,1)I , (∃Tj,2)I . So there
are v1, v2 such that (cIk , v1) ∈ T Ij,1 and (cIk , v2) ∈ T Ij,2. If v1 6= v2 then cIk ∈ (≥ 2Tj)I

and, by (60), cIk ∈ (Pj,t)I . Otherwise, if v1 = v2 = v, we have v ∈ (∃T−j,3)I by (59),
and so by (56) and (57), cIk ∈ (∃Tj,3)I , from which, by (60), cIk ∈ (Pj,f)I . Therefore,
cIk ∈ (∃Pj,t)I ∪ (∃Pj,f)I , and by (49), cIk ∈ (∃Pj)I . Thus, by (48) and (51), cIk ∈ (∃Pj,t)I
if a(ak,j) = t and cIk ∈ (∃Pj,f)I if a(ak,j) = f, and hence, by (52), cIk ∈ (∃S−f)I . Then
by (53) and (54), we have fI ∈ (∃Sf)I , from which, by (55), fI ∈ DI . It follows that
(T ,Aϕ) |= D(f).

(⇒) Conversely, suppose that ϕ is satisfiable. Then there is an assignment a such that
a(ak,1) = t or a(ak,2) = t or a(ak,3) = f or a(ak,4) = f, for all 1 ≤ k ≤ n. Define I by taking

• ∆I =
{
xi | 1 ≤ i ≤ m

}
∪
{
yk | 1 ≤ k ≤ n

}
∪
{
uk,j,1, uk,j,2 | 1 ≤ j ≤ 4, 1 ≤ k ≤ n

}
∪
{
z
}

,

• aIi = xi, for 1 ≤ i ≤ m, cIk = yk, for 1 ≤ k ≤ n, fI = z,

• AI = {xi | a(ai) = t},

• P Ij,t =
{

(yk, aIk,j) | 1 ≤ k ≤ n, a(ak,j) = t
}

, for 1 ≤ j ≤ 4,

• P Ij,f =
{

(yk, aIk,j) | 1 ≤ k ≤ n, a(ak,j) = f
}

, for 1 ≤ j ≤ 4,

• P Ij = P Ij,t ∪ P Ij,f, for 1 ≤ j ≤ 4,

• T Ij,1 =
{

(yk, uk,j,1) | 1 ≤ k ≤ n
}

, for 1 ≤ j ≤ 4,

• T Ij,2 =
{

(yk, uk,j,2) | 1 ≤ k ≤ n, a(ak,j) = t
}
∪{

(yk, uk,j,1) | 1 ≤ k ≤ n, a(ak,j) = f
}

, for 1 ≤ j ≤ 4,

• T Ij,3 =
{

(yi, uk,j,1) | 1 ≤ k ≤ n, a(ak,j) = f
}

, for 1 ≤ j ≤ 4,

• T Ij = T Ij,1 ∪ T Ij,2,

• SIf =
{

(z, yk) | a(ak,1 ∨ ak,2 ∨ ¬ak,3 ∨ ¬ak,4) = f
}

= ∅,

• SI =
{

(z, yk) | 1 ≤ k ≤ n
}

,

• DI =
{
z | a(ϕ) = f

}
= ∅.

It is not hard to check that I |= (T ,Aϕ) and I 6|= D(f). q

Our next lower bound would follow from (Calvanese et al., 2006, Theorem 6, item 2);
unfortunately, the proof of that result is incorrect and cannot be repaired.

Theorem 6.7 The instance checking (and query answering) problem for DL-LiteHFcore KBs
is data-hard for P (with or without the UNA).

49

Artale, Calvanese, Kontchakov & Zakharyaschev

Proof The proof is by reduction of the entailment problem for Horn-CNF, which is known
to be P-complete (see, e.g., Börger et al., 1997, Exercise 2.2.4). Given a Horn-CNF formula

ϕ =
n∧
k=1

(¬ak,1 ∨ ¬ak,2 ∨ ak,3) ∧
p∧
l=1

al,0,

where each ak,j and each al,0 is one of the propositional variables a1, . . . , am, we construct a
KB (T ,Aϕ) whose TBox T does not depend on ϕ. We will need the object names c1, . . . , cn
and vk,j,i, for 1 ≤ k ≤ n, 1 ≤ j ≤ 3, 1 ≤ i ≤ m (for each variable, we take one object name
for each possible occurrence of this variable in each non-unit clause), role names S, St and
Pj , Pj,t, for 1 ≤ j ≤ 3, and a concept name A.

Define Aϕ to be the set containing the assertions:

S(v1,1,i, v1,2,i), S(v1,2,i, v1,3,i), S(v1,3,i, v2,1,i), S(v2,1,i, v2,2,i), S(v2,2,i, v2,3,i), . . .
. . . , S(vn,2,i, vn,3,i), S(vn,3,i, v1,1,i), for 1 ≤ i ≤ m,

Pj(vk,j,i, ck) iff ak,j = ai, for 1 ≤ i ≤ m, 1 ≤ k ≤ n, 1 ≤ j ≤ 3,
A(v1,1,i) iff al,0 = ai, for 1 ≤ i ≤ m, 1 ≤ l ≤ p

(all objects for each variable are organized in an S-cycle and Pj(vk,j,i, ck) ∈ Aϕ iff the
variable ai occurs in the kth non-unit clause of ϕ in the jth position). Let T consist of the
following concept and role inclusions:

St v S, (61)
≥ 2S v ⊥, (62)

A v ∃St, (63)
∃S−t v A, (64)
≥ 2P1 v ⊥ ≥ 2P2 v ⊥, (65)
P1,t v P1, P2,t v P2, (66)
A v ∃P1,t, A v ∃P2,t, (67)

≥ 2P−3 v ⊥, (68)
P3,t v P3, (69)

∃P−1,t u ∃P
−
2,t v ∃P

−
3,t, (70)

∃P3,t v A. (71)

As before, here we have an axiom, namely (70), that does not belong to DL-LiteHFcore because
of the conjunction in its left-hand side, but again it can be eliminated with the help of
Lemma 5.9. Our aim is to show that (T ,Aϕ) |= A(v1,1,i0) iff ϕ |= ai0 .

(⇐) Suppose that ϕ |= ai0 . Consider an arbitrary interpretation I |= (T ,Aϕ) and
define a to be the assignment of the truth values t and f to propositional variables such that
a(ai) = t iff vI1,1,i ∈ AI , for 1 ≤ i ≤ m. By (61)–(64), for each i, 1 ≤ i ≤ m, we have either
vIk,j,i ∈ AI , for all k, j with 1 ≤ k ≤ n, 1 ≤ j ≤ 3, or vIk,j,i /∈ AI , for all k, j with 1 ≤ k ≤ n,
1 ≤ j ≤ 3. Now, if we have a(ak,1) = t and a(ak,2) = t, for 1 ≤ k ≤ n then, by (65)–(67),
cIk ∈ (∃P−1,t)I , (∃P

−
2,t)
I . By (70), cIk ∈ (∃P−3,t)I and hence, by (68) and (69), vIk,3,i ∈ (∃P3,t)I ,

50

The DL-Lite Family and Relations

.

.

a1 a2 a3 a4 a5

¬a1 ∨ ¬a2 ∨ a3 ¬a2 ∨ ¬a4 ∨ a5

zk,j,i

xk,j,i

y1 y2
St, S
S
Pj,t, Pj
Pj

¬A
A

Figure 5: The model I satisfying (T ,Aϕ), for ϕ = (¬a1 ∨ ¬a2 ∨ a3) ∧ (¬a2 ∨ ¬a4 ∨ a5).

where ak,3 = ai, which means, by (71), that vIk,3,i ∈ AI , and so vI1,1,i ∈ AI and a(ai) = t. It
follows that a(ϕ) = t, and hence a(ai0) = t, which, by definition, means that vI1,1,i0 ∈ A

I .
As I was an arbitrary model of (T ,Aϕ), we can conclude that (T ,Aϕ) |= A(v1,1,i0).

(⇒) Conversely, suppose that ϕ 6|= ai0 . Then there is an assignment a with a(ϕ) = t
and a(ai0) = f. We construct a model I for (T ,Aϕ) such that I 6|= A(v1,1,i0). Define I by
taking

• ∆I =
{
xk,j,i, zk,j,i | 1 ≤ k ≤ n, 1 ≤ j ≤ 3, 1 ≤ i ≤ m

}
∪
{
yk | 1 ≤ k ≤ n

}
,

• cIk = yk, for 1 ≤ k ≤ n,

• vIk,j,i = xk,j,i, for 1 ≤ k ≤ n, 1 ≤ j ≤ 3, 1 ≤ i ≤ m,

• AI =
{
xk,j,i | 1 ≤ k ≤ n, 1 ≤ j ≤ 3, a(ai) = t

}
,

• SI =
⋃

1≤i≤m
Si, where Si =

{
(xk,1,i, xk,2,i), (xk,2,i, xk,3,i), (xk,3,i, xk⊕1,1,i) | 1 ≤ k ≤ n

}
and k ⊕ 1 = k + 1 if k < n, and k ⊕ 1 = 1 if k = n,

• SIt =
⋃

1≤i≤m
a(ai)=t

Si,

• P Ij =
{

(xk,j,i, yk) | 1 ≤ k ≤ n, ai = ak,j
}
∪{

(xk,j,i, zk,j,i) | 1 ≤ k ≤ n, ai 6= ak,j
}
, for 1 ≤ j ≤ 2,

• P I3 =
{

(xk,3,i, yk) | 1 ≤ k ≤ n, ai = ak,3
}

,

• P Ij,t =
{

(xk,j,i, yk) | 1 ≤ k ≤ n, ai = ak,j , a(ai) = t
}
∪{

(xk,j,i, zk,j,i) | 1 ≤ k ≤ n, ai 6= ak,j
}
, for 1 ≤ j ≤ 2,

• P I3,t =
{

(xk,3,i, yk) | 1 ≤ k ≤ n, ai = ak,3, a(ai) = t
}

.

It is routine to check that we indeed have I |= (T ,Aϕ) and I 6|= A(v1,1,i0). See Figure 5 for
an example. q

51

Artale, Calvanese, Kontchakov & Zakharyaschev

7. Query Answering: Data Complexity

The positive existential query answering problem is known to be data-complete for coNP
in the case of DL-LiteHNbool : the upper bound follows from the results of Ortiz et al. (2006),
while the lower bound was established for DL-Litekrom in (Calvanese et al., 2006; Schaerf,
1993). In the case of DL-LiteHFhorn, query answering is data-complete for P, as follows from
the results of Hustadt et al. (2005) and Eiter et al. (2008) for Horn-SHIQ, while for
DL-LiteHhorn it is in AC0 (Calvanese et al., 2006).

In fact, the coNP upper bound holds for the extension of DL-LiteHNbool with role dis-
jointness and (a)symmetry constraints (this follows from (Glimm et al., 2007, Theorem 10);
cf. Remark 5.21). We conjecture that the same result holds for role (ir)reflexivity con-
straints.

Our main result in this section is the following:

Theorem 7.1 The positive existential query answering problem for the logics DL-LiteNhorn,
DL-LiteHhorn and DL-Lite

(HN)
horn is in AC0 for data complexity.

Proof Suppose that we are given a consistent DL-Lite
(HN)
horn KB K′ = (T ′,A′) (with all its

concept and role names occurring in the TBox T ′) and a positive existential query in prenex
form q(~x) = ∃~y ϕ(~x, ~y) in the signature of K′. Consider the DL-Lite

(HN)−

horn KB K = (T ,A)

provided by Lemma 5.17 (the language DL-Lite
(HN)−

horn is defined in Section 5.3).

Lemma 7.2 For every tuple ~a of object names in K′, we have K′ |= q(~a) iff I |= q(~a) for
all untangled models I of K.

Proof (⇒) Suppose that K′ |= q(~a) and I is an untangled model I of K. By Lemma 5.17
and in view of consistency of K′, which ensures that (44) holds, we then have I |= K′ and
therefore, I |= q(~a).

(⇐) Suppose I ′ |= K′. By Lemma 5.17, there is a model I of K with the same domain as
I ′ that coincides with I ′ on all symbols in K′. As I |= q(~a), we must then have I ′ |= q(~a),
and so K′ |= q(~a) as required. q

Next we show that, as K‡e is a Horn sentence, it is enough to consider just one special
model I0 of K in the formulation of Lemma 7.2. Let M0 be the minimal Herbrand model of
(the universal Horn sentence) K‡e . We remind the reader (for details consult, e.g., Apt, 1990;
Rautenberg, 2006) that M0 can be constructed by taking the intersection of all Herbrand
models for K‡e , that is, of all models based on the domain that consists of constant symbols
from K‡e—i.e., Λ = ob(A) ∪ dr(T); cf. Remark 5.15. We then have the following

M0 |= B∗[c] iff K‡e |= B∗(c), for B ∈ Bcon(T) and c ∈ Λ.

Let I0 be the untangled model of K induced by M0. Denote the domain of I0 by ∆I0 .
Property (copy) of Remark 5.15 provides us with a function cp : ∆I0 → Λ.

There are two consequences of Lemma 5.14. First, we have

aI0i ∈ B
I0 iff K |= B(ai), for B ∈ Bcon(T) and ai ∈ ob(A). (72)

52

The DL-Lite Family and Relations

Second, for every R ∈ role±(T), if RI0 6= ∅ then RI 6= ∅, for all models I of K. Indeed, if
RI0 6= ∅ then M0 |= (∃R)∗[dr]. Therefore, (T ∪ {∃R v ⊥},A) is not satisfiable, and thus
RI 6= ∅, for all I with I |= K. Moreover, if RI0 6= ∅ then

w ∈ BI0 iff K |= ∃R v B, for B ∈ Bcon(T) and w ∈ ∆I0 with cp(w) = dr. (73)

Lemma 7.3 If I0 |= q(~a) then I |= q(~a) for all untangled models I of K.

Proof Suppose I |= K. As q(~a) is a positive existential sentence, it is enough to construct
a homomorphism h : I0 → I. We remind the reader that, by (forest), the domain ∆I0 of
I0 is partitioned into disjoint trees Ta, for a ∈ ob(A). Define the depth of a point w ∈ ∆I0
to be the length of the shortest path in the respective tree to its root. Denote by Wm the
set of points of depth ≤ m; in particular, W0 = {aI0 | a ∈ ob(A)}. We construct h as the
union of maps hm, m ≥ 0, where each hm is defined on Wm and has the following properties:
hm+1(w) = hm(w), for all w ∈Wm, and

(am) for every w ∈Wm, if w ∈ BI0 then hm(w) ∈ BI , for each B ∈ Bcon(T);

(bm) for all u, v ∈Wm, if (u, v) ∈ RI0 then (hm(u), hm(v)) ∈ RI , for each R ∈ role±(T).

For the basis of induction, we set h0(aI0i) = aIi , for ai ∈ ob(A). Property (a0) follows then
from (72) and (b0) from (ABox) of Remark 5.15.

For the induction step, suppose that hm has already been defined for Wm, m ≥ 0. Set
hm+1(w) = hm(w) for all w ∈ Wm. Consider an arbitrary v ∈ Wm+1 \Wm. By (forest),
there is a unique u ∈ Wm such that (u, v) ∈ Ea, for some Ta. Let `a(u, v) = S. Then,
by (copy), cp(v) = inv(ds). By (role), u ∈ (∃S)I0 and, by (am), hm(u) ∈ (∃S)I , which
means that there is w ∈ ∆I with (hm(u), w) ∈ SI . Set hm+1(v) = w. As cp(v) = inv(ds)
and (∃inv(S))I0 6= ∅, it follows from (73) that if v ∈ BI0 then w′ ∈ BI whenever we have
w′ ∈ (∃inv(S))I . As w ∈ (∃inv(S))I , we obtain (am+1) for v. To show (bm+1), we notice
that, by (role), we have (w, v) ∈ RI0 , for some w ∈ Wm+1, just in two cases: either
w ∈Wm+1 \Wm, and then w = v and Id v∗T R, or w ∈Wm, and then w = u and S v∗T R.
In the former case, (hm+1(v), hm+1(v)) ∈ RI because IdI is the identity relation by (role).
In the latter case, we have (u, v) ∈ SI0 ; hence (hm+1(u), hm+1(v)) ∈ SI and, as S v∗T R,
(hm+1(u), hm+1(v)) ∈ RI . q

Assume now that, in the query q(~x) = ∃~y ϕ(~x, ~y), we have ~y = y1, . . . , yk. Our next
lemma shows that in this case to check whether I0 |= q(~a) it suffices to consider only the
points of depth ≤ m0 in ∆I0 , for some m0 that does not depend on |A|.

Lemma 7.4 Let m0 = k+ |role±(T)|. If I0 |= ∃~y ϕ(~a, ~y) then there is an assignment a0 in
Wm0 (i.e., a0(yi) ∈Wm0 for all i) such that I0 |=a0 ϕ(~a, ~y).

Proof Suppose that I0 |=a ϕ(~a, ~y), for some assignment a in ∆I0 , and that there is yi,
1 ≤ i ≤ k, with a(yi) /∈ Wm0 . Let Y be the minimal subset of ~y that contains yi and
every y such that either P (y′, y) or P (y, y′) is a subformula of ϕ, for some y′ ∈ Y and
some role name P . Let yj ∈ Y be such that there is m > |role±(T)| with a(yj) ∈ Wm and
a(y) /∈Wm−1 for all y ∈ Y (for convenience, W−1 = ∅ as before). Clearly, such an m exists:

53

Artale, Calvanese, Kontchakov & Zakharyaschev

a(yi) /∈Wm0 , Y has at most k variables and, by (forest), relations P I0 can connect a point
in Wn \Wn−1 only with a point in Wn+1 \Wn−2, for n ≥ 1. Let w = a(yj) be a point in
Ta. As w ∈Wm \Wm−1, we have cp(w) = dr, for some R ∈ role±(T). As there are at most
|role±(T)| distinct labels in each labeled tree Ta and in view of (copy), for each point u
of depth > |role±(T)|, there is a point u′ of depth ≤ |role±(T)| in the same Ta such that
cp(u) = cp(u′); by (iso), the trees generated by u and u′ are isomorphic. So, there is an
isomorphism g from the labeled tree generated by w (which contains all a(y), for y ∈ Y)
onto the labeled tree generated by some point of depth ≤ |role±(T)| in Ta. Define a new
assignment aY by taking aY (y) = g(a(y)) if y ∈ Y and aY (y) = a(y) otherwise. By (copy),
(concept) and (role) we then have I0 |=aY ϕ(~a, ~y) and aY (y) ∈ Wm0 , for each y ∈ Y . If
aY (yj) /∈Wm0 for some j, we repeat the described construction. After at most k iterations
we shall obtain an assignment a0 required by the lemma. q

To complete the proof of Theorem 7.1, we encode the problem ‘K |= q(~a)?’ as a model
checking problem for first-order formulas. In precisely the same way as in Section 6.1, we
fix a signature that contains unary predicates A, A, for each concept name A, and binary
predicates P , P , for each role name P , and then represent the ABox A of K as a first-order
model AA with domain ob(A). Now we define a first-order formula ϕT ,q(~x) in the above
signature such that (i) ϕT ,q(~x) depends on T and q but not on A, and (ii) AA |= ϕT ,q(~a)
iff I0 |= q(~a).

We begin by defining formulas ψB(x), B a basic concept in T , that describe the types
of the elements of ob(A) in the model I0 in the following sense (see also (72)):

AA |= ψB[ai] iff aI0i ∈ B
I0 , for B ∈ Bcon(T) and ai ∈ ob(A). (74)

These formulas are defined as the ‘fixed-points’ of sequences ψ0
B(x), ψ1

B(x), . . . of formulas
with one free variable, where

ψ0
B(x) =

{
A(x), if B = A,

EqR
T (x), if B = ≥ q R,

ψiB(x) = ψ0
B(x) ∨

∨
B1u···uBkvB∈ext(T)

(
ψi−1
B1

(x) ∧ · · · ∧ ψi−1
Bk

(x)
)
, for i ≥ 1,

and EqR
T (x) is given by (46). (As in Section 6.1, to simplify the formulas, we use ext(T)

instead of T .) It should be clear that if there is some i such that, for all B ∈ Bcon(T),
ψiB(x) ≡ ψi+1

B (x) (i.e., every ψiB(x) is equivalent to ψi+1
B (x) in first-order logic), then

ψiB(x) ≡ ψjB(x) for every B ∈ Bcon(T) and j ≥ i. So the minimum such i does not
exceed N = |Bcon(T)|, and we set ψB(x) = ψNB (x).

Next we introduce sentences θB,dr, for B ∈ Bcon(T) and dr ∈ dr(T), that describe the
types of elements in dr(T) in the following sense (see also (73)):

AA |= θB,dr iff w ∈ BI0 , for B ∈ Bcon(T) and each w ∈ ∆I0 with cp(w) = dr. (75)

(By (concept), this definition is correct.) These sentences are defined similarly to ψB(x).
Namely, for each B ∈ Bcon(T) and each dr ∈ dr(T), we inductively define a sequence

54

The DL-Lite Family and Relations

θ0
B,dr, θ

1
B,dr, . . . by taking

θ0
B,dr = ρ0

B,dr and θiB,dr = ρiB,dr ∨
∨

B1u···uBkvB∈ext(T)

(
θi−1
B1,dr

∧ · · · ∧ θi−1
Bk,dr

)
, for i ≥ 1,

where ρiB,dr = ⊥, for all i ≥ 0, whenever B 6= ∃R and

ρ0
∃R,dr = ∃xψ∃inv(R)(x) and ρi∃R,dr =

∨
ds∈dr(T)

θi−1
∃inv(R),ds, for i ≥ 1.

It should be clear that θiB,dr ≡ θ
i+1
B,dr for some i ≤M = |role±(T)|·N . So we set θB,dr = θMB,dr.

Now we consider the directed graphGT = (VT , ET), where VT is the set of all equivalence
classes [R], [R] = {R′ | R v∗T R′, R′ v∗T R}, such that ∃R is not empty in some model of
T , and ET is the set of all pairs ([Ri], [Rj]) such that

(path) T |= ∃inv(Ri) v ≥ q Rj and either inv(Ri) 6v∗T Rj or q ≥ 2,

and Rj has no proper sub-role satisfying (path). We have ([Ri], [Rj]) ∈ ET iff, for any
ABox A′, whenever the minimal untangled model I0 of (T ,A′) contains a copy w of inv(dr′i),
for R′i ∈ [Ri], then w is connected to a copy of inv(dr′j), for R′j ∈ [Rj], by all relations S
with Rj v∗T S.

Recall now that we are given a query q(~x) = ∃~y ϕ(~x, ~y), where ϕ is a quantifier-free
positive formula and ~y = y1, . . . , yk. Let ΣT ,m0 be the set of all paths in the graph GT of
length ≤ m0. More precisely,

ΣT ,m0 =
{
ε
}
∪
{

([R1], [R2], . . . , [Rn]) | 1 ≤ n ≤ m0, ([Rj], [Rj+1]) ∈ ET , for 1 ≤ j < n
}
.

For σ, σ′ ∈ ΣT ,m0 and a role R ∈ role±(T), we write σ R→ σ′ if one of the following three
conditions is satisfied: (i) σ = σ′ and Id v∗T R, (ii) σ.[S] = σ′ or (iii) σ = σ′.[inv(S)], for
some role S with S v∗T R.

Let Σk
T ,m0

be the set of all k-tuples of the form ~σ = (σ1, . . . , σk), σi ∈ ΣT ,m0 . Intuitively,
when evaluating the query ∃~y ϕ(~x, ~y) over I0, each bound, or non-distinguished, variable yi
is mapped to a point w in Wm0 . However, the first-order model AA does not contain the
points from Wm0 \W0, and to represent them, we use the following ‘trick.’ By (forest),
every point w in Wm0 is uniquely determined by the pair (a, σ), where aI0 is the root of the
tree Ta containing w, and σ is the sequence of labels `a(u, v) on the path from aI0 to w.
It follows from the unraveling procedure and (path) that σ ∈ ΣT ,m0 . So, in the formula
ϕT ,q we are about to define we assume that the yi range over W0 and represent the first
component of the pairs (a, σ), whereas the second component is encoded in the ith member
of ~σ (these yi should not be confused with the yi in the original query q, which range over
all of Wm0). In order to treat arbitrary terms t occurring in ϕ(~x, ~y) in a uniform way, we
set t~σ = ε, if t = a ∈ ob(A) or t = xi, and t~σ = σi, if t = yi (the distinguished variables xi
and the object names a are mapped to W0 and do not require the second component of the
pairs).

Given an assignment a0 in Wm0 we denote by split(a0) the pair (a, ~σ), where a is an
assignment in AA and ~σ = (σ1, . . . , σk) ∈ Σk

T ,m0
are such that

55

Artale, Calvanese, Kontchakov & Zakharyaschev

• for each distinguished variable xi, a(xi) = a with aI0 = a0(xi);

• for each bound variable yi, a(yi) = a and σi = ([R1], . . . , [Rn]), n ≤ m0, with aI0

being the root of the tree containing a0(yi) and R1, . . . , Rn being the sequence of
labels `a(u, v) on the path from aI0 to a0(yi).

Not every pair (a, ~σ), however, corresponds to an assignment in Wm0 because some paths
in ~σ may not exist in our I0: GT represents possible paths in all models for the fixed
TBox T and varying ABox. As follows from the unraveling procedure, a point in Wm0 \W0

corresponds to a ∈ ob(A) and σ ∈ ΣT ,m0 , σ = ([R], . . .), iff a has not enough R-witnesses in
A: AA |= ¬ψ0

≥q R[a]∧ψ≥q R[a], for some q ∈ QRT . Thus, for every (a, ~σ) with ~σ = (σ1, . . . , σk),
there is an assignment a0 in Wm0 with split(a0) = (a, ~σ) iff AA |=a η~σ(~y), where

η(σ1,...,σk)(y1, . . . , yk) =
∧

1≤i≤k
σi 6=ε

∨
q∈QRi

T

(
¬ψ0
≥q Ri

(yi) ∧ ψ≥q Ri(yi)
)

and each Ri, for 1 ≤ i ≤ k with σi 6= ε, is such that σi = ([Ri], . . .).
We define now, for every ~σ ∈ Σk

T ,m0
, concept name A and role name R,

A~σ(t) =

{
ψA(t), if t~σ = ε,

θA,inv(ds), if t~σ = σ′.[S], for some σ′ ∈ ΣT ,m0 ,

R~σ(t1, t2) =


RT (t1, t2), if t~σ1 = t~σ2 = ε,

(t1 = t2), if t~σ1
R→ t~σ2 and either t~σ1 6= ε or t~σ2 6= ε,

⊥, otherwise.

We claim that, for each assignment a0 in Wm0 , (a, σ) = split(a0) and term t,

I0 |=a0 A(t) iff AA |=a A~σ(t), for all concept names A, (76)

I0 |=a0 R(t1, t2) iff AA |=a R~σ(t1, t2), for all roles R. (77)

For A(a), A(xi) or A(yi) with σi = ε the claim follows from (74). For A(yi) with σi = σ′.[S],
by (copy), we have cp(a(yi)) = inv(dr), for some R ∈ [S]; the claim then follows from (75).
For R(yi1 , yi2) with σi1 = σi2 = ε, the claim follows from (ABox). Let us consider the case
of R(yi1 , yi2) with σi2 6= ε: we have a0(yi2) /∈W0 and thus, by (role), I0 |=a0 R(yi1 , yi2) iff

• a0(yi1), a0(yi2) are in the same tree Ta, for a ∈ ob(A), i.e., AA |=a (yi1 = yi2),

• and either (a0(yi1), a0(yi2)) ∈ Ea and then `a(a0(yi1), a0(yi2)) = S for some S v∗T R,
or (a0(yi2), a0(yi1)) ∈ Ea and then `a(a0(yi2), a0(yi1)) = S for some inv(S) v∗T R, or

a0(yi1) = a0(yi2) and then Id v∗T R, i.e., σi1
R→ σi2 .

Other cases are similar and left to the reader.
Finally, let ϕ~σ(~x, ~y) be the result of attaching the superscript ~σ to each atom of ϕ and

ϕT ,q(~x) = ∃~y
∨

~σ∈Σk
T ,m0

(
ϕ~σ(~x, ~y) ∧ η~σ(~y)

)
.

56

The DL-Lite Family and Relations

As follows from (76)–(77), for every assignment a0 in Wm0 , we have I0 |=a0 ϕ(~x, ~y) iff
AA |=a ϕ~σ(~x, ~y) for (a, σ) = split(a0). For the converse direction notice that, if AA |=a η~σ(~y)
then there is an assignment a0 in Wm0 with split(a0) = (a, ~σ).

Clearly, AA |= ϕT ,q(~a) iff I0 |= q(~a), for every tuple ~a. We also note that, for every
pair of tuples ~a and ~b of object names in ob(A), ϕ~σ(~a,~b) is a positive existential sentence
with inequalities, and so is domain-independent.10 It is also easily seen that, for each ~b,
η~σ(~b) is domain-independent. It follows from the minimality of I0 that ϕT ,q(~a) is domain-
independent, for each tuple ~a of object names in ob(A).

Finally, note that the resulting query contains ≤ |role±(T)|k·(k+|role±(T)|) disjuncts. q

8. DL-Lite without the Unique Name Assumption

In this section, unless otherwise stated, we assume that the interpretations do not respect
the UNA, that is, we may have aIi = aIj for distinct object names ai and aj . The consequence
relation |=noUNA refers to the class of such interpretations.

Description logics without the UNA are usually extended with additional equality and
inequality constraints of the form:

ai ≈ aj and ai 6≈ aj ,

where ai, aj are object names. Their semantics is quite obvious: we have I |= ai ≈ aj iff
aIi = aIj , and I |= ai 6≈ aj iff aIi 6= aIj . The equality and inequality constraints are supposed
to belong to the ABox part of a knowledge base. It is to be noted, however, that reasoning
with equalities is LogSpace-reducible to reasoning without them:

Lemma 8.1 For every KB K = (T ,A), one can construct in LogSpace in the size of
A a KB K′ = (T ,A′) without equality constraints such that I |= K iff I |= K′, for every
interpretation I.

Proof Let G = (V,E) be the symmetric graph with

V = ob(A), E =
{

(ai, aj) | ai ≈ aj ∈ A or aj ≈ ai ∈ A
}

and [ai] the set of all vertices of G that are reachable from ai. Define A′ by removing all the
equality constraints from A and replacing every ai with aj ∈ [ai] with minimal j. Note that
this minimal j can be computed in LogSpace: just enumerate the object names ak with
respect to the order of their indexes k and check whether the current aj is reachable from
ai in G. It remains to recall that reachability in undirected graphs is SLogSpace-complete
and that SLogSpace = LogSpace (Reingold, 2008). q

As we mentioned in Section 5.3, the logics of the form DL-LiteHα do not ‘feel’ whether
we adopt the UNA or not. With this observation and Lemmas 5.17, 5.18, 8.1 at hand, we
obtain the following result as a consequence of Theorem 5.13:

10. A query q(~x) is said to be domain-independent in case AA |=a q(~x) iff A |=a q(~x), for each A such that
the domain of A contains ob(A), the active domain of AA, and AA = AAA and P A = P AA , for all
concept and role names A and P .

57

Artale, Calvanese, Kontchakov & Zakharyaschev

Theorem 8.2 With or without the UNA, for combined complexity, (i) satisfiability of
DL-LiteHbool KBs is NP-complete; (ii) satisfiability of DL-LiteHhorn KBs is P-complete; and
(iii) satisfiability of DL-LiteHkrom and DL-Lite

(HN)
core KBs is NLogSpace-complete. These re-

sults hold even if the KBs contain disjointness, (a)symmetry, (ir)reflexivity and transitivity
role constraints, equalities and inequalities.

On the other hand, from Corollary 6.2 and Lemmas 5.17, 5.18, 8.1 we can derive the
following:

Theorem 8.3 Without the UNA, satisfiability and instance checking for DL-LiteHbool KBs
are in AC0 for data complexity. These problems are also in AC0 if the KBs contain dis-
jointness, (a)symmetry, (ir)reflexivity role constraints and inequalities. However, they are
LogSpace-complete if the KBs may contain equalities, and NLogSpace-complete if role
transitivity constraints are allowed.

We also note that our complexity results (Corollary 5.12, Theorems 6.5, 6.6 and 6.7) for
the logics DL-LiteHFα and DL-LiteHNα do not depend on the UNA.

In this section, we analyze the combined and data complexity of reasoning in the logics
of the form DL-Lite

(HF)
α and DL-Lite

(HN)
α (as well as their fragments) without the UNA.

The obtained and known results are summarized in Table 2 on page 18.

8.1 DL-Lite
(HN)
α : Arbitrary Number Restrictions

The following theorem shows that the interaction between number restrictions and the
possibility of identifying objects in the ABox results in a higher complexity.

Theorem 8.4 Without the UNA, satisfiability of DL-LiteNcore KBs (even without equality
and inequality constraints) is NP-hard for both combined and data complexity.

Proof The proof is by reduction of the following variant of the 3SAT problem—called mono-
tone one-in-three 3SAT—which is known to be NP-complete (Garey & Johnson, 1979):
given a positive 3CNF formula

ϕ =
n∧
k=1

(
ak,1 ∨ ak,2 ∨ ak,3

)
,

where each ak,j is one of the propositional variables a1, . . . , am, decide whether there is an
assignment for the variables aj such that exactly one variable is true in each of the clauses
in ϕ. To encode this problem in the language of DL-LiteNcore, we need object names aki , for
1 ≤ k ≤ n, 1 ≤ i ≤ m, and ck and tk, for 1 ≤ k ≤ n, role names S and P , and concept
names A1, A2, A3. Let Aϕ be the ABox containing the following assertions:

S(a1
i , a

2
i), . . . , S(an−1

i , ani), S(ani , a
1
i), for 1 ≤ i ≤ m,

S(t1, t2), . . . , S(tn−1, tn), S(tn, t1),

P (ck, tk), for 1 ≤ k ≤ n,
P (ck, akk,j), Aj(akk,j), for 1 ≤ k ≤ n, 1 ≤ j ≤ 3,

58

The DL-Lite Family and Relations

and let T be the TBox with the axioms:

A1 v ¬A2, A2 v ¬A3, A3 v ¬A1, ≥ 2S v ⊥, ≥ 4P v ⊥.

Clearly, (T ,Aϕ) is a DL-LiteNcore KB and T does not depend on ϕ (so that we cover both
combined and data complexity). We claim that the answer to the monotone one-in-three
3SAT problem is positive iff (T ,Aϕ) is satisfiable without the UNA.

(⇐) Suppose I |= (T ,Aϕ). Define an assignment a of the truth values f and t to
propositional variables by taking a(ai) = t iff (a1

i)
I = (t1)I . Our aim is to show that

a(ak,j) = t for exactly one j ∈ {1, 2, 3}, for each k, 1 ≤ k ≤ n. We have P I(cIk , (a
k
k,j)
I) for

all j = 1, 2, 3. Moreover, (akk,i)
I 6= (akk,j)

I for i 6= j. As cIk ∈ (≤ 3P)I and P I(cIk , (t
k)I), we

then must have (akk,j)
I = (tk)I for some unique j ∈ {1, 2, 3}. It follows from functionality

of S that, for each 1 ≤ k ≤ n, we have (a1
k,j)
I = (t1)I for exactly one j ∈ {1, 2, 3}.

(⇒) Let a be an assignment satisfying the requirements of the problem. Take some
ai0 with a(ai0) = t (clearly, such an i0 exists, for otherwise a(ϕ) = f) and construct an
interpretation I = (∆I , ·I) by taking:

• ∆I =
{
yk, z

k | 1 ≤ k ≤ n
}
∪
{
xki | a(ai) = f, 1 ≤ i ≤ m, 1 ≤ k ≤ n

}
,

• cIk = yk and (tk)I = zk, for 1 ≤ k ≤ n,

• (aki)
I =

{
xki , if a(ai) = f,
zk, if a(ai) = t,

for 1 ≤ i ≤ m, 1 ≤ k ≤ n,

• SI =
{

((a1
i)
I , (a2

i)
I), . . . , ((an−1

i)I , (ani)I), ((ani)I , (a1
i)
I) | 1 ≤ i ≤ m

}
,

• P I =
{

(cIk , (t
k)I) | 1 ≤ k ≤ n

}
∪
{

(cIk , (a
k
k,j)
I) | 1 ≤ k ≤ n, 1 ≤ j ≤ 3

}
.

It is readily checked that I |= (T ,Aϕ). q

In fact, the above lower bound matches the NP upper bound provided by the following
reduction:

Theorem 8.5 Without the UNA, satisfiability of DL-LiteNα , DL-Lite
(HN)
α and DL-Lite

(HN)+

α

KBs with equality and inequality constraints is NP-complete for both combined and data
complexity and any α ∈ {core, krom, horn, bool}.

Proof The upper bound can be proved by the following non-deterministic algorithm. Given
a DL-Lite

(HN)+

bool KB K = (T ,A), we

• guess an equivalence relation ∼ over ob(A);

• select in each equivalence class ai/∼ a representative, say ai, and replace every occur-
rence of ai′ ∈ ai/∼ in A with ai;

• fail if the equalities and inequalities are violated in the resulting ABox—i.e., if it
contains ai 6≈ ai or ai ≈ aj , for i 6= j;

59

Artale, Calvanese, Kontchakov & Zakharyaschev

• otherwise, remove the equality and inequality constraints from the ABox and denote
the result by A′;

• use the NP satisfiability checking algorithm for DL-Lite
(HN)+

bool to decide whether the
KB K′ = (T ,A′) is consistent under the UNA.

Clearly, if the algorithm returns ‘yes,’ then I ′ |= K′, for some I ′ respecting the UNA, and
we can construct a model I of K (not necessarily respecting the UNA) by extending I ′ with
the following interpretation of object names: aI = aI

′
i , whenever ai is the representative

of a/∼ (I coincides with I ′ on all other symbols). Conversely, if I |= K then we take
the equivalence relation ∼ defined by ai ∼ aj iff aIi = aIj . Let I ′ be constructed from
I by removing the interpretations of all object names that are not representatives of the
equivalence classes for ∼. It follows that I ′ respects the UNA and is a model of K′, so the
algorithm returns ‘yes.’ q

8.2 DL-Lite
(HF)
α : Functionality Constraints

Let us consider now DL-Lite
(HF)+

bool and its fragments. The following lemma shows that for
these logics reasoning without the UNA can be reduced in polynomial time in the size of
the ABox to reasoning under the UNA.

Lemma 8.6 For every DL-Lite
(HF)+

bool KB K = (T ,A) with equality and inequality con-

straints, one can construct in polynomial time in |A| a DL-Lite
(HF)+

bool KB K′ = (T ,A′) such
that A′ contains no equalities and inequalities and K is satisfiable without the UNA iff K′
is satisfiable under the UNA.

Proof In what follows by identifying aj with ak in A we mean replacing each occurrence
of ak in A with aj . We construct A′ by first identifying aj with ak, for each aj ≈ ak ∈ A,
and removing the equality from A, and then exhaustively applying the following procedure
to A:

• if ≥ 2R v ⊥ ∈ T and R(ai, aj), R(ai, ak) ∈ CleT (A), for distinct aj and ak, then
identify aj with ak (recall that a functional R cannot have transitive sub-roles and
thus CleT (A) is enough).

If the resulting ABox contains ai 6≈ ai, for some ai, then, clearly, K is not satisfiable, so
we add A(ai) and ¬A(ai) to the ABox, for some concept name A. Finally, we remove
all inequalities from the ABox and denote the result by A′. It should be clear that A′ is
computed from A in polynomial time and that, without the UNA, K is satisfiable iff K′ is
satisfiable. So it suffices to show that K′ is satisfiable without the UNA iff it is satisfiable
under the UNA. The implication (⇐) is trivial.

(⇒) Observe that the above procedure ensures that

qeR,a ≤ 1, for each R with ≥ 2S v ⊥ ∈ T , R v∗T S and a ∈ ob(A′)

(see page 39 for definitions). Let K′′ be the DL-Lite
(HN)−

bool KB provided by Lemma 5.17 for
K′. It follows from the above property and the proofs of Lemma 5.14 and Corollary 5.16

60

The DL-Lite Family and Relations

that if K′′ is satisfiable without the UNA then (K′′)‡e is satisfied in a first-order model
with some constants interpreted by the same domain element. As (K′′)‡e is a universal
first-order sentence containing no equality, it is satisfiable in a first-order model such that
all constants are interpreted by distinct elements. It follows from the proofs of Lemma 5.14
and Corollary 5.16 that this first-order model can be unraveled into a model J for K′′
respecting the UNA. By Lemma 5.17, J is a model of K′. q

The reduction above cannot be done better than in P, as shown by the next theorem:

Theorem 8.7 Without the UNA, satisfiability of DL-LiteFcore KBs (even without equality
and inequality constraints) is P-hard for both combined and data complexity.

Proof The proof is by reduction of the entailment problem for Horn-CNF (as in the proof
of Theorem 6.7). Let

ϕ =
n∧
k=1

(
ak,1 ∧ ak,2 → ak,3

)
∧

p∧
l=1

al,0

be a Horn-CNF formula, where each ak,j and each al,0 is one of the propositional variables
a1, . . . , am and ak,1, ak,2, ak,3 are all distinct, for each k, 1 ≤ k ≤ n. To encode the P-
complete problem ‘ϕ |= ai?’ in the language of DL-LiteFcore we need object names aki , for
1 ≤ k ≤ n, 1 ≤ i ≤ m, fk and gk, for 1 ≤ k ≤ n and t and role names P , Q, S and T . The
ABox A contains the following assertions

S(a1
i , a

2
i), . . . , S(an−1

i , ani), S(ani , a
1
i), for 1 ≤ i ≤ m,

P (akk,1, fk), P (akk,2, gk), Q(gk, akk,3), Q(fk, akk,1), for 1 ≤ k ≤ n,
T (t, a1

l,0), for 1 ≤ l ≤ p,

and the TBox T asserts that all of the roles are functional:

≥ 2P v ⊥, ≥ 2Q v ⊥, ≥ 2S v ⊥ and ≥ 2T v ⊥.

Clearly, K = (T ,A) is a DL-LiteFcore KB and T does not depend on ϕ. We claim that
ϕ |= aj iff K′ = (T ,A ∪ {¬T (t, a1

j)}) is not satisfiable without the UNA. To show this, it
suffices to prove that ϕ |= aj iff K |=noUNA T (t, a1

j).
(⇒) Suppose ϕ |= aj . Then we can derive aj from ϕ using the following inference rules:

• ϕ |= al,0 for each l, 1 ≤ l ≤ p;

• if ϕ |= ak,1 and ϕ |= ak,2, for some k, 1 ≤ k ≤ n, then ϕ |= ak,3.

We show that K |=noUNA T (t, a1
j) by induction on the length of the derivation of aj from ϕ.

The basis of induction is trivial. So assume that aj = ak,3, ϕ |= ak,1, ϕ |= ak,2, for some k,
1 ≤ k ≤ n, and that K |=noUNA T (t, a1

k,1) ∧ T (t, a1
k,2). Suppose also that I |= K. Since T

is functional, we have (a1
k,1)I = (a1

k,2)I . Since S is functional, (ak
′
k,1)I = (ak

′
k,2)I , for all k′,

1 ≤ k′ ≤ n, and in particular, for k′ = k. Then, since P is functional, fIk = gIk , from which,
by functionality of Q, (akk,3)I = (akk,1)I . Finally, since S is functional, (ak

′
k,3)I = (ak

′
k,1)I ,

61

Artale, Calvanese, Kontchakov & Zakharyaschev

for all k′, 1 ≤ k′ ≤ n, and in particular, for k′ = 1. Thus, I |= T (t, a1
j) and therefore

K |=noUNA T (t, a1
j).

(⇐) Suppose that ϕ 6|= aj . Then there is an assignment a such that a(ϕ) = t and
a(aj) = f. Construct an interpretation I by taking

• ∆I =
{
xki | a(ai) = f, 1 ≤ k ≤ n, 1 ≤ i ≤ m

}
∪
{
zk, uk, vk | 1 ≤ k ≤ n

}
∪
{
w
}

,

• (aki)
I =

{
xki , if a(ai) = f,
zk, if a(ai) = t,

for 1 ≤ k ≤ n and 1 ≤ i ≤ m,

• tI = w, T I =
{

(w, z1)
}

,

• SI =
{

((a1
i)
I , (a2

i)
I), . . . , ((an−1

i)I , (ani)I), ((ani)I , (a1
i)
I) | 1 ≤ i ≤ m

}
,

• fIk = uk and gIk =

{
vk, if a(ak,2) = f,
uk, if a(ak,2) = t,

for 1 ≤ k ≤ n,

• P I =
{

((akk,1)I , fIk), ((akk,2)I , gIk) | 1 ≤ k ≤ n
}

,

• QI =
{

(gIk , (a
k
k,3)I), (fIk , (a

k
k,1)I) | 1 ≤ k ≤ n

}
.

It is readily checked that I |= K and I 6|= T (t, a1
j), and so K 6|=noUNA T (t, a1

j). q

The above result strengthens the NLogSpace lower bound for instance checking in
DL-LiteFcore proved by Calvanese et al. (2008).

Corollary 8.8 Without the UNA, satisfiability of DL-LiteFα , DL-Lite
(HF)
α and DL-Lite

(HF)+

α

KBs, α ∈ {core, krom, horn}, with equalities and inequalities is P-complete for both com-
bined and data complexity.

Without the UNA, satisfiability of DL-LiteFbool, DL-Lite
(HF)
bool and DL-Lite

(HF)+

bool KBs with
equalities and inequalities is NP-complete for combined complexity and P-complete for data
complexity.

Proof The upper bounds follow from Lemma 8.6 and the corresponding upper bounds for
the UNA case. The NP lower bound for combined complexity is obvious and the polynomial
lower bounds follow from Theorem 8.7. q

8.3 Query Answering: Data Complexity

The P and coNP upper bounds for query answering without the UNA follow from (Hustadt
et al., 2005; Eiter et al., 2008) and (Ortiz et al., 2006, 2008; Glimm et al., 2007), respectively
(see the discussion at the beginning of Section 7). We present here the following result:

Theorem 8.9 Without the UNA, positive existential query answering for DL-LiteHhorn KBs
with disjointness, (a)symmetry, (ir)reflexivity role constraints and inequalities is in AC0

for data complexity. This problem is LogSpace-complete if, additionally, equalities are
allowed in the KBs.

62

The DL-Lite Family and Relations

Proof The proof follows the lines of the proof of Theorem 7.1 and uses the observation
that models without the UNA give no more answers than their untangled counterparts.
More precisely, let KB K′ = (T ′,A′) be as above. Suppose that it is consistent. Let q(~x)
be a positive existential query in the signature of K′. Given K′, Lemma 5.17 provides
us with a KB K. It is easy to see that K is a DL-LiteHhorn KB extended with inequality
constraints. The following is an analogue of Lemma 7.2, which also allows us to get rid of
those inequalities:

Lemma 8.10 For every tuple ~a of object names in K′, we have K′ |=noUNA q(~a) iff I |= q(~a)
for all untangled models I of K (respecting the UNA).

Proof (⇒) Suppose that K′ |=noUNA q(~a) and I is an untangled model of K. As I respects
the UNA, by Lemma 5.17 and in view of satisfiability of K′, which ensures that (44) holds,
we then have I |= K′ and therefore, I |= q(~a).

(⇐) Suppose I ′ |= K′. We construct an interpretation J ′ respecting the UNA as follows.
Let ∆J

′
be the disjoint union of ∆I

′
and ob(A). Define a function h : ∆J

′ → ∆I
′

by taking
h(a) = aI

′
, for each a ∈ ob(A), and h(w) = w, for each w ∈ ∆I

′
, and let

aJ
′

= a, AJ
′

=
{
u | h(u) ∈ AI′

}
and PJ

′
=
{

(u, v) | (h(x), h(v)) ∈ P I′
}
,

for each object, concept and role name a, A, P . Clearly, J ′ respects the UNA and J ′ |= K′.
It also follows that h is a homomorphism.

By Lemma 5.17, there is a model I of K with the same domain as J ′ that coincides
with J ′ on all symbols in K′. As I |= q(~a), we must then have J ′ |= q(~a), and since h is a
homomorphism, I ′ |= q(~a). Therefore, K′ |=noUNA q(~a) as required. q

The remaining part of the proof is exactly as in the proof of Theorem 7.1 (as now we
may assume that K is a DL-LiteHhorn KB containing no inequality constraints).

LogSpace-completeness for the case with equality follows from Lemma 8.1. q

9. Conclusion

In this article, we investigated the boundaries of the ‘extended DL-Lite family’ of description
logics by providing a thorough and comprehensive understanding of the interaction between
various DL-Lite constructs and their impact on the computational complexity of reasoning.
We studied 40 different logics, classified according to five mutually orthogonal features:
(1) the presence or absence of role inclusion assertions, (2) the form of the allowed concept
inclusion assertions, distinguishing four main logical groups called core, Krom, Horn, and
Bool, (3) the form of the allowed numeric constraints, ranging from none, to global func-
tionality constraints only, and to arbitrary number restrictions, (4) the presence or absence
of the unique name assumption (and equalities and inequalities between object names, if
this assumption is dropped), and (5) the presence or absence of standard role constraints
such as role disjointness, role symmetry, asymmetry, reflexivity, irreflexivity and transitiv-
ity. For all of the resulting logics, we studied the combined and data complexity of KB
satisfiability and instance checking, as well as the data complexity of answering positive
existential queries.

63

Artale, Calvanese, Kontchakov & Zakharyaschev

.

.

UNA
no role inclusions

no UNA
no role inclusions

with/without UNA
role inclusions

ho
rn

co
re

kr
om

bo
ol

F
N

F
N

F
N

AC0
P

coNP

instance checking
data complexity

ExpTime

NP

P
NLogSpace

satisfiability
combined complexity

Legend
query answering

coNPquery answering
= instance checking

Figure 6: Complexity of basic DL-Lite logics.

The obtained tight complexity results are illustrated in Figure 6, where the combined
complexity of satisfiability is represented by vertical dashed lines, while the data complexity
of instance checking by the size and color of the circle on top of these lines (recall that
satisfiability and instance checking are reducible to the complement of each other). The
data complexity of query answering for the core and Horn logics, shown on the left-hand
side of the separating vertical plane, coincides with the data complexity of instance checking;
for the Krom and Bool logics, shown on the right-hand side of the plane, query answering is
always data-complete for coNP. The upper layer shows the complexity of logics with role
inclusions, in which case it does not depend on whether we adopt the UNA or not. The
middle and the lower layers deal with the logics without role inclusions when the UNA is
dropped or adopted, respectively. In each of these layers, the twelve languages are arranged
in the 4×3 grid: one axis shows the type of concepts inclusions allowed (Horn, core, Krom,
Bool), while the other the type of number restrictions (none, global functionality F or
arbitrary N). Some observations are in order:

• Under the UNA but without role inclusions, number restrictions do not increase the
complexity of reasoning, which depends only on the form of concept inclusions allowed.

• On the other hand, without any form of number restrictions, the logics can have role
inclusions and are insensitive to the UNA; again, the complexity is determined by the
shape of concept inclusions only.

• In either of the above cases, instance checking is in AC0 for data complexity, which
means that the problems are first-order reducible.

64

The DL-Lite Family and Relations

• Without UNA adopted and without either disjunctions or role inclusions, functionality
leads to P-completeness of instance checking for data complexity, which suggests its
reducibility to Datalog.

• For data complexity, there is no difference between the core and Horn logics, and
between the Krom and Bool ones, which means that the core and Krom logics can be
extended with conjunctions on the left-hand side of concept inclusions ‘for free.’

Finally, for the logics DL-Lite
(HF)
α and DL-Lite

(HN)
α with both (qualified) number restric-

tions and role inclusions, whose interaction is restricted by conditions (A1)–(A3), the
complexity of reasoning always coincides with the complexity of the fragments DL-LiteFα
and, respectively, DL-LiteNα without role inclusions, no matter whether we adopt the UNA
or not.

Role disjointness, symmetry and asymmetry constraints can be added to any of the
languages without changing their complexity. In fact, the DL-Lite

(HN)
α and DL-Lite

(HF)
α

logics contain all of the above types of constraints together with role reflexivity and irreflex-
ivity. We conjecture that (ir)reflexivity constraints can be added to all other logics without
affecting their complexity. However, if we extend any DL-Lite logic with role transitivity
constraints, then the combined complexity of satisfiability remains the same, while instance
checking and query answering become data-hard for NLogSpace. And the addition of
equality between object names—which only makes sense if the UNA is dropped—increases
from ‘in AC0’ to LogSpace-complete for data complexity; all other results remain un-
changed.

The list of DL constructs considered in this paper is far from being complete. For
example, it would be of interest to analyze the impact of nominals, role chains and Boolean
operators on roles on the computational behavior of the DL-Lite logics. Another interesting
and practically important problem is to investigate in depth the interaction between various
constructs with the aim of pushing restrictions like (A1)–(A3) as far as possible.

One of the main ideas behind the DL-Lite logics was to provide efficient access to large
amounts of data through a high-level conceptual interface. This is supposed to be achieved
by representing the high-level view of the information managed by the system as a DL-Lite
TBox T , the data stored in a relational database as an ABox A, and then rewriting posi-
tive existential queries to the knowledge base (T ,A) as standard first-order queries to the
database represented by A. Such an approach is believed to be viable because, for a number
of DL-Lite logics, the query answering problem is in AC0 for data complexity; cf. Theo-
rems 7.1, 8.9 and Figure 6. The first-order rewriting technique has been implemented in
various system, notably in QuOnto (Acciarri et al., 2005; Poggi et al., 2008b), which can
query, relying on ontology-to-relational mappings, data stored in any standard relational
database management system, and in Owlgres (Stocker & Smith, 2008), which can access
an ABox stored in a Postgres database (though, to the best of our knowledge, the latter
implementation is incomplete for conjunctive query answering). It is to be noted, however,
that the size of the rewritten query can be substantially larger than the size of the original
query, which can cause problems even for a very efficient database query engine.

For a positive existential query q and TBox T , there are two major sources of high
complexity of the first-order formula ϕT ,q in the proof of Theorem 7.1: (i) the formulas
ψB(x) computing whether an ABox object is an instance of a concept B (and the formulas

65

Artale, Calvanese, Kontchakov & Zakharyaschev

θR,dr computing whether objects with outgoing R-arrows are instances of B), and (ii) the
disjunction over the paths ~σ in the graph GT . In the case of DL-Lite

(HN)
core , the size of

ψB(x) is linear in |T |, while for DL-Lite
(HN)
horn it can become exponential (however, various

optimizations are possible). The size of the disjunction in (ii) is exponential in the number
of non-distinguished variables in q. One way of removing source (i) would be to extend
the given database (ABox) A by precomputing the Horn closure of the ABox with respect
to the TBox and storing the resulting data in a supplementary database. This approach
is advocated in (Lutz et al., 2008) for querying databases via the description logic EL.
It could also be promising for the Horn fragments of expressive description logics such as
SHIQ (Hustadt et al., 2005; Hustadt, Motik, & Sattler, 2007)—containing DL-LiteHFhorn as
a sub-language—for which the data complexity of instance checking (Hustadt et al., 2005,
2007) and conjunctive query answering is polynomial (Eiter et al., 2008). The disadvantage
of using a supplementary database is the necessity to update it every time the ABox is
changed. It would be interesting to investigate this alternative approach for DL-Lite logics
and compare it with the approach described above. Another important problem is to char-
acterize those queries for which the disjunction in (ii) can be represented by a polynomial
size formula.

As the unique name assumption is replaced in OWL by the constructs sameAs and
differentFrom (i.e., ≈ and 6≈), a challenging problem is to investigate possible ways of
dealing with equality (inequality does not require any special treatment as shown in the
proof of Lemma 8.10). Although reasoning with equality is LogSpace-reducible to rea-
soning without it (cf. Lemma 8.1), we lose the property of first-order rewritability, and
computing equivalence classes under ≈ may be too costly for real-world applications.

DL-Lite logics are among those few examples of DLs for which usually very complex
‘non-standard’ reasoning problems—such as checking whether one ontology is a conservative
extension of another one with respect to a given signature Σ (Kontchakov et al., 2008),
computing minimal modules of ontologies with respect to Σ (Kontchakov et al., 2009) or
uniform interpolants (Wang, Wang, Topor, & Pan, 2008)—can be supported by practical
reasoning tools. However, only first steps have been made in this direction, and more
research is needed in order to include these reasoning problems and tools into the standard
OWL toolkit. It would be also interesting to investigate the unification problem for DL-Lite
logics (Baader & Narendran, 2001).

Finally, there exist certain parallels between the Horn logics of the DL-Lite family, EL,
Horn-SHIQ and the first-order language of tuple and equality generating dependencies,
TGDs and EGDs, used in the theory of databases; see, e.g., (Gottlob & Nash, 2008). Further
investigations of the relationships between these logics may lead to a deeper understanding
of the role description logics can play in the database framework.

Acknowledgements

This research has been partially supported by FET project TONES (Thinking ONtolo-
giES), funded within the EU 6th Framework Programme under contract FP6-7603, and
by the large-scale integrating project (IP) OntoRule (ONTOlogies meet Business RULEs
ONtologiES), funded by the EC under ICT Call 3 FP7-ICT-2008-3, contract number FP7-

66

The DL-Lite Family and Relations

231875. We thank the anonymous referees for their constructive criticism, comments, and
suggestions.

References

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of Databases. Addison-Wesley.

Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri, M., &
Rosati, R. (2005). QuOnto: Querying ontologies. In Proc. of the 20th Nat. Conf.
on Artificial Intelligence (AAAI 2005), pp. 1670–1671.

Apt, K. (1990). Logic programming. In van Leeuwen, J. (Ed.), Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics, pp. 493–574. Elsevier
and MIT Press.

Artale, A., Calvanese, D., Kontchakov, R., & Zakharyaschev, M. (2007a). DL-Lite in the
light of first-order logic. In Proc. of the 22nd Nat. Conf. on Artificial Intelligence
(AAAI 2007), pp. 361–366.

Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., & Zakharyaschev, M. (2007b).
Reasoning over extended ER models. In Proc. of the 26th Int. Conf. on Conceptual
Modeling (ER 2007), Vol. 4801 of Lecture Notes in Computer Science, pp. 277–292.
Springer.

Artale, A., Cesarini, F., & Soda, G. (1996). Describing database objects in a concept
language environment. IEEE Trans. on Knowledge and Data Engineering, 8 (2), 345–
351.

Artale, A., Parent, C., & Spaccapietra, S. (2007). Evolving objects in temporal information
systems. Ann. of Mathematics and Artificial Intelligence, 50, 5–38.

Baader, F., & Narendran, P. (2001). Unification of concepts terms in description logics. J.
of Symbolic Computation, 31 (3), 277–305.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. F. (Eds.).
(2003). The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press. (2nd edition, 2007).

Beeri, C., Levy, A. Y., & Rousset, M.-C. (1997). Rewriting queries using views in description
logics. In Proc. of the 16th ACM SIGACT SIGMOD SIGART Symp. on Principles
of Database Systems (PODS’97), pp. 99–108.

Berardi, D., Calvanese, D., & De Giacomo, G. (2005). Reasoning on UML class diagrams.
Artificial Intelligence, 168 (1–2), 70–118.

Bergamaschi, S., & Sartori, C. (1992). On taxonomic reasoning in conceptual design. ACM
Trans. on Database Systems, 17 (3), 385–422.

Boppana, R., & Sipser, M. (1990). The complexity of finite functions. In van Leeuwen, J.
(Ed.), Handbook of Theoretical Computer Science, Volume A: Algorithms and Com-
plexity, pp. 757–804. Elsevier and MIT Press.

Börger, E., Grädel, E., & Gurevich, Y. (1997). The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer.

67

Artale, Calvanese, Kontchakov & Zakharyaschev

Borgida, A., & Brachman, R. J. (2003). Conceptual modeling with description logics. In
Baader et al. (Baader et al., 2003), chap. 10, pp. 349–372. (2nd edition, 2007).

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., & Rosati, R. (2007).
Ontology-based database access. In Proc. of the 15th Ital. Conf. on Database Systems
(SEBD 2007), pp. 324–331.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R., & Ruzzi, M.
(2008). Data integration through DL-LiteA ontologies. In Schewe, K.-D., & Thalheim,
B. (Eds.), Revised Selected Papers of the 3rd Int. Workshop on Semantics in Data and
Knowledge Bases (SDKB 2008), Vol. 4925 of Lecture Notes in Computer Science, pp.
26–47. Springer.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2005). DL-Lite:
Tractable description logics for ontologies. In Proc. of the 20th Nat. Conf. on Artificial
Intelligence (AAAI 2005), pp. 602–607.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2006). Data
complexity of query answering in description logics. In Proc. of the 10th Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR 2006), pp. 260–270.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2007a). Can OWL
model football leagues?. In Proc. of the 3rd Int. Workshop on OWL: Experiences and
Directions (OWLED 2007), Vol. 258 of CEUR Workshop Proceedings.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2007b). Tractable
reasoning and efficient query answering in description logics: The DL-Lite family. J.
of Automated Reasoning, 39 (3), 385–429.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2008a). Inconsis-
tency tolerance in P2P data integration: An epistemic logic approach. Information
Systems, 33 (4), 360–384.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2008b). Path-based
identification constraints in description logics. In Proc. of the 11th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR 2008), pp. 231–241.

Calvanese, D., De Giacomo, G., & Lenzerini, M. (2002a). Description logics for information
integration. In Kakas, A., & Sadri, F. (Eds.), Computational Logic: Logic Program-
ming and Beyond, Essays in Honour of Robert A. Kowalski, Vol. 2408 of Lecture Notes
in Computer Science, pp. 41–60. Springer.

Calvanese, D., De Giacomo, G., & Lenzerini, M. (2002b). A framework for ontology inte-
gration. In Cruz, I., Decker, S., Euzenat, J., & McGuinness, D. (Eds.), The Emerging
Semantic Web — Selected Papers from the First Semantic Web Working Symposium,
pp. 201–214. IOS Press.

Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., & Rosati, R. (1998a). Description
logic framework for information integration. In Proc. of the 6th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR’98), pp. 2–13.

Calvanese, D., Lenzerini, M., & Nardi, D. (1998b). Description logics for conceptual data
modeling. In Chomicki, J., & Saake, G. (Eds.), Logics for Databases and Information
Systems, pp. 229–264. Kluwer Academic Publishers.

68

The DL-Lite Family and Relations

Calvanese, D., Lenzerini, M., & Nardi, D. (1999). Unifying class-based representation for-
malisms. J. of Artificial Intelligence Research, 11, 199–240.

Corona, C., Ruzzi, M., & Savo, D. F. (2009). Filling the gap between OWL 2 QL and
QuOnto: ROWLKit. In Proc. of the 22nd Int. Workshop on Description Logics
(DL 2009), Vol. 477 of CEUR Workshop Proceedings.

Cuenca Grau, B., Horrocks, I., Kazakov, Y., & Sattler, U. (2008). Modular reuse of ontolo-
gies: Theory and practice. J. of Artificial Intelligence Research, 31, 273–318.

Decker, S., Erdmann, M., Fensel, D., & Studer, R. (1999). Ontobroker: Ontology based
access to distributed and semi-structured information. In Meersman, R., Tari, Z.,
& Stevens, S. (Eds.), Database Semantic: Semantic Issues in Multimedia Systems,
chap. 20, pp. 351–370. Kluwer Academic Publishers.

Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., & Sun, X. (2008).
Scalable grounded conjunctive query evaluation over large and expressive knowledge
bases. In Proc. of the 7th Int. Semantic Web Conf. (ISWC 2008), Vol. 5318 of Lecture
Notes in Computer Science, pp. 403–418. Springer.

Eiter, T., Gottlob, G., Ortiz, M., & Šimkus, M. (2008). Query answering in the descrip-
tion logic Horn-SHIQ. In Proc. of the 11th Eur. Conference on Logics in Artificial
Intelligence (JELIA 2008), pp. 166–179.

Franconi, E., & Ng, G. (2000). The i.com tool for intelligent conceptual modeling. In Proc. of
the 7th Int. Workshop on Knowledge Representation meets Databases (KRDB 2000),
Vol. 29 of CEUR Workshop Proceedings, pp. 45–53.

Garey, M., & Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman.

Ghilardi, S., Lutz, C., & Wolter, F. (2006). Did I damage my ontology? A case for con-
servative extensions in description logics. In Doherty, P., Mylopoulos, J., & Welty,
C. (Eds.), Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR 2006), pp. 187–197.

Glimm, B., Horrocks, I., Lutz, C., & Sattler, U. (2007). Conjunctive query answering for the
description logic SHIQ. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2007), pp. 399–404.

Goasdoue, F., Lattes, V., & Rousset, M.-C. (2000). The use of CARIN language and
algorithms for information integration: The Picsel system. Int. J. of Cooperative
Information Systems, 9 (4), 383–401.

Gottlob, G., & Nash, A. (2008). Efficient core computation in data exchange. J. of the
ACM, 55 (2), 1–49.

Hayes, P. (2004). RDF semantics. W3C Recommendation. Available at http://www.w3.
org/TR/rdf-mt/.

Heflin, J., & Hendler, J. (2001). A portrait of the Semantic Web in action. IEEE Intelligent
Systems, 16 (2), 54–59.

Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., Pan, Y., Mei, J., Fokoue, A.,
Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas, K., Feier, C., Hench, G.,

69

Artale, Calvanese, Kontchakov & Zakharyaschev

Wetzstein, B., & Keller, U. (2008). Ontology reasoning with large data repositories.
In Hepp, M., De Leenheer, P., de Moor, A., & Sure, Y. (Eds.), Ontology Management,
Semantic Web, Semantic Web Services, and Business Applications, Vol. 7 of Semantic
Web And Beyond Computing for Human Experience, pp. 89–128. Springer.

Horrocks, I., Patel-Schneider, P. F., & van Harmelen, F. (2003). From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics, 1 (1), 7–26.

Horrocks, I., Sattler, U., & Tobies, S. (2000). Practical reasoning for very expressive de-
scription logics. J. of the Interest Group in Pure and Applied Logic, 8 (3), 239–264.

Hustadt, U., Motik, B., & Sattler, U. (2007). Reasoning in description logics by a reduction
to disjunctive Datalog. J. of Automated Reasoning, 39 (3), 351–384.

Hustadt, U., Motik, B., & Sattler, U. (2005). Data complexity of reasoning in very expressive
description logics. In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2005), pp. 466–471.

Immerman, N. (1999). Descriptive Complexity. Springer.

Klyne, G., & Carroll, J. J. (2004). Resource description framework (RDF): Concepts
and abstract syntax. W3C Recommendation. Available at http://www.w3.org/
TR/rdf-concepts/.

Kontchakov, R., Pulina, L., Sattler, U., Schneider, T., Seimer, P., Wolter, F., & Za-
kharyaschev, M. (2009). Minimal module extraction from DL-Lite ontologies using
QBF solvers. In Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJ-
CAI 2009), pp. 836–840.

Kontchakov, R., Wolter, F., & Zakharyaschev, M. (2008). Can you tell the difference
between DL-Lite ontologies?. In Proc. of the 11th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2008), pp. 285–295.

Kontchakov, R., & Zakharyaschev, M. (2008). DL-Lite and role inclusions. In Domingue, J.,
& Anutariya, C. (Eds.), Proc. of the 3rd Asian Semantic Web Conf. (ASWC 2008),
Vol. 5367 of Lecture Notes in Computer Science, pp. 16–30. Springer.

Kozen, D. (2006). Theory of Computation. Springer.

Lenzerini, M. (2002). Data integration: A theoretical perspective. In Proc. of the 21st ACM
SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 2002),
pp. 233–246.

Levy, A. Y., & Rousset, M.-C. (1998). Combining Horn rules and description logics in
CARIN. Artificial Intelligence, 104 (1–2), 165–209.

Lutz, C., Toman, D., & Wolter, F. (2008). Conjunctive query answering in EL using a
database system. In Proc. of the 5th Int. Workshop on OWL: Experiences and Direc-
tions (OWLED 2008).

McGuinness, D., & Wright, J. R. (1998). Conceptual modelling for configuration: A descrip-
tion logic-based approach. Artificial Intelligence for Engineering Design, Analysis, and
Manufacturing. Special Issue on Configuration, 12, 333–344.

Meyer, T., Lee, K., & Booth, R. (2005). Knowledge integration for description logics. In
Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pp. 645–650.

70

The DL-Lite Family and Relations

Noy, N. F. (2004). Semantic integration: A survey of ontology-based approaches. SIGMOD
Record, 33 (4), 65–70.

Ortiz, M., Calvanese, D., & Eiter, T. (2006). Characterizing data complexity for conjunctive
query answering in expressive description logics. In Proc. of the 21st Nat. Conf. on
Artificial Intelligence (AAAI 2006), pp. 275–280.

Ortiz, M., Calvanese, D., & Eiter, T. (2008). Data complexity of query answering in ex-
pressive description logics via tableaux. J. of Automated Reasoning, 41 (1), 61–98.

Papadimitriou, C. (1994). Computational Complexity. Addison-Wesley.

Pérez-Urbina, H., Motik, B., & Horrocks, I. (2009). A comparison of query rewriting
techniques for DL-Lite. In Proc. of the 22nd Int. Workshop on Description Logics
(DL 2009), Vol. 477 of CEUR Workshop Proceedings.

Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., & Rosati, R. (2008a).
Linking data to ontologies. J. on Data Semantics, X, 133–173.

Poggi, A., Rodriguez, M., & Ruzzi, M. (2008b). Ontology-based database access with
DIG-Mastro and the OBDA Plugin for Protégé. In Clark, K., & Patel-Schneider,
P. F. (Eds.), Proc. of the 4th Int. Workshop on OWL: Experiences and Directions
(OWLED 2008 DC).

Rautenberg, W. (2006). A Concise Introduction to Mathematical Logic. Springer.

Reingold, O. (2008). Undirected connectivity in log-space. J. of the ACM, 55 (4).

Schaerf, A. (1993). On the complexity of the instance checking problem in concept languages
with existential quantification. J. of Intelligent Information Systems, 2, 265–278.

Schmidt-Schauß, M., & Smolka, G. (1991). Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48 (1), 1–26.

Stocker, M., & Smith, M. (2008). Owlgres: A scalable OWL reasoner. In Proc. of the 5th
Int. Workshop on OWL: Experiences and Directions (OWLED 2008).

Tobies, S. (2001). Complexity results and practical algorithms for logics in Knowledge Rep-
resentation. Ph.D. thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Ger-
many.

Toman, D., & Weddell, G. E. (2005). On the interaction between inverse features and path-
functional dependencies in description logics. In Proc. of the 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2005), pp. 603–608.

Toman, D., & Weddell, G. E. (2008). On keys and functional dependencies as first-class
citizens in description logics. J. of Automated Reasoning, 40 (2–3), 117–132.

Vardi, M. (1982). The complexity of relational query languages (extended abstract). In
Proc. of the 14th ACM SIGACT Symp. on Theory of Computing (STOC’82), pp.
137–146.

Vollmer, H. (1999). Introduction to Circuit Complexity: A Uniform Approach. Springer.

Wang, Z., Wang, K., Topor, R. W., & Pan, J. Z. (2008). Forgetting concepts in DL-Lite.
In Bechhofer, S., Hauswirth, M., Hoffmann, J., & Koubarakis, M. (Eds.), Proc. of the

71

Artale, Calvanese, Kontchakov & Zakharyaschev

5th Eur. Semantic Web Conf. (ESWC 2008), Vol. 5021 of Lecture Notes in Computer
Science, pp. 245–257. Springer.

72

