
The Price of Query Rewriting in Ontology-Based Data Access

Georg Gottloba, Stanislav Kikotb, Roman Kontchakovb, Vladimir Podolskiic, Thomas Schwentickd, Michael
Zakharyaschevb,∗

aDepartment of Computer Science, University of Oxford, U.K.
bDepartment of Computer Science and Information Systems, Birkbeck, University of London, U.K.

cSteklov Mathematical Institute, Moscow, Russia
dFakultät für Informatik, TU Dortmund, Germany

Abstract

We give a solution to the succinctness problem for the size of first-order rewritings of conjunctive queries in ontology-
based data access with ontology languages such as OWL 2 QL , linear Datalog± and sticky Datalog±. We show that
positive existential and nonrecursive datalog rewritings, which do not use extra non-logical symbols (except for inten-
sional predicates in the case of datalog rewritings), suffer an exponential blowup in the worst case, while first-order
rewritings can grow superpolynomially unless NP ⊆ P/poly. We also prove that nonrecursive datalog rewritings are
in general exponentially more succinct than positive existential rewritings, while first-order rewritings can be super-
polynomially more succinct than positive existential rewritings. On the other hand, we construct polynomial-size
positive existential and nonrecursive datalog rewritings under the assumption that any data instance contains two fixed
constants.

Keywords: Ontology, datalog, conjunctive query, query rewriting, succinctness, Boolean circuit, monotone
complexity.

1. Introduction

Our aim in this article is to give a solution to the succinctness problem for various types of conjunctive query
rewriting in ontology-based data access (OBDA) with basic ontology languages such as OWL 2 QL and fragments of
Datalog±.

The idea of OBDA has been around since about 2005 [14, 19, 28, 47]. In the OBDA paradigm, an ontology
defines a high-level global schema and provides a vocabulary for user queries. An OBDA system rewrites these
queries into the vocabulary of the data and then delegates the actual query evaluation to the data sources (which can
be relational databases, triple stores, datalog engines, etc.). OBDA is often regarded as an important ingredient of the
new generation of information systems because it (i) gives a high-level conceptual view of the data, (ii) provides the
users with a convenient vocabulary for queries, thus isolating them from the details of the structure of data sources,
(iii) allows the system to enrich incomplete data with background knowledge, and (iv) supports queries to multiple
and possibly heterogeneous data sources.

A key concept of OBDA is first-order (FO) rewritability. An ontology languageL is said to enjoy FO-rewritability
if any conjunctive query (CQ) q over any ontology Σ, formulated in L, can be rewritten to an FO-query q′ such that,
for any data instance D, the answers to the original CQ q over the knowledge base (Σ,D) can be computed by
evaluating the rewriting q′ over D. As q′ is an FO-query, the answers to q′ can be obtained using a standard relational
database management system (RDBMS). Ontology languages with this property include the OWL 2 QL profile of the
Web Ontology Language OWL 2, which is based on description logics of the DL-Lite family [16, 4], and fragments

∗Corresponding author
Email addresses: georg.gottlob@cs.ox.ac.uk (Georg Gottlob), staskikotx@gmail.com (Stanislav Kikot), roman@dcs.bbk.ac.uk

(Roman Kontchakov), podolskii.vv@gmail.com (Vladimir Podolskii), thomas.schwentick@udo.edu (Thomas Schwentick),
michael@dcs.bbk.ac.uk (Michael Zakharyaschev)

Preprint submitted to Elsevier March 13, 2014

of Datalog± such as linear tgds [11] (also known as atomic-body existential rules [6]) or sticky tgds [12, 13]. To
illustrate, consider an OWL 2 QL-ontology Σ consisting of the following tuple-generating dependencies (tgds):

∀x
(
RA(x)→ ∃y (worksOn(x, y) ∧ Project(y))

)
, (1)

∀x
(
Project(x)→ ∃y (isManagedBy(x, y) ∧ Professor(y))

)
, (2)

∀x, y
(
worksOn(x, y)→ involves(y, x)

)
, (3)

∀x, y
(
isManagedBy(x, y)→ involves(x, y)

)
, (4)

and the CQ q(x) asking to find those who work with professors:

q(x) = ∃y, z
(
worksOn(x, y) ∧ involves(y, z) ∧ Professor(z)

)
. (5)

A moment’s thought should convince the reader that the (positive existential) query

q′(x) = ∃y, z
[
worksOn(x, y) ∧

(
worksOn(z, y) ∨ isManagedBy(y, z) ∨ involves(y, z)

)
∧ Professor(z)

]
∨

∃y
[
worksOn(x, y) ∧ Project(y)

]
∨ RA(x)

is an FO-rewriting of q(x) and Σ in the sense that, for any set D of ground atoms and any constant a in D, we have

(Σ,D) |= q(a) if and only if D |= q′(a).

(In Section 2, we shall consider this example in more detail.) A number of different rewriting techniques have been
proposed and implemented for OWL 2 QL (PerfectRef [47], Presto/Prexto [55, 54], Rapid [18], the combined ap-
proach [37], Ontop [51, 33]) and its various extensions (Requiem/Blackout [45, 46], Nyaya [25, 43], Clipper [20]
and [35]). However, all FO-rewritings constructed so far have, in the worst case, been exponential in the size of the
query q. Thus, despite the fact that, for data complexity, CQ answering over ontologies with FO-rewritability is as
complex as standard database query evaluation (both are in AC0), rewritings can be too large for RDBMSs to cope
with. It has become apparent, in both theory and experiments, that for the OBDA paradigm to work in practice, we
have to restrict attention to those ontologies and CQs that ensure polynomial FO-rewritability (in the very least).

The major open question we are going to attack in this article is whether the standard ontology languages for
OBDA (in particular, OWL 2 QL) enjoy polynomial FO-rewritability. Naturally, the answer depends on what means
we can use in the rewritings. For example, in the rewriting q′ of q and Σ above, we did not use any non-logical symbols
other than those that occurred in q and Σ. Such rewritings (perhaps also containing equality) may be described as
‘pure’ as they can be used with all possible databases; cf. [16]. (Note that all known rewritings apart from the one
in the combined approach [37] are pure in this sense.) Other important parameters are the available logical means
(connectives and quantifiers) in rewritings and the way we represent them. Apart from the class of arbitrary FO-
queries, we shall also consider positive existential (PE) queries and nonrecursive datalog (NDL) queries as possible
formalisms for rewritings (needless to say that pure NDL-rewritings may contain new intensional predicates).

At first sight, the results we obtain in this article could be divided into negative and positive. The bad news
is that there is a sequence of CQs qn and OWL 2 QL ontologies Σn, both of size O(n), such that any pure PE- or
NDL-rewriting of qn and Σn is of exponential size in n, while any pure FO-rewriting is of superpolynomial size
unless NP ⊆ P/poly. We obtain this negative result by first showing that OBDA with OWL 2 QL is powerful enough
to compute monotone Boolean functions in NP, and that PE-rewritings correspond to monotone Boolean formulas,
NDL-rewritings to monotone Boolean circuits, and FO-rewritings to arbitrary Boolean formulas. Then we use the
celebrated exponential lower bounds for the size of monotone circuits and formulas computing the (NP-complete)
Boolean function Cliquen,k ‘a graph with n nodes contains a k-clique’ [50, 49]; a superpolynomial lower bound for the
size of arbitrary (not necessarily monotone) Boolean formulas computing Cliquen,k is a consequence of the assumption
NP * P/poly. We also use known separation results [49, 48] for monotone Boolean functions such as ‘a bipartite
graph with n vertices in each part has a perfect matching’ and ‘a given vertex is accessible in a path accessibility system
with n vertices’ to show that pure NDL-rewritings are in general exponentially more succinct than pure PE-rewritings,
while pure FO-rewritings can be superpolynomially more succinct than pure PE-rewritings.

On the other hand, we have some good news as well: assuming that every data instance contains two fixed distinct
individual constants, we construct polynomial-size impure PE- and NDL-rewritings of any CQ and any ontology with

2

the polynomial witness property (in particular, any ontology in OWL 2 QL , linear Datalog± of bounded arity or sticky
Datalog± of bounded arity). In essence, the rewriting guesses a polynomial number of ground atoms with database
individuals and labelled nulls (encoded as tuples over the two fixed constants), and checks whether these atoms satisfy
the given CQ and form a sequence of chase steps. We first construct a polynomial-size impure PE-rewriting and
then show how its disjunctions can be encoded by a polynomial-size NDL-rewriting with intensional predicates of
small arity. As the two constants in the impure PE-rewriting can be replaced with two fresh existentially quantified
variables, say x and y, such that x , y, we also obtain a polynomial-size pure FO-rewriting over data instances with
at least two domain elements.

How to reconcile these seemingly contradictory results? To establish exponential and superpolynomial lower
bounds for the size of pure rewritings, we show that computing monotone Boolean functions in NP is polynomially
reducible to answering CQs over OWL 2 QL-ontologies and data instances with a single individual. As evaluating
queries over such data instances is tractable, pure rewritings of the CQs and ontologies computing NP-complete mono-
tone Boolean functions such as Cliquen,k cannot be constructed in polynomial time—unless P = NP. (Our argument in
Section 3 is a bit subtler: we prove that pure polynomial rewritings of the CQs and ontologies computing NP-complete
monotone Boolean functions do not actually exist.) In fact, standard pure rewritings represent explicitly all distinct
homomorphisms of the given CQ into the labelled nulls of possible chases for the given ontology, and our construction
shows that there may be exponentially-many such homomorphisms. On the other hand, our impure rewritings employ
polynomially-many additional existential quantifiers over two fixed distinct domain elements in order to guess those
homomorphisms. Thus, we show that the additional NP-overhead of OBDA compared to CQ evaluation over plain
databases can be represented in a succinct way. The exponential succinctness of impure rewritings compared to pure
ones is of the same kind as the succinctness of nondeterministic finite automata or ∃-QBFs compared to deterministic
automata [42] or, respectively, SAT (cf. also [5]).

The plan of the article is as follows. In Section 2, we introduce OWL 2 QL , linear and sticky Datalog± as fragments
of the language of tuple-generating dependencies and illustrate the construction of an FO-rewriting for OWL 2 QL-on-
tologies. We also introduce nonrecursive datalog rewritings and formulate the succinctness and separation problems.
The exponential and superpolynomial lower bounds on the size of pure rewritings are obtained in Section 3. The
polynomial-size impure PE- and NDL-rewritings for families of ontologies with the polynomial witness property are
constructed in Section 4. We prove the separation results mentioned above in Section 5. Open problems and directions
for future research are discussed in Section 6.

Some of the results in this article first appeared in the conference proceedings [26, 32].

2. First-Order Rewritability: Size of Rewritings Matters

Let R be a relational schema. Given a data instance D over R, we denote by ∆D the set of individual constants
in D. We regard D as a (finite) set of ground atoms. A conjunctive query (CQ, for short) q(x) is a formula of the
form ∃yϕ(x, y), where ϕ is a conjunction of atoms P(t) over R extended with equality, and each t in t is a term (an
individual constant or a variable from x, y). The size |q| of a CQ q is the number of symbols in q.

Let Σ be a set of first-order sentences over R. The pair (Σ,D) is called a knowledge base (KB, for short). A tuple a
of elements in ∆D is said to be a certain answer to q(x) over the KB (Σ,D) ifM |= q(a) for every modelM of Σ ∪ D;
in this case we write (Σ,D) |= q(a). If the tuple x of answer variables is empty, a certain answer to q over (Σ,D)
is ‘yes’ in case M |= q for every model M of Σ ∪ D, and ‘no’ otherwise. CQs without answer variables are called
Boolean CQs.

For the purposes of OBDA, we are interested in ontologies (or theories) Σ for which the problem of finding certain
answers can be reduced to standard database query evaluation. More precisely, a first-order formula q′(x) is called
a first-order rewriting of q and Σ (FO-rewriting, for short) if, for any data instance D, a tuple a of elements in ∆D

is a certain answer to q(x) over (Σ,D) just in case a is an answer to q′(x) over D. We say that Σ enjoys first-order
rewritability if, for any CQ q(x), there exists an FO-rewriting of q and Σ.

There are two types of recognised ontology languages that guarantee first-order rewritability. The languages of
the first type were introduced by the description logic community; they are based on the DL-Lite family of description
logics [16, 4] and include the OWL 2 QL profile of the Web Ontology Language OWL 2.1 The languages of the second

1www.w3.org/TR/owl2-overview

3

type were designed by the datalog community; they belong to the Datalog± family [12, 11] and are also known as
existential rules [7]. All of these ontology languages can be formulated in terms of tuple-generating dependencies.

We remind the reader [1] that a tuple-generating dependency (a tgd, for short) is a first-order sentence of the form

∀x
(
ϕ(x)→ ∃yψ(x, y)

)
, (6)

where ϕ(x), the body, and ψ(x, y), the head of the tgd, are conjunctions of atoms and all the variables in x actually
occur in ϕ(x) (note that both ϕ(x) and ψ(x, y) can contain individual constants). Following the description logic
tradition, we also consider negative constraints of the form

∀x
(
ϕ(x)→ ⊥

)
.

Finite sets of tgds and negative constraints will be called ontologies. (Note that ontologies can be inconsistent.) Given
an ontology Σ, we denote by |Σ| its size, that is, the number of symbols in Σ.

An important property of tgds is the well-known fact [1] that, for any ontology Σ and any consistent KB (Σ,D),
there exists a (possibly infinite) model CΣ,D of (Σ,D), known as a universal (or canonical) model of (Σ,D), such that,
for any CQ q(x) and any tuple a from ∆D, we have (Σ,D) |= q(a) if and only if CΣ,D |= q(a). Such a universal model
can be constructed by the following (oblivious) chase procedure, which, intuitively, ‘repairs’ D with respect to Σ (but
not in the most economical way). We require the following definitions to describe the chase procedure formally. Let
C be a set of ground atoms and ϕ(x) a conjunction of atoms (the body of a tgd or a negative constraint). We say that
a map h from x to the individual constants in C is a homomorphism from ϕ(x) to C if h(ϕ(x)) ⊆ C, where h(ϕ(x))
denotes the set of atoms P(h(t)), for P(t) in ϕ(x) (as usual, we assume that h(a) = a, for any individual constant a).
We say that C is consistent with Σ if there is no negative constraint ∀x (ϕ(x)→ ⊥) in Σ with a homomorphism h from
ϕ(x) to C.

The chase algorithm initially sets C0
Σ,D = D. Suppose now that Ck−1

Σ,D has already been defined. A tgd τ of the form
∀x

(
ϕ(x) → ∃yψ(x, y)

)
is said to be applicable to Ck−1

Σ,D via h if h is a homomorphism from ϕ(x) to Ck−1
Σ,D with either

k = 1 or h(ϕ(x)) * Ck−2
Σ,D. Define an extension h′ of h by taking h′(x) = h(x) for every x in x, and h′(y) = cy for

every y in y, where cy is a fresh individual constant (a labelled null) different from all constants already used in the
construction. An application of τ under h to Ck−1

Σ,D adds the ground atoms of h′(ψ(x, y)) to Ck−1
Σ,D if they are not there

yet. If Ck−1
Σ,D is consistent with Σ, the algorithm constructs Ck

Σ,D as follows: it takes some enumeration of all distinct
pairs (τi, hi), i ≤ n, such that τi ∈ Σ is applicable to Ck−1

Σ,D via hi, and sets Ck
Σ,D to be the result of applying each τi under

hi to Ck−1
Σ,D. The chase CΣ,D of (Σ,D) is the union of all Ck

Σ,D for k < ω, provided that the Ck
Σ,D are consistent with Σ.

For example, Fig. 1 shows the chase CΣ,D for the ontology Σ consisting of the tgds (1)–(4) from the introduction
and the data instance D =

{
RA(ck), worksOn(ck, e), Project(e), isManagedBy(e, gg)

}
(note that, in general, the chase

is not necessarily finite).

D
ck

RA ProjectworksOn

involves−

ProfessorisManagedBy

involves

Project

e
gg

isManagedBy

involves

worksOn
involves−

ProfessorisManagedBy

involves

Figure 1: The chase CΣ,D for Σ = {(1), . . . , (4)} and D =
{
RA(ck), worksOn(ck, e), Project(e), isManagedBy(e, gg)

}
.

The model CΣ,D is called universal because, for any modelM of (Σ,D), there is a homomorphism from CΣ,D toM.
It is this property of the universal models that makes sure that all certain answers to CQs over (Σ,D) are contained in
CΣ,D. Furthermore, we say that an ontology has the bounded derivation depth property (BDDP, for short) if there is
a function d : N → N such that, for any CQ q(x) and any data instance D, a tuple a from ∆D is a certain answer to q
over (Σ,D) if and only if Cd(|q|)

Σ,D |= q(a). (Note that d(|q|) does not depend on D but can depend on Σ.) The following
theorem gives a characterisation of ontologies enjoying FO-rewritability:

4

Theorem 1. An ontology has the BDDP if and only if it enjoys FO-rewritability.

Proof. For a proof of (⇒) see [11, Theorem 9]. To show (⇐), we use [9, Proposition 4] (based on [56]) according to
which, whenever there is an FO-rewriting of q(x) and Σ, there is also a rewriting of the form q′(x) =

∨
i ∃yi ϕi(x, yi),

where each ∃yi ϕi(x, yi) is a CQ. Let k be the maximum number of atoms in the CQs ∃yi ϕi(x, yi), which depends only
on q (for a fixed Σ). Clearly, every answer a to q′(x) over D is also an answer to q′(x) over some subset D′ ⊆ D with
|D′| ≤ k. It follows that CΣ,D |= q(a) if and only if CΣ,D′ |= q(a) for some D′ ⊆ D with |D′| ≤ k. Observe that the
number of pairwise non-isomorphic D with |D| ≤ k is finite and depends only on q (for a fixed Σ). Thus, we can take
d(|q|) to be a number d such that Cd

Σ,D |= q(a) whenever CΣ,D |= q(a), for any D with |D| ≤ k. q

Disjunctions of CQs, used in the proof of Theorem 1, are known as unions of conjunctive queries or UCQs, for
short. An FO-rewriting of q and Σ in the form of a UCQ is called a UCQ-rewriting of q and Σ. (That the BDDP
of Σ is equivalent to the existence of UCQ-rewritings for all CQs over Σ can be shown using an earlier result from
graph databases [57] and the fact that minimal UCQ-rewritings are unique up to isomorphism [36]; an ontology with
UCQ-rewritings for all CQs is called a finite unification set by Baget et al. [6].)

The following ontology languages ensure the BDDP:

– linear tgds [11], that is, tgds with a single atom in the body;

– OWL 2 QL-tgds, that is, linear tgds with atoms of arity ≤ 2 and without individual constants;

– sticky sets of tgds [13], that is, sets of tgds such that the variables that appear more than once in the body of a
tgd (join variables) are propagated (or ‘stick’) during the chase to all the inferred atoms

(other examples include sticky-join sets of tgds [13] and domain-restricted rules [7]). Each of the above ontology
languages can also include negative constraints; they do not affect the chase procedure but can make a knowledge
base inconsistent [11].

Remark 2. It is not hard to see that the standard OWL 2 QL profile of the Web Ontology Language OWL 2 can be
represented in terms of OWL 2 QL-tgds and negative constraints, but not the other way round: for example, the tgd
∀x

(
R(x, x)→ A(x)

)
cannot be expressed in OWL 2 QL. However, all the OWL 2 QL-tgds and negative constraints we

use in this article are expressible in OWL 2 QL. Thus, the linear tgd of the form

∀x
(
A(x)→ ∃y (R(x, y) ∧ B(y))

)
used in (1) and (2) as well as in the construction of Section 3 can be encoded by the concept inclusion A v ∃R.B in
the OWL 2 QL description logic syntax (where A and B are concept names and R is a role name), or as the following
set of concept and role inclusions in the syntax of DL-LiteHcore [4]:

A v ∃RB, ∃R−B v B, RB v R,

where RB is a fresh role name. Because of this, we slightly abuse terminology and call ontologies with OWL 2 QL-tgds
simply OWL 2 QL-ontologies.

We now give an example showing how one can construct FO-rewritings of CQs and OWL 2 QL-ontologies.

Example 3. Consider again the OWL 2 QL-ontology Σ = {(1), . . . , (4)} and the CQ (5) from the introduction. Suppose
a ∈ ∆D is a certain answer to q(x) over (Σ,D), for some data instance D. This means that CΣ,D |= q(a), and so there is
a homomorphism h from q(x) to CΣ,D with h(x) = a. We construct an FO-rewriting q′(x) of q(x) and Σ by analysing
possible locations of h(y) and h(z) in CΣ,D. To begin with, both of them can belong to ∆D. To take account of such a
homomorphism, we include ∃y, z

(
worksOn(x, y)∧ (worksOn(z, y)∨ isManagedBy(y, z)∨ involves(y, z))∧Professor(z)

)
in q′(x) as a disjunct. Another possible homomorphism, h1, can have h1(y) in ∆D but h1(z) among the labelled nulls,
which can happen if h1(y) is an instance of Project (see Fig. 2 in the middle). To take such a homomorphism into
account, we include the disjunct ∃y (worksOn(x, y) ∧ Project(y)) in q′. Then, there can be a homomorphism, h2, with
both h2(y) and h2(z) being labelled nulls, which can happen if h2(x) is an instance of RA (see Fig. 2 on the left). This
gives us the third disjunct, RA(x), in q′(x). Finally, there can be a homomorphism, h3, such that h3(y) is a labelled

5

q

x

y

w
or

ks
O

n

Professor
z

in
vo

lv
es

RA

Project

w
or

ks
O

n

in
vo

lv
es
−

Professor

in
vo

lv
es

is
M

an
ag

ed
B

y

h2

h2

h2

RA
Professor

Project

w
or

ks
O

n

in
vo

lv
es
−

Professor

in
vo

lv
es

is
M

an
ag

ed
B

y

h3

h3

h
3

Project

Professor

in
vo

lv
es

is
M

an
ag

ed
B

y

h1

h1

Figure 2: Three homomorphisms from q(x) to a hypothetical CΣ,D.

null but h3(z) is in ∆D—this can happen if h3(z) = h3(x) is an instance of both RA and Professor (see Fig. 2 on the
right). This homomorphism, however, gives a disjunct RA(x)∧Professor(z)∧ (x = z), which is subsumed by the third
disjunct, RA(x), and so is redundant. Thus, we obtain the FO-rewriting q′(x) of q(x) and Σ given in the introduction.

Our next example gives an ontology without BDDP.

Example 4. Consider the ontology Σ = {∀x, y (R(x, y) ∧ A(y) → A(x))}, whose single tgd is not linear or OWL 2 QL
(because of the two atoms in the body) and not sticky either (because of the variable y). Given a data instance D, we
can again construct a universal model of (Σ,D) using the chase procedure. However, to derive A(a) for some a ∈ ∆D,
we have to find an R-chain between a and some b with A(b) ∈ D. The number of chase steps producing chains of this
kind may clearly depend on D. Ontologies such as Σ are allowed in the OWL 2 EL profile of OWL 2. CQ answering
over OWL 2 EL-ontologies is known to be P-complete for data complexity [15], which means that in general they do
not enjoy FO-rewritability. (A different approach to OBDA with OWL 2 EL was suggested by Lutz et al. [40].) On the
other hand, CQs over ontologies formulated in OWL 2 EL and the description logics Horn-SHIQ and Horn-SROIQ
can be rewritten into (recursive) datalog queries [53, 44, 20] and used together with datalog engines.

OBDA via FO-rewritability is based on the empirical assumption that query evaluation using RDBMSs is efficient
in practice. However, this assumption only works for reasonably small CQs; evaluation of large CQs can be a very
hard problem for RDBMSs (see, e.g., [41]), which should not come as a surprise because CQ evaluation is W[1]-
complete2 [21]. Recall, however, that CQs of bounded treewidth can be evaluated in polynomial time in |q| and
|∆D| [60, 34, 17, 27]. Since such CQs occur most often in practice, this result can serve as a theoretical justification
for the empirical assumption above.

But what is the size of the existing FO-rewritings for CQs and ontologies in the languages under consideration?
The following theorem summarises some of the known results:

Theorem 5 ([16, 11, 25, 13, 24]). For any set Σ of tgds, let KΣ be the number of predicates in Σ and let LΣ be the
maximum arity of the predicates in Σ.

(i) There exist CQs q and sets Σ of OWL 2 QL-tgds any UCQ-rewritings of which have Ω(K |q|
Σ

) CQs.

2More precisely, evaluation of a Boolean CQ q over D can be done in time O(|q| · |∆D |
|q|), but cannot be done in time f (|q|) · |∆D |

O(1), for any
computable function f , unless FPT = W[1].

6

(ii) Any CQ q and any set Σ of linear tgds without constants have a UCQ-rewriting with O((KΣ · (LΣ · |q|)LΣ)|q|) CQs
such that the number of atoms in each CQ does not exceed the number of atoms in q.
In particular, for OWL 2 QL-tgds Σ, LΣ ≤ 2 and the UCQ-rewriting has O((KΣ · (2|q|)2)|q|) CQs.

(iii) Any CQ q and any sticky set Σ of tgds without constants have a UCQ-rewriting with 2O(KΣ·(LΣ·|q|)LΣ) CQs, each of
which has O(KΣ · (LΣ · |q|)LΣ) atoms.

Proof. (i) Let Σ =
{
∀x (Ai(x) → A0(x)) | 1 ≤ i ≤ n

}
and q = ∃x1, . . . , xk(A0(x1) ∧ · · · ∧ A0(xk)). It should be clear

that any UCQ-rewriting of q and Σ must contain CQs with all possible combinations of A0(x j), A1(x j), . . . , An(x j), for
each 1 ≤ j ≤ k.

For (ii) and (iii), we only briefly comment on the UCQ-rewritings constructed in [16, 11, 25, 13, 24] using back-
ward chaining. (ii) Since the tgds have a single atom in the body, the number of atoms in each of the CQs of the
resulting UCQ-rewriting cannot be larger than the number of atoms in q. Thus, each of these CQs contains at most
LΣ · |q| terms, and we can assume that they use the same names for existentially quantified variables. The total number
of atoms we can form using these terms does not exceed KΣ · (LΣ · |q|)LΣ . Given that each CQ of the UCQ-rewriting
has at most |q| atoms, the total number of possible component CQs is bounded by (KΣ · (LΣ · |q|)LΣ)|q|. (iii) Observe
that the new variables arising in the UCQ-rewriting are all existentially quantified. Due to the stickiness condition,
any such new variable must occur at most once in the body of the tgd used for the rewriting. This variable cannot
interact with any other variable, and we can use a unique special symbol for it, which corresponds to the ‘don’t care’
underscore symbol in Prolog. Then each term in each atom of the rewritten query is either a variable from q or the
special underscore symbol (in the end, each underscore symbol is replaced by a fresh existentially quantified variable).
There are at most LΣ · |q| + 1 such terms. It follows that there are at most KΣ · (LΣ · |q| + 1)LΣ = O(KΣ · (LΣ · |q|)LΣ)
atoms in any CQ of the UCQ-rewriting. Each of the atoms is either included in a CQ or not included in it, which gives
2O(KΣ·(LΣ·|q|)LΣ) possible CQs in the UCQ-rewriting. q

Thus, even for the weakest ontology language OWL 2 QL, the available (UCQ) rewritings are of exponential size
in the worst case. The chief problem we analyse in this article is whether there exist shorter rewritings. Together with
FO- and UCQ-rewritings defined above, we also consider positive existential and nonrecursive datalog rewritings.

A positive existential rewriting (PE-rewriting, for short) of a CQ q(x) and an ontology Σ is an FO-rewriting
q′(x) of the form ∃zψ(x, z), where ψ is built from atoms using only ∧ and ∨. (Every PE-rewriting can obviously be
transformed to an equivalent UCQ-rewriting but at the expense of an exponential blowup.) To define nonrecursive
datalog rewritings, we remind the reader [1] that a datalog program, Π, is a finite set of Horn clauses

A0 ← A1 ∧ · · · ∧ Am,

where each Ai is an atom of the form P(t) and each term t in t is either a (universally quantified) variable or an
individual constant. A0 is called the head of the clause, and A1, . . . , Am its body. All variables occurring in the head A0
must also occur in the body in one of A1, . . . , Am. A predicate P depends on a predicate Q if Π contains a clause whose
head’s predicate is P and whose body contains an atom with predicate Q. A datalog program Π is called nonrecursive
if this dependence relation is acyclic. A nonrecursive datalog query consists of a nonrecursive datalog program Π and
a goal G(x), which is just an atom. Given a data instance D, a tuple a of elements in ∆D is called a certain answer to
(Π,G(x)) over D if Π ∪ D |= G(a). A nonrecursive datalog query (Π,G(x)) is called a nonrecursive datalog rewriting
of a CQ q(x) and an ontology Σ (NDL-rewriting, for short) if, for any data instance D and any tuple a of elements in
∆D, we have (Σ,D) |= q(a) if and only if Π ∪ D |= G(a).

So far we have not specified what means one is allowed to use in rewritings. The first FO-rewritings of [16, 45]
were formulated in the signature that contained only constant and predicate symbols from q and Σ as well as equality.
As argued by Calvanese et al. [16], FO-rewritings should be data-independent (and so applicable to all possible data
instances). We start by adopting this definition for FO- and PE-rewritings; in NDL-rewritings, we can, of course, use
new definable (or intensional) predicates, but no constants that do not occur in q.

We are interested in three major questions: (i) Do there exist polynomial-size FO-, PE-, NDL-rewritings of CQs
and OWL 2 QL-ontologies? (ii) Can rewritings of one type be substantially shorter than rewritings of other types?
(iii) What extra means in rewritings can make them substantially shorter?

7

3. Exponential and Superpolynomial Lower Bounds for the Size of Rewritings

In this section, we give an answer to question (i). To this end, we show how the problem of constructing circuits
that compute monotone Boolean functions in NP can be reduced to the problem of finding rewritings for CQs and
OWL 2 QL-ontologies. This reduction coupled with the known lower bounds on the size of monotone Boolean circuits
and formulas will provide us with similar lower bounds on the size of rewritings.

We begin by reminding the reader of some basic definitions from the theory of circuit complexity (for more details
see, e.g., [3, 29]). By an n-ary Boolean function, for n ≥ 1, we mean a function from {0, 1}n to {0, 1}. A Boolean
function f is monotone if f (α) ≤ f (β) for all α ≤ β, where ≤ is the component-wise ≤ on vectors of {0, 1}. An n-input
Boolean circuit, C, is a directed acyclic graph with n sources, inputs, and one sink, output. Every non-source node of
C is called a gate and is labelled with either ∧ or ∨, in which case it has two incoming edges, or with ¬, in which case
it has one incoming edge. A circuit is monotone if it contains only ∧- and ∨-gates. Boolean formulas can be thought
of as circuits in which every gate has at most one outgoing edge. For an input α ∈ {0, 1}n, the output of C on α is
denoted by C(α), and C is said to compute an n-ary Boolean function f if C(α) = f (α), for every α ∈ {0, 1}n. The
size of C, denoted |C|, is the number of nodes in C (that is, the number of inputs and gates).

A family of Boolean functions is a sequence f 1, f 2, . . . , where each f n is an n-ary Boolean function. A family
f 1, f 2, . . . is in the complexity class NP if the language

{
α ∈ {0, 1}n | f n(α) = 1

}
is in NP. For each such family,

there exist polynomials p, q and Boolean circuits C1,C2, . . . such that Cn has n + p(n) inputs, |Cn| ≤ q(n) and, for any
α ∈ {0, 1}n, we have

f n(α) = 1 if and only if Cn(α,β) = 1, for some β ∈ {0, 1}p(n).

We call the additional p(n) inputs for β in Cn nondeterministic inputs (β is also known as a certificate [3]). A family
f 1, f 2, . . . is NP-complete if the corresponding language

{
α ∈ {0, 1}n | f n(α) = 1

}
is NP-complete.

The class of languages that are decidable by families of polynomial-size circuits is denoted by P/poly. It is known
that P $ P/poly. Thus, we would obtain P , NP if we could show that NP * P/poly. By the Karp-Lipton
theorem (see, e.g., [3]), NP ⊆ P/poly implies PH = Σ

p
2 .

In this section, given a family of monotone Boolean functions f n in NP, we first encode them—via the Tseitin
transformation [59]—by means of polynomial-size CNFs, which are used to construct a sequence of OWL 2 QL-
ontologies Σ f n and Boolean CQs q f n such that

(Σ f n ,Dα) |= q f n if and only if f n(α) = 1, for any α ∈ {0, 1}n,

where the database instance Dα is determined by α. Then, using the fact that the Dα have a single domain element,
we show that if we have, say, PE-rewritings of the q f n and Σ f n , then those rewritings are in essence monotone Boolean
formulas (that is, propositional PE-formulas), and so, by the known results on circuit complexity, cannot be poly-
nomial, for example, in the case of the family of Boolean functions that check whether a given graph (encoded by
arguments of the functions) contains a clique of the specified size.

Suppose we are given a family of Boolean functions f n in NP and a corresponding family of Boolean circuits Cn.
We can consider the inputs (including nondeterministic ones) of the circuits Cn as Boolean variables. Each gate of Cn

can also be thought of as a Boolean variable whose value coincides with the output of the gate on a given input. Let
g = (g1, . . . , g|Cn |) be the Boolean variables for the nodes of Cn. We may assume that a Boolean circuit Cn contains
only ∧- and ¬-gates, so it can be regarded as a set of equations of the form

gi = ¬gi′ or gi = gi′ ∧ gi′′ ,

where gi′ and gi′′ are the variables for the inputs of the gate gi. We assume that gi can depend only on g1, . . . , gi−1 and
that g1, . . . , gn are the inputs of Cn, gn+1, . . . , gn+p(n) are the nondeterministic inputs of Cn, and g|Cn | its output. Now,
with each Cn we associate the following Boolean formula in CNF with the variables h = (h1, . . . , hn) and g:

ψn(h, g) =

n∧
i=1

(¬gi ∨ hi) ∧ g|Cn | ∧∧
gi=¬gi′ in Cn

[
(gi′ ∨ gi) ∧ (¬gi′ ∨ ¬gi)

]
∧

∧
gi=gi′∧gi′′ in Cn

[
(gi′ ∨ ¬gi) ∧ (gi′′ ∨ ¬gi) ∧ (¬gi′ ∨ ¬gi′′ ∨ gi)

]
.

8

The clauses of the last two conjuncts encode the correct computation of the circuit: they are equivalent to gi ↔ ¬gi′

and gi ↔ gi′ ∧ gi′′ , respectively. In what follows, we denote by ψn(α, g) the result of replacing the variables in h with
the respective truth-values from a vector α ∈ {0, 1}n (thus, the g are the only variables of this formula).

Lemma 6. For any family of monotone Boolean functions f n in NP and any α ∈ {0, 1}n, we have f n(α) = 1 if and
only if ψn(α, g) is satisfiable.

Proof. (⇒) If f n(α) = 1 then Cn(α,β) = 1, for some β. Consider ψn(α,γ), where the γi in γ are given by the output
values of the respective nodes gi in Cn on the input (α,β) (the output value of an input or a nondeterministic input of
Cn is the respective value itself). By definition, the last two conjuncts of ψn(α,γ) are true under such an assignment.
The first conjunct is trivially true, while the second conjunct is true because γ|Cn | = Cn(α,β).

(⇐) Conversely, suppose ψn(α,γ) = 1, for some γ. Let α′ be the values of the inputs of Cn in γ. By the first
conjunct, α′ ≤ α and, as f n is monotone, we obtain f n(α′) ≤ f n(α). So, it suffices to show that f n(α′) = 1. To
this end, we prove by induction on the structure of Cn that the values of the variables of ψn(α,γ) are equal to the
output values of the corresponding nodes of Cn on (α′,β), where β are the values of the nondeterministic inputs from
γ: for the inputs (including nondeterministic ones), this is immediate by definition; for the gates, the claim easily
follows from the last two conjuncts of ψn. Then, by the second conjunct, γ|Cn | = 1, and so Cn(α′,β) = 1, whence
f n(α′) = 1. q

The second step of the reduction is to encode satisfiability of ψn(α, g) by means of the CQ answering problem
in OWL 2 QL. The CNF ψn(h, g) contains d ≤ 3|Cn| + 1 clauses C1, . . . ,Cd with n variables h1, . . . , hn and m = |Cn|

variables g1, . . . , gm. Recall that g1, . . . , gn correspond to the inputs and C1, . . . ,Cn are clauses of the form ¬gi ∨ hi.
We take a binary predicate P(x, y) and unary predicates A0(x) and Ai(x), X0

i (x), X1
i (x), for each variable gi, as well as

Z0, j(x), . . . ,Zm, j(x), for each clause C j of ψn(h, g).
Consider an OWL 2 QL-ontology Σ f n with the following tgds, for 1 ≤ i ≤ m, 1 ≤ j ≤ d and ` = 0, 1:

∀x
(
Ai−1(x)→ ∃y (P(y, x) ∧ X`

i (y))
)
, ∀x

(
X`

i (x)→ Ai(x)
)
,

∀x
(
Zi, j(x)→ ∃y (P(x, y) ∧ Zi−1, j(y))

)
,

∀x
(
X0

i (x)→ Zi, j(x)
)
, if ¬gi ∈ C j,

∀x
(
X1

i (x)→ Zi, j(x)
)
, if gi ∈ C j.

It is not hard to check that |Σ f n | = O(|Cn|2) and that the chase of Σ f n is finite for any data. Consider also the following
tree-shaped Boolean CQ:

q f n = ∃y∃z
[
A0(y0) ∧

m∧
i=1

P(yi, yi−1) ∧
d∧

j=1

(
P(ym, zm−1, j) ∧

m−1∧
i=1

P(zi, j, zi−1, j) ∧ Z0, j(z0, j)
)]
,

where y = (y0, . . . , ym) and z = (z0,1, . . . , zm−1,1, . . . , z0,d, . . . , zm−1,d). It should be clear that |q f n | = O(|Cn|2).
For each α = (α1, . . . , αn) ∈ {0, 1}n, we take the data instance

Dα =
{

A0(a)
}
∪

{
Z0,i(a) | 1 ≤ i ≤ n and αi = 1

}
.

We explain the intuition behind Σ f n , q f n and Dα using the example in Fig. 3, where the chase CΣ f n ,Dα of (Σ f n ,Dα)
is depicted for a particular f n and α. To answer q f n over (Σ f n ,Dα), we have to check whether q f n can be homomor-
phically mapped into CΣ f n ,Dα . The variables yi are clearly mapped to one of the main branches of the model, from a
to a point in A3, say the leftmost one, which corresponds to the valuation for the variables g in ψn(α, g) making all of
them false. Consider now, for example, variables z2,3, z1,3, z0,3 that correspond to the clause C3 = g1 ∨¬g3 in ψn(α, g).
Since Z0,3(a) < Dα, in order to map z2,3, z1,3, z0,3 we have to choose at least one of its literals, g1 or ¬g3, that is true
under such an assignment, and then z2,3, z1,3, z0,3 can be sent to the points in the respective ‘hanging’ branch, resulting
in z0,3 67→ a. On the other hand, there are two possible ways (depending on α1) of mapping variables z2,1, z1,1, z0,1 for
the clause C1 = ¬g1 ∨ h of ψn(α, g). (1) If α1 = 0 then C1 in ψn(α, g) is equivalent to ¬g1 and, since Z0,1(a) < Dα, we
have to be able to send z2,1, z1,1, z0,1 to the points in a ‘hanging’ branch, resulting in z0,1 67→ a. (2) If, however, α1 = 1
then the clause C1 is true anyway and Z0,1(a) ∈ Dα, whence z2,1, z1,1, z0,1 can be sent to the same branch from A2 to
A0, so that z0,1 7→ a. Thus, we arrive to the following:

9

A3

A2

A1

A0

CΣ f n ,Dα

a: Z0,1

X1
1 , Z1,3X0

1 , Z1,1

X1
2X0

2X1
2X0

2

X1
3X0

3 , Z3,3X1
3X0

3 , Z3,3X1
3X0

3 , Z3,3X1
3X0

3 , Z3,3

Z0,1 Z0,3

Z2,3

Z1,3

Z0,3

Z2,3

Z1,3

Z0,3

Z2,3

Z1,3

Z0,3

Z2,3

Z1,3

Z0,3

q f n

y0

A0

y1

y2

y3

z2,1

z1,1

z0,1

Z0,1Z0,2Z0,3Z0,4Z0,5

Figure 3: The chase CΣ f n ,Dα and CQ q f n for α = (1) and a function f n with one input and one nondeterministic input to one ∧-gate. Thus, n = 1,
m = 3, d = 5 and ψn(h, g1, g2, g3) = (¬g1 ∨ h) ∧ g3 ∧ (g1 ∨ ¬g3) ∧ (g2 ∨ ¬g3) ∧ (¬g1 ∨ ¬g2 ∨ g3). Only two groups of the ‘hanging’ Zi, j branches
are shown in CΣ f n ,Dα : for j = 1 and j = 3, that is, for C1 = ¬g1 ∨ h and C3 = g1 ∨ ¬g3.

Lemma 7. For any family of Boolean functions f n in NP and any α ∈ {0, 1}n, we have (Σ f n ,Dα) |= q f n if and only if
ψn(α, g) is satisfiable.

Proof. (⇒) Consider a homomorphism h from q f n to the chase CΣ f n ,Dα of (Σ f n ,Dα). Clearly, h(y0) = a and both
Ai(h(yi)) and P(h(yi), h(yi−1)) are in CΣ f n ,Dα , for all 1 ≤ i ≤ m. So, for each variable gi in g, we set γi = 1 if
X1

i (h(yi)) ∈ CΣ f n ,Dα and γi = 0 otherwise (in which case X0
i (h(yi)) ∈ CΣ f n ,Dα). We claim that ψn(α,γ) = 1. Take any

clause C j in ψn(α, g) and consider two cases for h(z0, j). If h(z0, j) = a then 1 ≤ j ≤ n with Z0, j(a) ∈ Dα, and so α j = 1,
whence the clause C j = ¬g j ∨ h j is true anyway. Otherwise, h(z0, j) , a which means that Zi, j(h(yi)) ∈ CΣ f n ,Dα , for
some 1 ≤ i ≤ m, and so the clause C j contains gi if X1

i (h(yi)) ∈ CΣ f n ,Dα and ¬gi if X0
i (h(yi)) ∈ CΣ f n ,Dα . The claim

follows.
(⇐) Suppose ψn(α,γ) = 1, for some γ ∈ {0, 1}m. We construct a homomorphism h from q f n to the chase CΣ f n ,Dα

of (Σ f n ,Dα). Observe that CΣ f n ,Dα contains a path u0, . . . , um from a = u0 to some um such that P(ui, ui−1) ∈ CΣ f n ,Dα ,
for 1 ≤ i ≤ m, and the path corresponds to γ in the following sense: X1

i (ui) ∈ CΣ f n ,Dα if γi = 1 and X0
i (ui) ∈ CΣ f n ,Dα

otherwise. So, for 0 ≤ i ≤ m, we set h(yi) = ui. For 1 ≤ j ≤ d, we define h(zm−1, j), . . . , h(z0, j) recursively, starting
from h(zm−1, j) and assuming that zm, j = ym: let h(zi, j) = ui if Zi+1, j(h(zi+1, j)) < CΣ f n ,Dα ; otherwise, let h(zi, j) be the
labelled null chosen for y when applying ∀x

(
Zi+1, j(x)→ ∃y (P(x, y) ∧ Zi, j(x))

)
in h(zi+1, j). It is easy to check that h is

indeed a homomorphism from q f n into CΣ f n ,Dα . q

We now use the reduction above to show that there is a close correspondence between PE-rewritings and monotone
Boolean formulas, between FO-rewritings and (not necessarily monotone) Boolean formulas, and between NDL-
rewritings and monotone Boolean circuits.

Lemma 8. Suppose f 1, f 2, . . . is a family of monotone Boolean functions in NP.
(i) If q′f n is an FO-rewriting of q f n and Σ f n , then there is a Boolean formula ϕn computing f n with |ϕn| ≤ |q′f n |.
(ii) If q′f n is a PE-rewriting of q f n and Σ f n , then there is a monotone Boolean formula ϕn computing f n with

|ϕn| ≤ |q′f n |.
(iii) If (Π f n ,G) is an NDL-rewriting of q f n and Σ f n , then there is a monotone Boolean circuit Bn computing f n

with |Bn| ≤ |Π f n |.

10

Proof. (i) By Lemmas 6 and 7, for any FO-rewriting q′f n of q f n and Σ f n ,

Dα |= q′f n if and only if f n(α) = 1, for any α ∈ {0, 1}n.

Since ∆Dα is a singleton, {a}, we can remove all the quantifiers and replace all the individual variables in q′f n with a.
The resulting Boolean FO-query q′′f n has the same truth-value in Dα as q′f n . Then we observe that the ground atoms
other than a = a, A0(a) and the Z0, j(a), for 1 ≤ j ≤ n, are false in Dα, and so we can replace all a = a and A0(a) with
>, and all the atoms different from a = a, A0(a) and Z0, j(a), for 1 ≤ j ≤ n, with ⊥ without affecting the truth-value of
q′′f n in Dα. The resulting quantifier-free query can be regarded as a Boolean formula, ϕn, with ‘propositional variables’
Z0,1(a), . . . ,Z0,n(a). But then ϕn(α) = f n(α), for each α ∈ {0, 1}n; that is, ϕn computes f n. Clearly, |ϕn| ≤ |q′f n |.

(ii) In the same way as above we can transform any PE-rewriting q′f n of q f n and Σ f n into a monotone Boolean
formula ϕn (with connectives ∨ and ∧ only) and propositional variables Z0,1(a), . . . ,Z0,n(a) such that ϕn computes f n

and |ϕn| ≤ |q′f n |.
(iii) Suppose that (Π f n ,G) is an NDL-rewriting of q f n and Σ f n , and α ∈ {0, 1}n. Again, since ∆Dα is a singleton,

each variable in the head of a clause also occurs in its body and Π f n does not contain constants (as q f n does not have
them), we can replace all the individual variables in Π f n with a and the resulting NDL-query (Π′f n ,G) has the same
truth-value in Dα as (Π f n ,G). Then, in Π′f n , we remove all a = a and A0(a) (as they are true) and remove all clauses
containing atoms different from a = a, A0(a) and Z0, j(a), for 1 ≤ j ≤ n (because such atoms are false in Dα and
do not occur in the heads of the clauses). Denote the resulting propositional NDL-program by Π′′f n . It follows that
Π′′f n ,Dα |= G if and only if f n(α) = 1. We can regard (Π′′f n ,G) as an NDL-query in which Z0,1(a), . . . ,Z0,n(a) are
‘propositional variables’ and the heads of all clauses also have no arguments (i.e., are propositional variables). Such a
program Π′′f n can now be transformed into a monotone Boolean circuit computing f n: for every propositional variable
p occurring in the head of a clause in Π′′f n , we introduce a ∨-gate whose output is p and inputs are the bodies of the
clauses with the head p; and for each such body, we introduce a cascade of ∧-gates whose inputs are the propositional
variables in the body. The resulting monotone Boolean circuit with inputs Z0,1(a), . . . ,Z0,n(a) and output G is denoted
by Bn. Clearly, |Bn| ≤ |Π f n |. q

We are now in a position to prove that one cannot avoid an exponential blowup for PE- and NDL-rewritings;
moreover, even FO-rewritings can blowup superpolynomially under the assumption that NP * P/poly. This can be
done using the function Cliquem,k of m(m − 1)/2 variables ei j, 1 ≤ i < j ≤ m, which returns 1 if and only if the graph
with vertices {1, . . . ,m} and edges {{i, j} | ei j = 1} contains a k-clique. One can show that there is a Boolean circuit
with m nondeterministic inputs and O(m2) gates that computes Cliquem,k. As Cliquem,k is NP-complete, the question
whether Cliquem,k can be computed by polynomial-size circuits (without nondeterministic inputs) is equivalent to the
open NP ⊆ P/poly problem. Further, a series of papers, started by Razborov [50], gave an exponential lower bound
for the size of monotone circuits computing Cliquem,k: 2Ω(

√
k) for k ≤ 1

4 (m/ log m)2/3 [2]. For monotone formulas, an
even better lower bound is known: 2Ω(k) for k = 2m/3 [49].

Theorem 9. There is a sequence of CQs qn of size O(n) and OWL 2 QL-ontologies Σn of size O(n) such that
(i) any PE-rewritings of qn and Σn are of size ≥ 2Ω(n1/4);
(ii) any NDL-rewritings of qn and Σn are of size ≥ 2Ω((n/log n)1/12);
(iii) there are no polynomial-size FO-rewritings of qn and Σn unless NP ⊆ P/poly or PH = Σ

p
2 .

Proof. Consider the family of Boolean functions f n = Cliquem,k with m = bn1/4c and k = b2m/3c = Ω(n1/4). As
the size of the circuits Cn (with nondeterministic inputs) is O(m2), the size of qn = q f n and Σn = Σ f n is O(n). So,
claim (i) follows from Lemma 8 (ii) and the lower bound for the size of monotone formulas computing Cliquem,k.
Then we take the same family f n and redefine its elements f n with even n: take f n = Cliquem,k with m as above and
k = b(m/ log m)2/3c = Ω((n/ log n)1/6). Claim (ii) follows from Lemma 8 (iii) and the lower bound on the size of
monotone circuits computing Cliquem,k. If we assume that NP * P/poly then there is no polynomial-size circuit for
Cliquem,k, and so (iii) follows for the constructed f n by Lemma 8 (i). q

Using a similar argument we can also prove the following:

Theorem 10. Suppose f 1, f 2, . . . is an NP-complete family of monotone Boolean functions. If NP * P/poly then q f n

and Σ f n do not have polynomial-size FO- and NDL-rewritings.

11

Proof. Suppose to the contrary that there are polynomial-size FO- or NDL-rewritings of q f n and Σ f n . Then, by
Lemma 8 (i) and (iii), there is a family of polynomial-size circuits computing f 1, f 2, Since the family f n is NP-
complete, it follows that all families of Boolean functions in NP can be computed by polynomial-size circuits, that is
NP ⊆ P/poly. q

The construction of this section also reveals the overhead of CQ answering via OWL 2 QL-ontologies compared to
CQ answering over plain databases in complexity-theoretic terms. Indeed, since the Boolean CQs q f n are tree-shaped,
the problem ‘Dα |= q f n ?’ is in P for combined complexity [60], while the problem ‘(Σ f n ,Dα) |= q f n ?’ is NP-hard. (On
the other hand, both problems are in AC0 for data complexity.)

We also observe that the quantifier elimination in the proof of Lemma 8 relies on the fact that |∆Dα | = 1. As we
shall see in the next two sections, if we restrict attention to data instances with at least two individuals, then Theorem 9
does not hold any longer.

4. Polynomial Rewritings with Two Constants

To prove the exponential and superpolynomial lower bounds for the size of rewritings in the previous section,
we established a connection between monotone circuits for Boolean functions and rewritings of certain CQs and
OWL 2 QL-ontologies. In fact, this connection also suggests a way of making rewritings substantially shorter. Indeed,
recall from Section 3 that although no family of monotone Boolean circuits of polynomial size can compute Cliquem,k,
there exists a family of polynomial-size circuits with nondeterministic inputs computing Cliquem,k. Nondeterministic
inputs make Boolean circuits exponentially more succinct—in the same way as nondeterministic automata are expo-
nentially more succinct than deterministic ones [42]. To introduce the corresponding nondeterministic guesses into
query rewritings, we can use additional existentially quantified variables—provided that the domain of quantification
contains at least two elements (cf. [5]). For this purpose, we can extend the signature of PE-, FO- and NDL-rewritings
with a set X of constant symbols assuming that they occur in every relevant data instance, in which case we are talk-
ing about PEX-, FOX- and NDLX-rewritings. In this section, we show that allowing additional constants in rewritings
really makes them exponentially more succinct.

We say that a family of ontologies has the polynomial witness property (PWP, for short) if there is a polynomial
d(m, n) such that, for any ontology Σ in the family, any CQ q(x) and any data instance D, whenever (Σ,D) |= q(a),
for a tuple a from ∆D, then there is a sequence of d(|q|, |Σ|) applications of tgds from Σ to D that entails q(a) (in the
sense that there is a homomorphism from q(a) to the set of atoms generated by those tgd applications). Clearly, PWP
implies BDDP (but not the other way round). The following are examples of ontology languages with the PWP:

– linear tgds with predicates of bounded arity [26] and, in particular, OWL 2 QL [16],

– sticky sets of tgds with predicates of bounded arity [23]

(note that the degree of the polynomial depends on the maximum arity of predicates).

Theorem 11. Let q(x) be a CQ and Σ an ontology from a family with the PWP.
(i) There is a PE{0,1}-rewriting of q and Σ whose size is polynomial in |q| and |Σ|.
(ii) There is an NDL{0,1}-rewriting of q and Σ whose size is polynomial in |q| and |Σ|.

Proof. Without loss of generality we assume that all predicates in Σ and q are of some arity L and that all tgds in Σ

have precisely m atoms in the body and one atom in the head, and the head contains at most one existentially quantified
variable. In other words, all our tgds are of the form

∀x
(
P1(t1) ∧ · · · ∧ Pm(tm)→ ∃z P0(t0)

)
, (7)

where each term in the ti = (ti1, . . . , tiL), for 1 ≤ i ≤ m, is a (universally quantified) variable from x or a constant
and each term in t0 = (t01, . . . , t0L) either belongs to x (in which case it is universally quantified) or is a constant or
coincides with z (in which case it is existentially quantified). To simplify notation, we assume that q is a Boolean CQ:

q = ∃y
M∧

k=1

Rk(yk1, . . . , ykL).

12

We also assume that Σ contains no negative constraints (for a reduction of the general case, see [11]). In view of
the PWP, there is a number d(|q|, |Σ|) polynomial in |q| and |Σ| such that, for any data instance D with (Σ,D) |= q,
there is a sequence of d(|q|, |Σ|) applications of tgds from Σ to D that entails q. Let N = (m + 1) · d(|q|, |Σ|). Denote
µ = max(K,M,N, S), where K is the number of predicates in q and Σ, and S is the number of tgds in Σ. Let Q be the
set of natural numbers from 0 to µ.

(i) First, we give a PEQ-rewriting q′ of q and Σ assuming that the constants in Q cannot occur in any predicate of
data instances but still are interpreted by distinct elements in every model (equality is a built-in predicate). Then we
show how this rewriting can be transformed to a proper PE{0,1}-rewriting (without any condition on 0 and 1 apart from
that they must occur in all relevant data instances).

In essence, our PEQ-rewriting guesses a sequence of N ground atoms A1, . . . , AN and then checks whether these
atoms give a positive answer to q and the sequence can indeed be obtained by a series of applications of the tgds
from Σ to D (all the data atoms required for the applications must be among the Ai). To encode the atoms A1, . . . , AN ,
we associate with each predicate P a unique number, denoted [P], so that each Ai is represented by the number of
its predicate and the values of its arguments, which range over the domain ∆D of D and the labelled nulls nulli, for
1 ≤ i ≤ N (the labelled nulls are numbers from Q, but we use this notation for readability). Thus, for each atom Ai in
the sequence, 1 ≤ i ≤ N, we need the following variables:

– ri is the number of the predicate of Ai and ui1, . . . , uiL are the arguments of Ai;
– wi1, . . . ,wi`, where ` is the maximum number of universally quantified variables x in tgds (` ≤ m · L), are the

arguments of the predicates in the body of the tgd used to obtain Ai.

Note that the ri range over Q and the ui j and the wil range over the domain ∆D and the labelled nulls (that is, over
∆D ∪ Q). The PEQ-rewriting of q and Σ is defined by taking:

q′ = ∃y∃u∃r∃w
(M∧

k=1

Γk ∧

N∧
i=1

Φi

)
.

The first conjunct of q′ chooses, for each atom in the query, a match among A1, . . . , AN :

Γk =

N∨
i=1

[
(ri = [Rk]) ∧

L∧
j=1

(ui j = yk j)
]
.

The second conjunct guesses, for each ground atom A1, . . . , AN whether it is taken from the data instance or obtained
by a tgd application:

Φi =
∨

P is a predicate in q or Σ

(
(ri = [P]) ∧ P(ui1, . . . , uiL)

)
∨

∨
τ=∀x (P1(t1)∧···∧Pm(tm)→∃z P0(t0))∈Σ

[
(ri = [P0]) ∧

∧
t0 j is a

(ui j = a) ∧
∧

t0 j is xl

(ui j = wil) ∧
∧

t0 j is z

(ui j = nulli) ∧
m∧

k=1

Ψτ,i,k

]
.

The first group of disjuncts is for the case when Ai is taken from the data instance (ri is such that P(ui1, . . . , uiL)
appears in the data instance for a predicate P with the number ri). The second group of disjuncts models the chase
rule application, for each tgd τ in Σ. Informally, if Ai is obtained by an application of τ, then ri is the number [P0]
of the head predicate P0 and the existential variable z of the head gets a unique labelled null value nulli (the fourth
conjunct). Then, by the last conjunct, for each of the m atoms of the body, one can choose a number i′ that is less than
i such that the predicate of Ai′ is the same as the predicate of the body atom and their arguments match:

Ψτ,i,k =

i−1∨
i′=1

(
(ri′ = [Pk]) ∧

∧
tk j=xl

(ui′ j = wil) ∧
∧
tk j=a

(ui′ j = a)
)
,

where the variables wil ensure that the same universally quantified variable of τ gets the same value in the body
atoms and in the head (if it occurs there, see the second conjunct in the last group of Φi). We assume that the empty
disjunction is ⊥, and so Ψτ,1,k = ⊥, for all τ and k.

13

It is not hard to check that q′ can be constructed in polynomial time, |q′| = O(|q| · |Σ| ·N2 · L) and that (Σ,D) |= q if
and only if q′ is true in the model of D extended with the constants in Q, which are distinct and do not belong to the
interpretation of any predicate but =.

We can replace the natural numbers in Q with two distinct constants, say, 0 and 1 (provided that they are present
in every data instance), thus obtaining a polynomial PE{0,1}-rewriting of q and Σ. Recall that each of the variables
ui j ranges over the domain ∆D and numbers from Q (more precisely, labelled nulls null1, . . . , nullN). Thus, such a
variable ui j can be modelled by means a tuple (ûi j, u

p
i j, . . . , u

0
i j) of variables, where ûi j ranges over the domain ∆D,

while up
i j, . . . , u

0
i j, for p = dlog |Q|e, range over {0, 1} and represent a natural number from 0 to µ in binary. More

precisely, if ui j has a value d ∈ ∆D then ûi j is interpreted by d and up
i j, . . . , u

0
i j are all zeros; otherwise, ui j is a labelled

null, say nullk, and so ûi j is a fixed value, say 0, and up
i j, . . . , u

0
i j represent k in binary (note that 0 is not a labelled

null). Similarly, we model the wil; the ri are even simpler to model as they do not have the r̂i component. The
equality atoms in the rewriting q′ are replaced by the component-wise equalities and each P(ui1, . . . , uiL) is replaced
by P(ûi1, . . . , ûiL) ∧

∧L
j=1

∧p
k=0(uk

i j = 0).

(ii) We show how to construct a polynomial-size NDLQ-rewriting (Π,G) of q and Σ. Its transformation into an
NDL{0,1}-rewriting can be done similarly to PEQ-rewritings. The program Π has one main rule that is very similar
to the query q′ in the previous construction. However, q′ uses disjunction which is not allowed in a datalog rule.
The elimination of disjunction (without an exponential blowup and with small arity of predicates) is based on the
equivalence ∨

i∈Υ

ρi ≡
∨
i∈Υ

(v = i) ∧
∧
i∈Υ

(
(v = i)→ ρi

)
, (8)

where Υ ⊆ Q. To this end, Π uses additional rules and intensional predicates.

– OneOf(x, y, z) should hold if x is a natural number from Q in the interval from y to z (this predicate will replace
the disjunction of the (v = i) in (8)):

OneOf(i, j, k), for all 0 ≤ j ≤ i ≤ k ≤ µ;

– Dom(z) should hold if z appears in the data instance D or is one of the labelled nulls nullk:

Dom(y j)← P(y1, . . . , yL), for all predicates P in q and Σ and all 1 ≤ j ≤ L,

Dom(nullk), for all 1 ≤ k ≤ N;

– If(x1, x2, z1, z2) should hold if x1 = x2 → z1 = z2 is true, where x1, x2 are natural numbers from Q (this predicate
will replace the implication in (8)):

If(i, i, z, z)← Dom(z), for every 0 ≤ i ≤ µ,

If(i, j, z1, z2)← Dom(z1),Dom(z2), for every 0 ≤ i , j ≤ µ;

– IfAnd(x1, x2, y1, y2, z1, z2) should hold if (x1 = x2 ∧ y1 = y2) → z1 = z2 is true, where x1, x2, y1, y2 are natural
numbers from Q (the rules for IfAnd are similar to those for If);

– DB(x, z, y) should hold if x = 0 and z is the number [P] of some predicate P in q or Σ such that P(y) ∈ D:

DB(0, [P], y)← P(y), for all predicates P in q and Σ.

Now we can describe the construction of the main rule of Π, which mimicks q′:

G ←

M∧
k=1

Γk ∧

N∧
i=1

Φi,

14

where G is a 0-ary goal predicate. The components, the Γk and the Φi, are defined as follows. In these definitions, we
make use of the quantified variables y,u, r,w with the same the intended meaning as in the previous construction; the
meaning of additional quantified variables will be explained below. For each 1 ≤ k ≤ M, let

Γk = OneOf(sk, 1,N) ∧
N∧

i=1

(
If(sk, i, ri, [Rk]) ∧

L∧
j=1

If(sk, i, ui j, yk j)
)
,

where sk is a fresh variable meant to be the number i of the atom Ai to which Rk(yk1, . . . , ykL) is mapped; the variable
sk encodes the choice of the disjunct of Γk in the previous construction; cf. (8). For each 1 ≤ i ≤ N, let

Φi = OneOf(vi, 0,K) ∧ DB(vi, ri, ui1, . . . , uiL) ∧
∧

τ=∀x (P1(t1)∧···∧Pm(tm)→∃z P0(t0))∈Σ

(
If(vi, [τ], ri, [P0]) ∧

∧
t0 j is a

If(vi, [τ], ui j, a) ∧
∧

t0 j is xl

If(vi, [τ], ui j,wil) ∧
∧

t0 j is z

If(vi, [τ], ui j, nulli) ∧
m∧

k=1

Ψτ,i,k

)
,

where vi is meant to take the number [τ] of the tgd (1 ≤ [τ] ≤ S) that derives the atom Ai or 0, if Ai is from the data
instance: the second conjunct accounts for the case where Ai is an atom of the data instance and the last group of
conjuncts for the case where Ai is obtained by an application of a tgd from Σ. Finally, for i > 1, we take

Ψτ,i,k = OneOf(pik, 1, i − 1) ∧
i−1∧
i′=1

(
IfAnd(vi, [τ], pik, i′, ri′ , [Pk]) ∧

∧
tk j=xl

IfAnd(vi, [τ], pik, i′, ui′ j,wil) ∧
∧
tk j=a

IfAnd(vi, [τ], pik, i′, ui′ j, a)
)
,

where, for every 1 ≤ i ≤ N and 1 ≤ k ≤ m, pik is meant to be the number i′ of the chase step that derives the kth atom
used in the ith chase step. We take Ψτ,1,k = OneOf(v1, 0, 0), which ensures v1 = 0.

It is straightforward to verify that (Π,G) is indeed equivalent to q′, thus establishing (ii). q

As sets of linear tgds of bounded arity and sets of sticky tgds of bounded arity enjoy the PWP, we obtain:

Corollary 12. Any CQ and any set of linear tgds of bounded arity (in particular, OWL 2 QL-ontology) have polynomial-
size PE{0,1}- and NDL{0,1}-rewritings.

Any CQ and any set of sticky tgds of bounded arity have polynomial-size PE{0,1}- and NDL{0,1}-rewritings.

The following result is an immediate consequence of the proof of Theorem 11; we shall use it to prove Lemma 15
in the next section:

Corollary 13. Let q(x) be a CQ and Σ an ontology from a family with the PWP.
(i) There is a polynomial-size PE-formula γ(x, y0, y1) such that γ(x, 0, 1) is a PE{0,1}-rewriting of q and Σ.
(ii) There is a polynomial-size NDL-query (Π,G(x, y0, y1)) such that (Π,G(x, 0, 1)) is an NDL{0,1}-rewriting of q

and Σ.

By taking the formula ∃y0, y1
(
(y0 , y1)∧γ(x, y0, y1)

)
with γ given in Corollary 13 (i), we also obtain the following

result on polynomial FO-rewritability over databases with at least two individuals:

Corollary 14. For any CQ q(x) and any ontology Σ from a family with the PWP, there is an FO-formula q′(x) such
that its size is polynomial in |q| and |Σ| and (Σ,D) |= q(a) if and only if D |= q′(a), for any data instance D with
|∆D| ≥ 2 and any tuple a of elements in ∆D.

Note that the compact representation of the FO-rewriting in this corollary is achieved—compared to the FO-
rewritings of CQs and OWL 2 QL-ontologies known so far—with the help of polynomially-many new existentially
quantified variables that are used for guessing a derivation of the given CQ in the chase.

15

5. Separation Results

In this section, we again consider ‘pure’ rewritings (without additional constants) and prove two separation results
saying that NDL-rewritings can be exponentially more succinct than PE-rewritings, and that FO-rewritings can be
superpolynomially more succinct than PE-rewritings. To this end we need a construction for transforming Boolean
formulas and circuits into rewritings.

Consider a family f 1, f 2, . . . of monotone Boolean functions in NP and a corresponding family C1,C2, . . . of
polynomial-size Boolean circuits with nondeterministic inputs. Recall that in Section 3 we constructed a family ψn of
CNFs encoding the Cn. The CNF ψn, which contains d ≤ 3|Cn|+ 1 clauses with m = |Cn| Boolean variables, was then
transformed into a set Σ f n of OWL 2 QL-tgds and a Boolean CQ q f n such that

(Σ f n ,Dα) |= q f n if and only if f n(α) = 1, for all α ∈ {0, 1}n.

Consider now the OWL 2 QL-ontology Σ∗f n that extends Σ f n with the negative constraints

∀x (A0(x) ∧ B(x)→ ⊥), for B(x) ∈ Θ,

where Θ is the set comprising the following formulas:

∃y P(x, y),

Ai(x), X0
i (x), X1

i (x), for 1 ≤ i ≤ m,

Zi, j(x), for 0 ≤ i ≤ m and 1 ≤ j ≤ d with (i, j) < {(0, 1), . . . , (0, n)}.

We observe that |Σ∗f n | = O(|Cn|2) and the claims of Lemma 8 are equally applicable to Σ∗f n (the proof requires that the
query q f n and the ontology Σ f n /Σ∗f n give ‘correct’ answers only for data Dα which, by definition, are consistent with
the negative constraints above).

Lemma 15. Let f 1, f 2, . . . be a family of monotone Boolean functions in NP and C1,C2, . . . a corresponding family
of polynomial-size Boolean circuits with nondeterministic inputs.

(i) If the f n are computed by Boolean formulas ϕn then there are a polynomial p and FO-rewritings q′f n of q f n and
Σ∗f n such that |q′f n | ≤ |ϕn| + p(|Cn|).

(ii) If the f n are computed by monotone Boolean circuits Bn then there are a polynomial p and NDL-rewritings
(Π f n ,G) of q f n and Σ∗f n such that |Π f n | ≤ 2|Bn| + p(|Cn|).

Proof. (i) Let γn(0, 1) be the polynomial-size PE{0,1}-rewriting of q f n and Σ f n given by Corollary 13 (i). We denote by
ϕn(x) the result of replacing each propositional variable p j in ϕn with the atom Z0, j(x), for 1 ≤ j ≤ n, and consider the
FO-query

q′f n = ∃x
[
A0(x) ∧

(
ϕn(x) ∨ ∃y

(
P(y, x) ∧ γn(x, y)

)
∨

∨
B(x)∈Θ

B(x)
)]
.

Clearly, |q′f n | = |ϕn| + p(|Cn|), for a polynomial p (note that the size of both q f n and Σ f n is quadratic in |Cn| and their
PE{0,1}-rewriting is in turn polynomial in their size). It remains to show that q′f n is an FO-rewriting of q f n and Σ∗f n .

Suppose (Σ∗f n ,D) |= q f n . If (Σ∗f n ,D) is inconsistent, it can only be due to the negative constraints of Σ∗f n , in
which case there is a ∈ ∆D and B(x) ∈ Θ such that D |= A0(a) ∧ B(a), whence D |= q′f n . Otherwise, the chase of
(Σ∗f n ,D) coincides with the chase of (Σ f n ,D) and there is a homomorphism h from q f n into the chase of (Σ f n ,D). Let
h(y0) = a0 ∈ ∆D (recall that y0 is the root of the query q f n). Clearly, A(a0) ∈ D. Two cases are possible now. If there is
some a1 ∈ ∆D \ {a0} with P(a1, a0) ∈ D then, as γn(0, 1) is a PE{0,1}-rewriting of q f n and Σ f n , we obtain D |= γn(a0, a1),
whence D |= q′f n . Otherwise, D 6|= ∃y P(y, a0) and Zi, j(a0) ∈ D only if i = 0 and 1 ≤ j ≤ n. Consider α defined by
taking α j = 1 iff Z0, j(a0) ∈ D, for 1 ≤ j ≤ n. We obtain (Σ f n ,Dα) |= q f n , and thus, by Lemma 7, f n(α) = 1. So
Dα |= ϕn(a0), whence D |= q′f n .

Conversely, suppose D |= q′f n . Then there is a0 ∈ ∆D with A0(a0) ∈ D. If the last disjunct of q′f n holds on a0 then
(Σ∗f n ,D) is inconsistent, whence (Σ∗f n ,D) |= q f n . So, from now on, we assume that the last disjunct does not hold on
any a ∈ ∆D with A0(a0) ∈ D, and so (Σ∗f n ,D) is consistent and its chase coincides with the chase of (Σ f n ,D). Two
cases are possible now. If the second disjunct holds then there is a1 ∈ ∆D \ {a0} with P(a1, a0) ∈ D (note that if a0 = a1

16

then P(a0, a0) ∈ D, and so (Σ∗f n ,D) is inconsistent, contrary to our assumption). Then, as γn(0, 1) is a PE{0,1}-rewriting
of q f n and Σ f n , we obtain (Σ f n ,D) |= q f n . Otherwise, the first disjunct, ϕn(x), holds on a0, D 6|= ∃y P(y, a0) and
Zi, j(a0) ∈ D only if i = 0 and 1 ≤ j ≤ n. Consider α defined by taking α j = 1 iff Z0, j(a0) ∈ D, for 1 ≤ j ≤ n. As ϕn

computes f n, we have f n(α) = 1, and so, by Lemma 7, (Σ f n ,D) |= q f n . In either case, (Σ∗f n ,D) |= q f n .

(ii) Let (Φn, F(0, 1)) be the polynomial-size NDL{0,1}-rewriting of q f n and Σ f n given by Corollary 13 (ii). We denote
by Ξn the NDL-program built from Bn by replacing each input with the respective unary predicate atom Z0, j(x), for
1 ≤ j ≤ n. More precisely, for each gate gi with inputs gi′ and gi′′ in the monotone Boolean circuit Bn, we take a unary
predicate Qi(x) and include the following rules in Ξn:

Qi(x)← Qi′ (x),Qi′′ (x), if gi = gi′ ∧ gi′′ , and
Qi(x) ← Qi′ (x),
Qi(x) ← Qi′′ (x), if gi = gi′ ∨ gi′′

(if gi′ is the j th input of Bn then Qi′ (x) denotes Z0, j(x); and similarly for gi′′). Consider now the NDL-query (Π f n ,G),
where the goal G is a fresh 0-ary predicate, and Π f n comprises the rules of Φn and Ξn as well as the following rules:

G ← A0(x),Q|Bn |(x),
G ← A0(x), P(y, x), F(x, y),
G ← A0(x), B(x), for all B(x) ∈ Θ

(recall that Q|Bn | corresponds to the output gate of Bn). Clearly, |Π f n | ≤ 2|Bn| + p(|Cn|), for a polynomial p (note that
the size of both q f n and Σ f n is quadratic in |Cn| and their NDL{0,1}-rewriting is in turn polynomial in their size). We
claim that (Π f n ,G) is an NDL-rewriting of q f n and Σ∗f n ; the proof is as in case (i). q

We are now in a position to show that NDL-rewritings can be exponentially more succinct than PE-rewritings. To
this end, we use the Boolean function Genm3 of m3 variables xi jk, 1 ≤ i, j, k ≤ m, defined as follows. We say that 1
generates k ≤ m if either k = 1 or xi jk = 1, for some i and j, and 1 generates both i and j. Genm3 (x111, . . . , xmmm)
returns 1 if and only if 1 generates m. This monotone function, also known as Path System Accessibility [22], is
computable by polynomial-size monotone circuits [58]. On the other hand, any monotone formula computing Genm3

is of size at least 2mε

, for some ε > 0 [48].

Theorem 16. There is a sequence of CQs qn of size O(n) and OWL 2 QL-ontologies Σn of size O(n) that have
polynomial-size NDL-rewritings, but any PE-rewritings of qn and Σn are of size ≥ 2nε , for some ε > 0.

Proof. It is known that Genm3 can be computed by monotone Boolean circuits of size p(m), for a polynomial p. So,
for each n, we can choose a suitable m = Θ(nδ), with a fixed δ > 0, such that the family of functions f n = Genm3

gives rise to the queries qn = q f n and OWL 2 QL-ontologies Σn = Σ∗f n of size O(n). By Lemma 15 (ii), there are
NDL-rewritings of qn and Σn of size polynomial in n. However, by Lemma 8 (ii), any PE-rewritings for qn and Σn are
of size ≥ 2mε0 , for some ε0 > 0. Then there is ε > 0 such that any PE-rewritings of qn and Σn are of size ≥ 2nε . q

FO-rewritings can also be substantially shorter than the PE-rewritings. To show this, we need the function
Matching2m of m2 variables ei j, 1 ≤ i, j ≤ m, that returns 1 if there is a perfect matching in the bipartite graph G
with m vertices in each part, which contains an edge {i, j} if and only if ei j = 1; that is, it returns 1 if there is a subset
E of edges in G such that every node of G occurs exactly once in E. It is not hard to see that Matching2m can be com-
puted by a Boolean circuit with m2 nondeterministic inputs and O(m2) gates. On the other hand, monotone Boolean
formulas computing Matching2m are exponential, 2Ω(m) [49]; but there are non-monotone Boolean formulas comput-
ing this function and having size mO(log m) [10]. So, we can use the standard padding trick from circuit complexity [3,
page 57] to show that FO-rewritings can be superpolynomially more succinct than PE-rewritings:

Theorem 17. There is a sequence of CQs qn of size O(n) and OWL 2 QL-ontologies Σn size O(n) that have polynomial-
size FO-rewritings, but any PE-rewritings of qn and Σn are of size ≥ 2Ω(2log1/2 n).

Proof. We define f n to be a slightly modified Matching2m with m = b2log1/2 nc: namely, f n has max(bn1/4c,m2) vari-
ables, of which m2 are the proper variables of Matching2m, while the rest are dummy variables used for padding (note

17

that bn1/4c > m2, for all sufficiently large n). Using Lemma 15 (i) and observing that mO(log m) = nO(1), we obtain a
polynomial upper bound for the size of FO-rewritings. The required superpolynomial lower bound for PE-rewritings
follows from Lemma 8 (ii). q

Unfortunately, no separation results for FO- and NDL-rewritings are known at the moment. As follows from the
connection between rewritings and various computation models for monotone Boolean functions established in this
article, such results would imply the corresponding separation results for formulas and monotone circuits, thereby
giving solutions to major open problems in Boolean circuit complexity [29].

6. Conclusions

We have shown in this article that FO-rewritability of conjunctive queries and OWL 2 QL-ontologies does not yet
mean that database systems can evaluate the rewritings as efficiently as they usually do for standard SQL queries.
Indeed, the rewritings can be prohibitively large and/or complex compared to the user queries. We have also seen
that the size of rewritings depends on the logical and non-logical means we want or are allowed to use. These results
clearly indicate that more theoretical and experimental research is needed to make the OBDA paradigm successful.
Here we briefly outline some important directions for future research that are related to this article.

On the one (theoretical) hand, we obviously need various conditions ensuring efficient OBDA, with first promis-
ing steps having already been made. For example, a sufficient semantic-based condition on CQs and OWL 2 QL-
ontologies that guarantees polynomial PE-rewritability has been obtained in [33]. It has also been demonstrated [30,
31] that there exist polynomial-size NDL-rewritings of CQs and OWL 2 QL-ontologies of depth 1 (whose chases
do not contain two labelled nulls that are involved in some relation), as well as polynomial-size PE-rewritings of
tree-shaped CQs (but not of arbitrary ones). For tree-shaped Boolean CQs q, the problem ‘(Σ,D) |= q?’ turns out
to be fixed-parameter tractable (with parameter |q|) [31]. Moreover, any tree-shaped CQ and OWL 2 QL ontology
with polynomially-many tree-witnesses have a polynomial-size NDL-rewriting [8]. A kind of preservation result has
been obtained in [8]: if CQs in some class can be evaluated in polynomial time over plain databases, then answer-
ing CQs in that class over OWL 2 QL-ontologies without role inclusion axioms, that is, without tgds of the form
∀x, y (P(x, y) → R(x, y)), is also tractable (a polynomial-time NDL-rewriting algorithm is given for acyclic CQs).
These initial results open a way to a more comprehensive description of classes of queries and ontologies with and
without polynomial rewritability. To fully understand the complexity of OBDA with OWL 2 QL-ontologies, we also
plan to investigate the size of rewritings over a fixed ontology and the size of rewritings of tree-shaped CQs and
ontologies of bounded depth.

On the other (practical) hand, we have to study the structure of queries and ontologies that can typically be used in
OBDA systems. The recent experiments [20, 35, 46, 54, 52, 51] indicate that rewritings of the available ‘real-world’
CQs and ontologies are often of acceptable size and can be further optimised using various techniques. However,
the ontologies used in those experiments do not seem to be sufficiently representative. It would also be interesting to
evaluate performance of database systems on rewritings with additional quantifiers and special constants, which can
be used to encode nondeterministic guesses in a compact way as in Section 4 (another rewriting of [33] employs a
single special constant to guess whether an existentially quantified variable in the query is matched in ∆D or in the
labelled nulls). Additional constants are also used in the combined approach to OBDA [40, 37, 38, 39], where they
represent the labelled nulls in the database.

Acknowledgements. This research was partially funded by EPSRC joint grants EP/H051511 and EP/H05099X:
“ExODA: Integrating Description Logics and Database Technologies for Expressive Ontology-Based Data Access.”

References

[1] Abiteboul, S., Hull, R., and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.
[2] Alon, N. and Boppana, R. 1987. The monotone circuit complexity of Boolean functions. Combinatorica 7, 1, 1–22.
[3] Arora, S. and Barak, B. 2009. Computational Complexity: A Modern Approach 1st Ed. Cambridge University Press, New York, NY, USA.
[4] Artale, A., Calvanese, D., Kontchakov, R., and Zakharyaschev, M. 2009. The DL-Lite family and relations. Journal of Artificial Intelligence

Research (JAIR) 36, 1–69.
[5] Avigad, J. 2003. Eliminating definitions and Skolem functions in first-order logic. ACM Transactions on Computational Logic 4, 3, 402–415.

18

[6] Baget, J.-F., Leclère, M., Mugnier, M.-L., and Salvat, E. 2009. Extending decidable cases for rules with existential variables. In Proc. of the
21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009). IJCAI, 677–682.

[7] Baget, J.-F., Leclère, M., Mugnier, M.-L., and Salvat, E. 2011. On rules with existential variables: Walking the decidability line. Artificial
Intelligence 175, 9–10, 1620–1654.

[8] Bienvenu, M., Ortiz, M., Simkus, M., and Xiao, G. 2013a. Tractable queries for lightweight description logics. In Proc. of the 23rd Int. Joint
Conf. on Artificial Intelligence (IJCAI 2013). AAAI Press/IJCAI, 768–774.

[9] Bienvenu, M., ten Cate, B., Lutz, C., and Wolter, F. 2013b. Ontology-based data access: a study through disjunctive datalog, CSP, and
MMSNP. In Proc. of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2013). ACM, 213–224.

[10] Borodin, A., von zur Gathen, J., and Hopcroft, J. E. 1982. Fast parallel matrix and gcd computations. In Proc. of the 23rd Annual Symposium
on Foundations of Computer Science (FOCS’82). IEEE Computer Society, 65–71.

[11] Calı̀, A., Gottlob, G., and Lukasiewicz, T. 2012a. A general datalog-based framework for tractable query answering over ontologies. Journal
of Web Semantics 14, 57–83.

[12] Calı̀, A., Gottlob, G., and Pieris, A. 2010. Advanced processing for ontological queries. PVLDB 3, 1, 554–565.
[13] Calı̀, A., Gottlob, G., and Pieris, A. 2012b. Towards more expressive ontology languages: The query answering problem. Artificial

Intelligence 193, 87–128.
[14] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R. 2005. DL-Lite: Tractable description logics for ontologies. In Proc.

of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005). AAAI Press, 602–607.
[15] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R. 2006. Data complexity of query answering in description logics. In

Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006). AAAI Press, 260–270.
[16] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R. 2007. Tractable reasoning and efficient query answering in

description logics: The DL-Lite family. Journal of Automated Reasoning 39, 3, 385–429.
[17] Chekuri, C. and Rajaraman, A. 2000. Conjunctive query containment revisited. Theoretical Computer Science 239, 2, 211–229.
[18] Chortaras, A., Trivela, D., and Stamou, G. 2011. Optimized query rewriting for OWL 2 QL. In Proc. of the 23rd Int. Conf. on Automated

Deduction (CADE-23). Lecture Notes in Computer Science Series, vol. 6803. Springer, 192–206.
[19] Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., and Sun, X. 2008. Scalable grounded conjunctive query evaluation

over large and expressive knowledge bases. In Proc. of the 7th Int. Semantic Web Conf. (ISWC 2008). Lecture Notes in Computer Science Series,
vol. 5318. Springer, 403–418.

[20] Eiter, T., Ortiz, M., Šimkus, M., Tran, T.-K., and Xiao, G. 2012. Query rewriting for Horn-SHIQ plus rules. In Proc. of the 26th AAAI Conf.
on Artificial Intelligence (AAAI 2012). AAAI Press.

[21] Flum, J. and Grohe, M. 2006. Parameterized Complexity Theory. EATCS Series: Texts in Theoretical Computer Science. Springer.
[22] Garey, M. and Johnson, D. 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New

York, NY, USA.
[23] Gottlob, G., Manna, M., and Pieris, A. 2014. Polynomial combined rewritings for existential rules. In Proc. of the 14th Int. Conf. on the

Principles of Knowledge Representation and Reasoning (KR 2014). AAAI Press.
[24] Gottlob, G., Orsi, G., and Pieris, A. Query rewriting and optimization for ontological databases. To Appear.
[25] Gottlob, G., Orsi, G., and Pieris, A. 2011. Ontological queries: Rewriting and optimization. In Proc. of the 27th Int. Conf. on Data

Engineering (ICDE 2011). IEEE Computer Society, 2–13.
[26] Gottlob, G. and Schwentick, T. 2012. Rewriting ontological queries into small nonrecursive datalog programs. In Proc. of the 13th Int.

Conf. on the Principles of Knowledge Representation and Reasoning (KR 2012). AAAI Press, 254–263.
[27] Grohe, M., Schwentick, T., and Segoufin, L. 2001. When is the evaluation of conjunctive queries tractable? In Proc. of the 33rd ACM

SIGACT Symposium on Theory of Computing (STOC’01). ACM, 657–666.
[28] Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., Pan, Y., Mei, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E.,

Srinivas, K., Feier, C., Hench, G., Wetzstein, B., and Keller, U. 2008. Ontology reasoning with large data repositories. In Ontology
Management, Semantic Web, Semantic Web Services, and Business Applications. Semantic Web and Beyond Series, vol. 7. Springer, 89–128.

[29] Jukna, S. 2012. Boolean Function Complexity: Advances and Frontiers. Springer.
[30] Kikot, S., Kontchakov, R., Podolskii, V., and Zakharyaschev, M. 2013. Query rewriting over shallow ontologies. In Proc. of the 26th Int.

Workshop on Description Logics (DL 2013). Vol. 1014. CEUR-WS, 316–327.
[31] Kikot, S., Kontchakov, R., Podolskii, V., and Zakharyaschev, M. 2014. On the succinctness of query rewriting over OWL 2 QL ontologies

with shallow chases. CoRR abs/1401.4420.
[32] Kikot, S., Kontchakov, R., Podolskii, V. V., and Zakharyaschev, M. 2012a. Exponential lower bounds and separation for query rewriting.

In Proc. of the 39th Int. Colloquium on Automata, Languages, and Programming (ICALP 2012), Part II. Lecture Notes in Computer Science
Series, vol. 7392. Springer, 263–274.

[33] Kikot, S., Kontchakov, R., and Zakharyaschev, M. 2012b. Conjunctive query answering with OWL 2 QL. In Proc. of the 13th Int. Conf. on
the Principles of Knowledge Representation and Reasoning (KR 2012). AAAI Press, 275–285.

[34] Kolaitis, P. G. and Vardi, M. Y. 1998. Conjunctive-query containment and constraint satisfaction. In Proc. of the 17th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’98). ACM Press, 205–213.

[35] König, M., Leclère, M., Mugnier, M.-L., and Thomazo, M. 2012. A sound and complete backward chaining algorithm for existential rules.
In Proc. of the 6th Int. Conf. on Web Reasoning and Rule Systems (RR 2012). Lecture Notes in Computer Science Series, vol. 7497. Springer,
122–138.

[36] König, M., Leclère, M., Mugnier, M.-L., and Thomazo, M. 2013. On the exploration of the query rewriting space with existential rules.
In Proc. of the 7th Int. Conf. on Web Reasoning and Rule Systems (RR 2013). Lecture Notes in Computer Science Series, vol. 7994. Springer,
123–137.

[37] Kontchakov, R., Lutz, C., Toman, D., Wolter, F., and Zakharyaschev, M. 2010. The combined approach to query answering in DL-Lite. In
Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2010). AAAI Press.

[38] Kontchakov, R., Lutz, C., Toman, D., Wolter, F., and Zakharyaschev, M. 2011. The combined approach to ontology-based data access. In

19

Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI 2011). AAAI Press, 2656–2661.
[39] Lutz, C., Seylan, I., Toman, D., and Wolter, F. 2013. The combined approach to OBDA: Taming role hierarchies using filters. In Proc. of

the 12th Int. Semantic Web Conf. (ISWC 2013). Lecture Notes in Computer Science Series, vol. 8218. Springer, 314–330.
[40] Lutz, C., Toman, D., and Wolter, F. 2009. Conjunctive query answering in the description logic EL using a relational database system. In

Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009). IJCAI, 2070–2075.
[41] McMahan, B. J., Pan, G., Porter, P., and Vardi, M. Y. 2004. Projection pushing revisited. In Proc. of the 9th Int. Conf. on Extending

Database Technology (EDBT). Lecture Notes in Computer Science Series, vol. 2992. Springer, 441–458.
[42] Meyer, A. R. and Fischer, M. J. 1971. Economy of description by automata, grammars, and formal systems. In Proc. of the 12th Annual

Symposium on Switching and Automata Theory (SWAT/FOCS’71). IEEE Computer Society, 188–191.
[43] Orsi, G. and Pieris, A. 2011. Optimizing query answering under ontological constraints. PVLDB 4, 11, 1004–1015.
[44] Ortiz, M., Rudolph, S., and Simkus, M. 2011. Query answering in the Horn fragments of the description logics SHOIQ and SROIQ. In Proc.

of the 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI 2011). IJCAI/AAAI, 1039–1044.
[45] Pérez-Urbina, H., Motik, B., and Horrocks, I. 2009. A comparison of query rewriting techniques for DL-Lite. In Proc. of the 22nd Int.

Workshop on Description Logics (DL 2009). Vol. 477. CEUR-WS.
[46] Pérez-Urbina, H., Rodrı́guez-Dı́az, E., Grove, M., Konstantinidis, G., and Sirin, E. 2012. Evaluation of query rewriting approaches for

OWL 2. In Proc. of SSWS+HPCSW 2012. Vol. 943. CEUR-WS.
[47] Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., and Rosati, R. 2008. Linking data to ontologies. Journal on Data

Semantics X, 133–173.
[48] Raz, R. and McKenzie, P. 1997. Separation of the monotone NC hierarchy. In Proc. of the 38th Annual Symposium on Foundations of

Computer Science (FOCS’97). IEEE Computer Society, 234–243.
[49] Raz, R. and Wigderson, A. 1992. Monotone circuits for matching require linear depth. Journal of the ACM 39, 3, 736–744.
[50] Razborov, A. 1985. Lower bounds for the monotone complexity of some Boolean functions. Dokl. Akad. Nauk SSSR 281, 4, 798–801.
[51] Rodrı́guez-Muro, M., Kontchakov, R., and Zakharyaschev, M. 2013a. Ontology-based data access: Ontop of databases. In Proc. of the 12th

Int. Semantic Web Conf. (ISWC 2013). Lecture Notes in Computer Science Series, vol. 8218. Springer, 558–573.
[52] Rodrı́guez-Muro, M., Kontchakov, R., and Zakharyaschev, M. 2013b. Ontop at work. In Proc. of the 10th Int. Workshop on OWL:

Experiences and Directions (OWLED 2013). Vol. 1080. CEUR-WS.
[53] Rosati, R. 2007. On conjunctive query answering in EL. In Proc. of the 2007 Int. Workshop on Description Logics (DL 2007). Vol. 250.

CEUR-WS.
[54] Rosati, R. 2012. Prexto: Query rewriting under extensional constraints in DL-Lite. In Proc. of the 9th Extended Semantic Web Conf.

(EWSC 2012). Lecture Notes in Computer Science Series, vol. 7295. Springer, 360–374.
[55] Rosati, R. and Almatelli, A. 2010. Improving query answering over DL-Lite ontologies. In Proc. of the 10th Int. Conf. on the Principles of

Knowledge Representation and Reasoning (KR 2010). AAAI Press, 290–300.
[56] Rossman, B. 2008. Homomorphism preservation theorems. Journal of the ACM 55, 3.
[57] Salvat, E. and Mugnier, M.-L. 1996. Sound and complete forward and backward chaining of graph rules. In Proc. of the 4th Int. Conf. on

Conceptual Structures (ICCS’96). Lecture Notes in Computer Science Series, vol. 1115. Springer, 248–262.
[58] Stewart, I. A. 1994. Logical description of monotone NP problems. Journal of Logic and Computation 4, 4, 337–357.
[59] Tseitin, G. 1983. On the complexity of derivation in propositional calculus. In Automation of Reasoning 2: Classical Papers on Computa-

tional Logic 1967–1970. Springer, 466–483.
[60] Yannakakis, M. 1981. Algorithms for acyclic database schemes. In Proc. of the 7th Int. Conf. on Very Large Data Bases (VLDB’81). IEEE

Computer Society, 82–94.

20

