Constructing Web Views from Automated Navigation
Sessions

Nadav Zin and Mark Levene
Department of Computer Science
University College London
Gower Street, London WC1E 6BT, U.K.
email: N.Zin@cs.ucl.ac.uk

ABSTRACT

Existing web search engines provide users with the ability to
query an off-line database of indices in order to decide on an
entry point for further manual navigation. Results are often
presented as a list of URLSs in descending order of relevance,
with no information on the underlying topology of the result
set. We believe that information on the topology is important
for useful exploration and can also help to reduce the feeling
of disorientation that users experience. We present an alter-
native to the result set of a conventional search engine, which
we call a web probabilistic view — a weighted subgraph of the
underlying document space which maximizes the overall ex-
pected relevance of trails. We model a web database as a
probabilistic grammar and present several algorithms to cal-
culate its weights, expressed as probabilities attached to tran-
sition rules. We provide results from a recent set of experi-
ments, showing the effectiveness of our approach measured
as improvement in the expected relevance of the grammar.
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1 Introduction

A hypertext database is a collection of interlinked pages of
text or multimedia, which allows navigation in a document
space by following links from one page to another [Nie95].
This non-sequential reading of the material (called brows-
ing), can become quite frustrating when directed by a partic-
ular goal or interest. Some pages are, naturally, more relevant
than others and the user has to decide which outlink to follow
next. The task is essentially a multi-objective search in which
users try to maximise their utility of visiting relevant pages
while minimising the effort required to locate them, and at
the same time enjoying the associative relationships between
linked nodes.

Long manual navigation sessions, especially in large docu-
ment spaces such as the WWW, can also cause a feeling of
disorientation. To tackle the problem search engines help
users select a "good” starting page, thus restricting the search
space for further exploration. In response to a particular
query, search engines suggest a list of entry points, usually
displayed in descending order of relevance, from which users
can start a manual navigation session. However, returning a
list of URLS in response to a query expression has a serious
drawback — it looses an inherent property of the hypertext
database; i.e. the topology in which those pages are embed-
ded. In fact, selecting any of the links in the result set still
leaves the user to speculate about the relevance of subsequent
links.

Although the idea of filtering out relevant pages resembles a
view in a relational database (where only those tuples satis-
fying a query expression are shown), a search engine’s result
set can hardly be considered as a hypertext view. Based on a
network of documents as source, we define a hypertext view
as a sub-network comprising a set of trails. It should be pos-
sible, at least in theory, to enumerate all possible trails and
select those that best suit the user’s criteria. However, in real-
ity the size of the document space and potential cycles in the
topology deem such an approach impractical. Some heuris-
tics are therefore required for highlighting relevant trails that
constitute a good hypertext view. It should be noted that the
concept of a trail is not a new one and was first introduced by
Bush in his visionary 1945 paper describing a hypothetical
hypertext machine called memex [Bus45]. Bush envisages
trail blazing — the task of constructing association sequences
between pieces of information. Sequences could then be
”loaded” into memex, and so trails serve as a medium for in-
formation exchange between people sharing their knowledge
and experience.

In this paper we introduce a generic algorithm for calculating
web views and four reinforcement policy variants. These dif-
fer in the credit horizon taken at the trail level and the learn-
ing rate used between iterations. We distinguish between a
fixed credit horizon - which credits all of the transition rules
of a trail homogeneously, and a dynamic one - which looks
only at the trail’s remainder. The learning rate taken between



iterations can also be computed with two different policies:
a fixed one with a constant factor, and dynamic one which
self-adapts throughout execution.

2 The Web Probabilistic Grammar

Consider the hypertext database shown in Figure 1. Starting
at the initial page a, this database can be traversed in many
ways, each resulting in a different trail. Two such trails are
highlighted in the figure. We assume that, given the context
of a query, the utility ”gained” by visiting a page (shown in
brackets next to the label) depends on the content rather than
the position within the trail. While viewing a page, the user is
faced with the following decision problem: navigate to one
of the outlinks or terminate the navigational sequence alto-
gether. Choosing the first option increases the accumulated
utility of the navigational sequence by the relevance of the re-
spective destination page. It also costs another navigational
step. The trade-off between increasing the accumulated rel-
evance and decreasing the overall number of steps taken is
tantamount to a global optimization of the trail’s average rel-
evance.

Our model is based on a finite automata representation of the
hypertext database in which nodes are modelled as states and
links as transition rules [LL99]. Changing states in the au-
tomaton closely resembles the user activity of navigation in
the document space. A special reference is made to a start-
ing node called the database source from which navigation
starts.

Figure 1: Two trails in a hypertext database

The hypertext database of Figure 1 can be defined as the reg-
ular grammar G = (Vn, Vi, R, S) where the set of terminal
symbols Vi = {a,b, ..., e}, the set of non-terminal symbols
Vv = {4, B, ... E}, the set of transition rules R = {A —
aC, A—a, B—-bA, B—b,C—cB,C—cE,C—
¢, D —»dA, D —dC,D —»d, E—eC, E—eD, E—
e} and the start state S = A. Note that R contains two types
of production rules: X — zY in which non-terminal sym-
bols appear both in the premise and conclusion parts — rep-
resenting actual links in the hypertext graph, and X — z in
which a one non-terminal appears only in the premise — used

to support termination of strings. We call the latter stopping
rules.

The grammar model not only enables specification of the
hypertext topology but also provides means of investigat-
ing trails [LL99] (c.f. [Par98]). Navigation sessions can
be viewed as derivations of words in a language defined by
the grammar. The n-step derivation S = w where w is
a sequence of terminal symbols called a word. A hyper-
text grammar is deterministic and unambiguous, and thus
implies a bijection between words (the derived strings) and
trails (the sequences of production rules used in their gener-
ation). From now on we will use those terms interchange-
ably. Complex document spaces allow many navigational
sequences between pages, a collection of which is central to
our model of a web view. The set {w|S = w} of all words
generated by a grammar G is called a language, denoted as
L(G). Inthe context of this work we call L(G) the total view
of the hypertext. A web view is then any subset of the total
view.

Web navigation is not a random activity but is often moti-
vated by the user’s interest in a specific topic. Search engines
allow users to specify topics as ad-hoc queries expressed as
a set of keywords with boolean operators. Those serve as
functions from nodes to a relevance range, typically between
0and 1. The actual calculation of relevance scores is a classi-
cal information retrieval problem (see [RSJ76] [GF98]) and
is outside the scope of this model. In this work we stay indif-
ferent to the scoring method as long as it is applied consis-
tently on all nodes. Extending relevance scoring we define a
trail’s utility u(¢) as the simple average of its page relevan-
cies and a view’s utility u(v) = E[u(t)] as its expected trail
relevance.

So far, our model implicitly assumed that, given a certain
page, outlinks are equally likely to be followed. However,
real web navigation is a more complex stochastic process, as
the outlinks probability distribution at the node level is not
necessarily uniform. Users tend to select outlinks that, they
believe, would lead to relevant pages and consequently in-
crease their overall utility in the session. We incorporate this
belief into our model of a web probabilistic grammar G =
(Vn,Vr, R, P, S) defined as a regular grammar in which ev-
ery transition rule of R is assigned a corresponding weight
P, € (0,1] such that Vn € Vy : >, P, = 1 where n is
the non-terminal premise of . Note that P defines prob-
ability distributions over non-terminals to support selection
of rewrite rules (for a comprehensive survey of probabilis-
tic grammars see [Wet80] and [Cha93]). A non-probabilistic
grammar (such as the simple web grammar) can, therefore,
be seen as a special case in which those distributions are uni-
form [LL99].

Rule weights are also useful to describe the probability of
words. We assume that, given a page, the selection of an
outlink follows a Markovian process which is not affected



by previous nodes in the trail. The probability P(S = w)
of a word can, therefore, be taken as a product of the in-
dividual rules used in its derivation. More formally, let ¢t =
[r1,72,...,7y] bethe trail corresponding to w. Then, P(S =
w) =[], P(t[i]). Observe that the range of P is (0, 1] and
therefore 0 < P(w) < 1. Due to the duality of trails and
words, we thus have P(t) = P(w).

Probabilistic web views that share the same topology can be
seen as dialects of the same grammar. Their syntax produces
the same words but with different frequencies, depending on
the probabilities attached to transition rules. Given a cer-
tain topology we look for the weight vector P * for which the
grammar G = (Vn, Vp, R, P*,S) maximizes the expected
trail relevance Efu(t)].

3 The Reinforcement Algorithm

This section describes a reinforcement algorithm for calcu-
lating rule weights in web probabilistic grammars. The ap-
proach is based on a sample-credit-update loop, a common
concept in reinforcement learning [SB98], in which explo-
ration and credit are tied together. The general principle is
as follows: 1) a sample of trails is taken from the language;
2) transition rules are credited according to the relevance of
trails in which they appeared and a new set of probabilities
is calculated; and 3) the automaton is updated according to
the learning rate 0 < a < 1 and the new values are used to
generate a new sample. The loop terminates when the u(v)
settles on a fixpoint (i.e. there is no significant change for a
fixed number of iterations).

We distinguish between two credit and update policies re-
sulting in four variants of our generic algorithm. The Fixed
Credit Horizon (FHC) is one in which all the trail’s links are
credited equally with the same value. When the credit of
a rule depends on its position in the trail the policy is Dy-
namic Credit Horizon (DCH). Weights are updated between
iterations as a linear combination of new and current values
with « and (1 — «) respectively. When « is fixed through-
out the run we say that the algorithm has a Fixed Learning
Rate (FLR). However, when « changes between cycles we
say that the algorithm has a Dynamic Learning Rate (DLR).

The algorithm assumes the following primitive routines: i)
initialise : R — (0, 1] which takes a set of rules and re-
turns their corresponding weights set P such that Vn € Vi :
>, P = 1 where n is the non-terminal premise of r, ii)
normalise : C — (0, 1] which takes a set of credits corre-
sponding to the rules set R and returns a new weights set P
C normalized at the premise level, and iii) sample(G,n)
which takes a probabilistic grammar G of the form (Vx, Vi,
R, P, S) and returns a set of n words in L(G) induced by P.

The generic algorithm, presented in Figure 2, should be read
as follows. Initialise the probabilities vector P such that rule
weights corresponding to outlinks of each node add up to
one. Until convergence of the trail expected relevance per-

Algorithm 3.1 (web_view ((Vw, Vr, R, S), n,Q, @))
1. begin

2. P «initialise (R) ;

3 repeat

4. G+ (VN,VT,R,P,S>;

5. T « sample (G, n);

6 C + credit (T, Q);

7 P’ + normalize (C);

8. P « update (P, P, a);

9.  until the expected trail relevance converges to a fixpoint;
10. return{Vn,Vr,R, P, S);

11. end.

Figure 2: The generic web view algorithm

form the following loop. Let G be a probabilistic grammar
with distribution P. Use G to generate a sample 7" of n trails.
Calculate the vector C' of rule credits according to the policy
(FCH or DCH). Normalize C' at the node level to become
an alternative probability vector P’. Update the probabili-
ties vector as a linear combination of the old P and the new
alternative P’ with the appropriate . For the DLR, «a is de-
termined as a function of 7" (a reasonable criteria is to com-
pute « according to the change in expected trail relevance).
Then, use the new P to generate the next sample. Conver-
gence is detected when the expected trail relevance has not
significantly changed for a fixed number of iterations.

4 Empirical Validation

In order to evaluate our approach an extensive set of off-line
experiments were conducted using synthetic data with simi-
lar characteristics to the web. This enabled us to maintain a
controlled experimental environment, test extreme cases and
reduce the overall time by cutting out the network traffic. We
used Java 1.2 for implementation and Oracle8 as an off-line
repository.

Our first step was to create a library of 1000 nodes from
which many instances of web cases were created. We used
u(n) = e 107 with x uniformly distributed in [0,1] to sim-
ulate the scoring function of a node n by the search engine,
giving us an expected relevance of just above 0.1. Although
node relevancies were only assigned once in the library, they
could still be used throughout the whole experiment with the
assumption that the distribution is fixed over queries.

Using the library we then generated 15 web cases in 3 dif-
ferent sizes of 100, 500 and 1000 nodes. Real data collected
from the web enabled us to study the empirical distribution
of node connectivity. We used this distribution to randomly
assemble the nodes in each web case instance. Each of the
four algorithms was ran against all web case instances with
three different sample sizes of 250, 500 and 1000 trails. For
the FLR policy o was set to 0.5, whereas for the FLR fluc-
tuations around 0.5 were allowed. Overall 180 jobs were



executed, repeating each configuration 10 times. We now
provide a brief summary of the results (for full details see
[ZL99)).

As can be seen in Table 1, all algorithms increase the ex-
pected trail relevance from an initial average of 0.075 to an
average of 0.170. Note that only 20% of all nodes in the li-
brary had a greater relevance, which means that the we have
managed to focus and construct trails from those nodes that
had higher scores. It should also be noted that convergence
was reached in less than 100 iterations (42.1 on average).
We note that, as expected, smaller sample sizes took longer
to converge, and in addition that the average trail length is
shorter in larger networks. Moreover, the results suggest that
performance is sublinear with the size of the network, ren-
dering our approach scalable.

Figures 3-6 present typical behaviour of the four algorithms
on 1000 nodes web cases with a sample size of 250 trails.
Note the increase in expected trail relevance (Figure 3) along
with the entropy of its distribution (Figure 4). This suggests
that all four variants have managed to converge on web views
consisting of "good” trails with similar derivation probabili-
ties.
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Figure 3: Expected trail relevance
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Figure 4: Entropy of trail relevance

Furthermore, the fixed credit horizon manages to keep a higher
diversity (Figure 5) — over 75% distinct trails in the sam-
ple. Finally, the trails produced by the dynamic crediting
algorithms, were not only more relevant (Figure 3) but also
shorter (Figure 6).
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Figure 5: Sample diversity
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Figure 6: Average trail length

5 Concluding Remarks

Web views as a navigation support tool in large document
spaces was suggested much before the phenomenal explo-
sion of the World-Wide Web. [UY89] have suggested to
combine a record of the user’s path in the Intermedia sys-
tem with a map of available links, which they called a web
view. In [MF95], the authors describe the Navigational View
Builder —an interactive tool which allows users to create their
own visualization of the WWW. Views as a conceptualiz-
ing mechanism were also discussed in [SNP97] in the con-
text of virtual hierarchies and virtual networks. Moreover,
techniques for web searching have now progressed beyond
traditional information retrieval (see, for example, machine
learning technique in [CS96] and augmenting engines with
information about link structure in [K1e98]).

Automata theory provides good tools for modeling a hyper-
text database [LL99]. Its extension to probabilistic gram-
mars enables analysis of user navigation in the document



Expected Trail Relevance Iterations for Convergence Average Trail Length

FCH DCH FCH DCH FCH DCH
Nodes | Sample || Fir | bR | FLR | bR || FLR | DR | FLR | DR || FLR | DR | FLR | DLR
100 250 || .143 | .143 | .184 | .185 || 35.0 | 34.1 (345 | 275 ||14.0 |14.2 |16.8 |16.7
500 || .133 | .132 | .172 | .174 | 30.8 | 30.1 | 27.3 | 253 || 126 |126 |17.8 |17.2
1000 || .124 | .125 | .167 | .168 || 24.9 | 26.8 | 24.8 | 239 | 11.3 |114 |174 |17.3
500 | 250 || .165 | .164 | 200 | 204 || 465 | 42.8 | 551 | 495 || 123 |12 |102 |10.9
500 || .154 | .150 | .193 | .186 || 46.7 | 39.8 |58.3 | 448 || 12.7 | 124 |12.1 |12.0
1000 || .139 | .139 | .171 | .168 || 36.2 | 36.6 | 44.2 |35.0 || 119 |11.8 |135 |135
1000 | 250 || .182 | .179 | .215 | 211 || 52.7 | 504 | 559 |53.1 | 121 [120 |85 |91
500 || .170 | .167 | .213 | .207 || 51.6 | 48.0 | 63.6 |53.5 || 13.0 |128 | 9.5 |10.0
1000 || .156 | .154 | .198 | .194 || 46.9 | 44.0 | 60.4 |56.1 | 13.3 |13.0 |11.2 |11.3

Table 1: Summary of experimental results

space. The approach presented in this paper uses repeated
sampling for learning of the optimal transition probabilities.
We have shown that the generic algorithm for reinforcement
of probabilities significantly increases the expected trail rele-
vance. The final weights define an implicit structure, contain-
ing trails with high relevance with respect to a given query.
The collection of high relevance trails is in fact a view of the
hypertext structure which highlights recommended naviga-
tion sequences.

We believe that a web view and the algorithms used for its
construction will be useful components in the next genera-
tion of web search tools. We have recently finished imple-
menting a software robot to collect real data from the web
into a local repository. We intend to use it to conduct another
set of experiments to further validate our approach.
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