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Abstract

The concept of the long tail has recently been used to explain the phenomenon in
e-commerce where the total volume of sales of the items in the tail is comparable to that
of the most popular items. In the case of online book sales, the proportion of tail sales
has been estimated using regression techniques on the assumption that the data obeys
a power-law distribution. Here we propose a different technique for estimation based on
a generative model of book sales that results in an asymptotic power-law distribution
of sales, but which does not suffer from the problems related to power-law regression
techniques. We show that the proportion of tail sales predicted is very sensitive to the
estimated power-law exponent. In particular, if we assume that the power-law exponent of
the cumulative distribution is closer to 1.1 rather than to 1.2 (estimates published in 2003,
calculated using regression by two groups of researchers), then our computations suggest
that the tail sales of Amazon.com, rather than being 40% as estimated by Brynjolfsson,
Hu and Smith in 2003, are actually closer to 20%, the proportion estimated by its CEO.
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1 Introduction

The long tail is the phenomenon that allows an e-commerce business to make significant profit
from small sales volumes of a large number of less popular items. It is well known that in
aggregate the tail sales of many online retailers, offering products such as books, music and
films, are comparable to the sales of the most popular items, i.e. the “blockbusters”. The
proportion of tail sales may be estimated using regression techniques on the assumption that
the data obeys a power-law distribution. Newman, in [New(05], provides evidence that books
sales do indeed follow a power law. In this paper we present a different method for estimating
the tail sales based on a generative model that simulates a simplified sales process, and results
in an asymptotic power-law distribution. Our generative model also has the advantage that
the proportion of tail sales can be estimated from the number of available products and the
total volume of sales, when these are known. The methodology we present may be useful in
providing sales analytics for an e-commerce business in relation to prediction and validation
of sales volumes from the tail.



A power-law distribution taking the mathematical form

g(i) = 19 (1)

where C' and 7 are positive constants, represents the proportion of observations having the
value 7. The constant 7 is called the ezponent of the distribution [New05]. There are many
well-known examples of power-law distributions [Sch91]; for example, Lotka’s law states that
the number of authors publishing a prescribed number of papers is inversely proportional to
the square of the number of publications. Pareto’s law, which is a cumulative version of (1),
states that the number of people whose personal income is above a certain level follows a power
law with an exponent between 1.5 and 2. Zipf’s law, which states that the relative frequency
of a word in a text is inversely proportional to its rank, is the inverse of the cumulative power-
law distribution for the proportion of words whose frequency is above a certain level. (We
note that for 7 > 1 the cumulative distribution corresponding to the distribution (1), i.e. the
proportion of observations greater than i, also follows a power law, but with exponent 7—1.
Its inverse is a Zipfian distribution of frequency against rank, which also follows a power law,
now with exponent 1/(7—1).)

The tail of a power-law distribution decays polynomially, in contrast to the exponential
decay characteristic of distributions such as the Normal and geometric. Power-law distribu-
tions are notoriously hard to fit [GMY04], and often there is an exponential cutoff present in
the power-law scaling, although this cutoff may only be observable in the tail of the distribu-
tion for extremely large data sets [FLLO06]. A power-law distribution with exponential cutoff
[FLLO5| is of the mathematical form

9(i) = =, (2)
where 0 < ¢ < 1, and frequently ¢ ~ 1.

The concept of the long tail has been recently popularised by Anderson [And06] (see also
www.longtail.com) and is currently used to explain the phenomenon in e-commerce where
the total volume of sales of the items in the tail of a Zipfian distribution of sales volume
against sales rank is comparable to that of the most popular items. One category of sales
to which long tail analysis has been applied is online book sales. In [BHS03, BHS06] it was
argued that the considerable increase of product variety in online book stores has a significant
positive impact on consumer welfare. Their analysis also applies to other products such as
CDs and DVDs. Table 1], taken from [BHS03], shows the numbers of products available from
Online and Brick-and-mortar stores.

In [CGO3] an analysis of online book sales data was carried out to compare the demand
and price competition between Amazon.com and BarnesandNoble.com. In order to analyse
the long tail, the exponent of the assumed cumulative power-law distribution relating the sales
rank of a book to the number of copies sold needs to be estimated. In [CGO03] the estimate
of 7—1 used was 1.2, while in [BHS03| the slightly lower value of 1.1481 was used. (The
sales rank of a book is one greater than the number of books that have sold more copies.)
Based on the latter estimate of the power-law exponent and assuming, as shown in Table [1,
that the most popular 100,000 titles are stocked in Brick-and-mortar stores, Brynjolfsson et
al. [BHS03] concluded that about 40% of Amazon.com’s sales are represented by titles that
would not normally be found in these stores. It is interesting to note that Jeff Bezos, the
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‘ Product Category ‘ Online Brick-and-mortar
Books 2,300,000 | 40,000 — 100,000
CDs 250,000 5,000 — 15,000
DVDs 18,000 500 — 1,500
Digital cameras 213 36
Portable MP3 players | 128 16
Flatbed scanners 171 13

Table 1: Product variety comparison for large Online and Brick-and-mortar retailers.

CEO of Amazon.com, thought that the 40% figure was too high and the real figure was closer
to 20% |And05]. So, assuming that Bezos is correct, how can we explain this discrepancy?

There is some inconsistency in the estimation of the power-law exponent for Amazon.com’s
sales data, and different researchers have reported values for 7—1 in the range from just below
1.0 to approximately 1.3 [BHS03, (CG03]. This is not surprising, since there are inherent
difficulties in fitting power-law distributions [GMY04, FLL06] and it is often unclear whether
or not the distribution is indeed a pure power law. We will show that the generative model
we describe in the next section supports the exponent 7—1 being in the region of 1.1 for
Amazon.com’s sales data, assuming that Jeff Bezos’s estimate of 20% tail sales is closer to
reality than 40%.

A recent approach, which to a certain extent circumvents the above problems, is to assume
a generative model that results in a distribution that is asymptotically either a pure power-
law distribution or a power-law distribution with exponential cutoff, where ¢ in (2) is close
to 1.0 [New05]. (The latter covers a wider range of real-world scenarios than a pure power
law.) The details of such a model are given in Section 2. We use this model to investigate
the possible range of power-law exponents that are consistent with the book data given in
Table 1] corresponding to 20%, 30% or 40% of the sales being in the tail of the distribution.
The methodology we use and our results are presented in Section 3, and analysis of a sparse
data set from [And06] is presented in Section 4. Finally, in Section 5 we give our concluding
remarks.

2 A stochastic model exhibiting power-law behaviour with an
exponential cutoff

The stochastic model presented in [FLLO05] can be described, in the context of the sales of
products, and in particular books, as follows. We have at our disposal a countable number
of urns, say urn(i),i = 1,2, ..., where each urn contains a number of products, for example,
books or CDs. A product is in urn(z) if ¢ copies of it have been sold since it entered the
system. Initially all the urns are empty except urn(1), which has one product in it (of which
one copy has been sold). At time ¢ + 1, one of the following two things occurs:

(a) with probability p, 0 < p < 1, a new product is inserted into urn(1) (this represents the
first sale of this product), or

(b) with probability 1 —p, a product is chosen with probability proportional to the number



of sales of that product up to time ¢, i.e. proportional to i for a product in urn(i) (thus
the selection follows the rule of preferential attachment [AB02] originally suggested by
[Sim55] and [Pri76]); then,

(i) with probability ¢, 0 < ¢ < 1, the chosen product is transferred from urn(i) to
urn(i + 1) — this represents an additional copy of the chosen product being sold,
or

(ii) with probability 1—g, the chosen product is discarded from urn(i) — this represents
the chosen product being discontinued, for example, if a book has gone out of print;
when ¢ = 1, “old” products are always available.

We have assumed the above initial conditions of the model for the sake of simplicity.
However, it can be shown that any other initial conditions will lead to the same asymptotic
distribution described below.

For the following analysis we will assume from now on that ¢ = 1, since, for the Ama-
zon.com sales data considered here, the researchers [BHS03, (CGO03| have assumed a pure
power-law distribution (i.e. that ¢ = 1). From a web perspective such an assumption is
not unreasonable, since second-hand out-of-print books are often available online, and the
trend towards a print-on-demand model is increasing the availability of less popular books.
Nevertheless, if online sales data sets become available, it could be tested whether in practice
there exists a noticeable cutoff in the power-law distribution.

Let g(i) be the asymptotic proportion of products in urn(i). It was shown in [Sim55] (cf.
[FLLO5]) that, for i > 1,
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and T" is the gamma function [GKP94]. It was also shown that
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which is consistent with the fact that p is the proportion of sales that are the first sale of that
product, i.e. the ratio of the number of products sold to the total number of sales.

On using Stirling’s approximation [GKP94], it can be shown from (3) that for large 4,
corresponding to (1), we obtain:

, C
g(Z) ~ ZT—’
where ~ means is asymptotic to, and C' = (t1—1)I'(7). (We have shown in [FLLO05| that g(i)
is asymptotic to the more general form given in (2) when ¢ < 1.) We note that, for any given
exponent 7, the value of g(7) will be less than the above asymptotic approximation. Moreover,
the difference will be greater for small values of 4, which correspond to the tail sales, as we

will see in the next section.



3 How long is the tail?

From now on we will assume that we are dealing with books. We define the long tail to
comprise those titles available online but not in Brick-and-mortar book stores. To find the
proportion of sales in the long tail, taking the figures from Table 1, we assume that 2, 300, 000
is an estimate of «, the total number of titles in print, and thus the number of titles potentially
available online; we also assume that 3, the number of titles that are stocked in a very large
Brick-and-mortar book store, is approximately 100, 000.

Let N be the minimum number of copies sold by an online store of any title stocked in a
Brick-and-mortar store. In order to find the proportion of tail sales, we first need to find IV,
i.e. the smallest integer such that

N

ay g(i)>a—p, (6)

=1

where the right-hand side represents the number of titles in the long tail of the distribution.
We note that, for the stochastic model of the preceding section, when j > i the titles in
urn(j) are more popular than those in urn(i), since they have sold more copies. Thus in (6)
we sum ¢(i), the proportion of titles in urn(i), from 1 to N in order to find a bound on the
number of titles in the tail.

Now let 6 be the number of titles in urn(N) that are in the tail, so
N-1
§=a—-8-a) g (7)
i=1

The proportion A of sales in the long tail is given by

N—-1
. N6
A= p Y igli) + 22, (8)
=1

o

since the proportion of sales corresponding to the titles in urn(i) is ig(i)p by (5).

Given « and [, we obtain an estimate for the power-law exponent 7 that corresponds to
a given value of A in the following way. For a suitable range of values of 7 we compute p from
(4) and the g(i) from (3). Inequality (6) is then used to obtain N, the threshold volume for
the tail. Finally, A is calculated from (7) and (8). We can then choose the value of 7 that
corresponds most closely to the given value of A\. Moreover, if we know the average number
of copies sold per title, which by (5) is 1/p in our model, 7 can be calculated from (4) and
then the corresponding value of A can be computed as described above.

The figure of 40% sales in the tail was estimated by Brynjolfsson et al. [BHS03] using a
power-law exponent for the cumulative distribution of 7—1 = 1.1481, the reciprocal of 0.871,
the exponent obtained by fitting a Zipfian distribution [New(05] relating sales volume to sales
rank. (A previous estimate from 2002, relying on only 2 points rather than 800 points, gave
an exponent of 1.0917, the reciprocal of 0.916; see [BHS03|.) The estimated exponent used
in [CGO3], however, was the higher value of 1.2.

Table 2 shows the values of A\ obtained for several values of 7—1, calculated as described
above. It can be seen that the estimated proportion of sales in the tail is very sensitive to the



power-law exponent. In particular, if the power-law exponent of the cumulative distribution
is close to 1.1, the earlier estimate in [BHS03], rather than to 1.2 [CGO03], then the results
obtained using our model suggest that the tail sales for Amazon.com would, in fact, be closer
to 20%. This figure is consistent with the estimate reported by its CEO, rather than 40% as
estimated in [BHS03]; if the exponent is close to 1.15, the more recent estimate in [BHS03],
our results suggest that the proportion of sales in the tail would be close to 30%.

Tail sales (A) | Exponent (7—1)
20.0% 1.0896
20.4 % 1.0917
29.4 % 1.1481
30.0% 1.1522
36.1 % 1.2000
40.0% 1.235

Table 2: Proportion of tail sales for various cumulative power-law exponents.

The interpretation of our results is not that the method used in [BHS03] to estimate the
power-law exponent was more accurate than that used in [CGO03], or vice versa, but rather a
general critique on fitting power-law distributions. A generative model, such as the stochastic
urn model presented in Section 2, can be useful for validating power-law statistics, especially
if additional information is available, such as Jeff Bezos’s estimate in this case.

4 Further analysis of the proportion of tail sales

We now attempt to verify the above results using the book sales data presented by Anderson
[And06, p.121], which he used to support his argument that sales data follows a power-law
distribution or, in his terminology, is “long-tailed”. (This was the only book sales data set we
were able to obtain — book sellers are rather reluctant to provide their sales data, presumably
for commercial reasons.) In Table 3l we reproduce this sparse data set. Range refers to the
range of the number of copies sold for each book, Books refers to the number of different book
titles that sold within the range, and Units refers to the total number of copies of books sold
within the range. We assume as before that the data comes from an asymptotic power-law
distribution following the model presented in Section 2. Unfortunately, due to the sparseness
of the data in Table |3, we cannot reliably determine the exponent of the distribution using
regression techniques. Thus we will resort to measuring the distance between the empirical
distribution, as given in Table[3, and the distribution according to the model, as given by (3).

From the raw data in the table we can calculate that the tail sales for this data set is
approximately 12.16%, and from our model we can then deduce that 7—1 ~ 1.065. We
note that it is reasonable to expect that the tail sales for this data set will be less than that
for Amazon’s, since the total number of books available here is approximately 1,240, 000, as
opposed to Amazon’s 2,300,000. Moreover, because of the self-similarity property of power
laws [DKM™02], it is also reasonable to assume that the distributions will be similar.

We now make use of two well-known non-parametric measures of distance between two dis-
tributions, namely the Hellinger distance and the relative entropy [GS02], in order to estimate
the tail sales corresponding to the data in Table [3| using our model. Let (a1, as,...,ay,) be



Range Books Units

> 1,000,000 10 17,396,510
500,000 to 999,999 22 13,798,299
250,000 to 499,999 64 22,252,491

100,000 to 249,999 324 46,932,031
50,000 to 100,000 767 51,858,835
5,000 to 49,999 23047 | 280,000,591

1,000 to 4,999 67008 | 149,093,614
100 to 999 202938 | 69,548,499
<99 948005 | 14,346,417
Total: 1,242,185 | 665,227,287

Table 3: Book sales data from 2004 [And06].

the empirical probabilities of the distribution obtained from the data, and let (b1, bg,...,by)
be the corresponding probabilities of the distribution as predicted by the model. Then, the
Hellinger distance (He) is defined by

n

He =3~ (Vi — Vbi)

=1

2
and the relative entropy (Re) is defined by

n
Q;
Re = a; log —.

We note that the Hellinger distance is bounded between 0 and 2, and its value cannot be
greater than that of the relative entropy [GS02].

Tail sales (A) | Exponent (7—1) | He Units | Re Units
2.10% 1.0100 0.2361 0.8008
10.00% 1.0522 0.1654 0.5541
12.16% 1.0650 0.1471 0.4934
16.30% 1.0917 0.1146 0.3888
20.00% 1.1180 0.0907 0.3160

23.80% 1.1481 0.0739 0.2699
29.60% 1.2000 0.0716 0.2818
30.00% 1.2043 0.0729 0.2878
40.00% 1.3410 0.1959 0.8098

Table 4: Data analysis for sales data from Table 3.

Since the sales data in Table 3 are given for ranges rather than point sales, we computed
the distance between the cumulative empirical distribution of sales for the data given in
Table [3, and the cumulative distribution of sales predicted by our model, both normalised



to sum to one. Using (3), it can be shown that the formula for the cumulative sales in our
model is

. (r=1)2PT(r-2)T(j + 1)
;29(1) = TG D) :

and this can be used to calculate the cumulative sales distribution for our model.

The results are shown in Table [4. It can be seen that according to these two distance
measures the most likely percentage of tail sales (not necessarily Amazon.com’s) is between
20% and 30%, which is consistent with our findings in Section 3. We stress that for this data
set we have assumed that the total number of books « is as given in Table 3, which differs from
the value from [BHS03] used in Section 3. This could explain why, for an exponent of 1.1481,
the model predicts the tail sales as being 23.8% rather than 29.4% as in Section [3. Although
a definitive answer of the percentage of Amazon.com’s tail sales can only be verified from
their sales data, we have demonstrated that our methodology may be useful for estimation
and confirmation purposes.

5 Concluding Remarks

We have investigated the long tail using a generative model of book sales. This attempts to
model the process that gives rise to an asymptotic power law, rather than using techniques
such as regression for fitting an apparent power-law distribution. The advantage of this new
approach is that the parameters of the model, p and ¢, are related to the rates at which new
products are introduced and existing ones discontinued. When data on these is available our
methodology can be used to calibrate and validate the model. The generative approach can
also be useful in providing sales analytics for an e-commerce business in relation to predicting
and validating tail sales volumes. It may also be useful for a manager who wishes to investigate
alternative long tail strategies when considering target sales of both popular and niche items.

Our computations show that the estimated proportion of sales in the tail is very sensitive
to the estimated power-law exponent. Consequently, given that an exponent estimated using
regression may not be very accurate, the error margin of the resulting tail sales estimate may
be quite large. When sales data are believed to asymptotically follow a power law, our model
could be used to reduce the margin of error of such estimates.

It would be interesting to be able to test the validity of the model we have presented on
other e-commerce data, where this is available.

As an epilogue, we believe that as more households world-wide progressively move to
conduct more of their daily business through the internet, the long tail phenomenon will have
to be periodically re-examined. Thus the close monitoring of long tail sales could potentially
become a useful economic instrument, which can contribute to the profitability of companies.
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