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Abstract. We present a hereditary class of graphs of unbounded clique-width
which is well-quasi-ordered by the induced subgraph relation. This result pro-
vides the negative answer to a question asked by Daligault, Rao and Thomassé in
[3].

1 Introduction

Well-quasi-ordering (WQO) is a highly desirable property and frequently discov-
ered concept in mathematics and theoretical computer science [6, 11]. One of the
most remarkable recent results in this area is the proof of Wagner’s conjecture
stating that the set of all finite graphs is well-quasi-ordered by the minor rela-
tion [14]. This is, however, not the case for the induced subgraph relation, since
the set of cycles {Cn|n ≥ 3} forms an infinite antichain with respect to this
relation. On the other hand, the induced subgraph relation may become a well-
quasi-order when restricted to graphs in particular classes, such as cographs [4]
or k-letter graphs [13]. It is interesting to observe that in both examples we deal
with graphs of bounded clique-width, which is another property of great impor-
tance in mathematics and computer science. Moreover, the same is true for all
available examples of hereditary graph classes which are well-quasi-ordered by
the induced subgraph relation (see e.g. [9]). This raises an interesting question
whether the clique-width is always bounded for graphs in well-quasi-ordered
hereditary classes. This question was formally stated as an open problem (Prob-
lem 6) by Daligault, Rao and Thomassé in [3]. In the present paper, we an-
swer former question negatively by exhibiting a hereditary class of graphs of
unbounded clique-width which is well-quasi-ordered by the induced subgraph
relation.

Remark. The proposed result does not resolve Conjecture 5 of [3] asserting
that 2-well-quasi-orderability of a hereditary class implies its bounded cliquewidth.



Indeed, being 2-well-quasi-ordered is a stronger (more constrained) property
than just being well-quasi-ordered. Therefore, the existence of a well-quasi-
ordered class of unbounded cliquewidth says nothing about existence of such
a 2-well-quasi-ordered class. In fact, we believe that the class considered in this
paper is not 2-well-quasi-ordered.

Our result shows that it is generally non-trivial to determine whether a given
problem definable in Monadic Second Order (MSO) logic is polynomially solv-
able on a WQO class, since unboundedness of clique-width does not allow a
straightforward application of Courcelle et al.’s theorem [2]. This makes the
WQO classes an interesting object to study from the algorithmic perspective.

Graphs in the class introduced in this paper are dense (in particular, they
are P7-free). The density is a necessary condition, because an earlier result [1]
shows that for sparse graph classes (those where a large biclique is forbidden
as a subgraph) well quasi-orderability by induced subgraphs imply bounded
treewidth (and hence bounded clique-width). We believe that the result of [1]
can be strengthened by showing that well quasi-orderability by induced sub-
graphs in sparse classes implies bounded pathwidth (and hence linear clique-
width [7]). Our result proved in the present paper shows a stark contrast between
dense and sparse graphs in this context.

The rest of the paper is structured as follows. In Section 2 we define the class
of graphs studied in this paper and state the main result. The unboundedness
of clique-width and well-quasi-orderability by induced subgraphs is proved in
Sections 3 and 4, respectively. We use standard graph-theoretic notation as e.g.
in [5]. The notions of clique-width and well-quasi-ordering are introduced in
respective sections where they are actually used.

2 The main result

In this section, we define the class D, which is the main object of the paper, and
state the main result.

Let P be a path with vertex set {1, . . . , n} with two vertices i and j being
adjacent if and only if |i − j| = 1. For vertex i, the largest 2k that divides i is
called the power of i and is denoted by q(i). For example, q(5) = 1, q(6) =
2, q(8) = 8, q(12) = 4. Add edges to P that connect i and j whenever q(i) =
q(j). We denote the graph obtained in this way byDn. Figure 1 illustrates graph
D16.

Clearly, the edges E(Dn) \ E(P ) form a set of disjoint cliques and we call
them power cliques. If a power clique Q contains a vertex i with q(i) = 2k we
say that Q corresponds to 2k. We call P the body of Dn, the edges of E(P ) the
path edges, and the edges of E(Dn)\E(P ) the clique edges. The classD is the
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Fig. 1. Graph D16. To avoid shading the picture with many edges, cliques are represented as
rectangular boxes.

set of all graphs Dn and all their induced subgraphs. In what follows we prove
that

– clique-width of graphs in D is unbounded (Section 3),
– graphs in D are well-quasi-ordered by the induced subgraph relation (Sec-

tion 4).

These two facts imply the following conclusion, which is the main result of
the paper.

Theorem 1. Within the family of hereditary graph classes, there exist classes of
unbounded clique-width which are well-quasi-ordered by the induced subgraph
relation.

3 Clique-width is unbounded in D

The clique-width of a graph G, denoted cwd(G), is the minimum number of
labels needed to construct the graph by means of the four graph operations: cre-
ation of a new vertex, disjoint union of two labeled graphs, connecting vertices
with specified labels i and j, and renaming label i to label j. Every graph G
can be constructed by means of these four operations, and the process of the
construction can be described either by an algebraic expression or by a rooted
binary tree, whose leaves correspond to the vertices of G, the root corresponds
to G and the internal nodes correspond to the union operations.

Given a graphG and a subsetU ⊂ V (G), we denote byU the set V (G)−U .
We say that two vertices x, y ∈ U are U -similar if N(x) ∩ U = N(y) ∩ U , i.e.
if x and y have the same neighbourhood outside of U . Clearly, the U -similarity



is an equivalence relation and we denote the number of similarity classes of U
by µG(U). Also, we denote

µ(G) = min
1
3
n≤|U |≤ 2

3
n
µG(U),

where n = |V (G)|. Our proof of the main result of this section is based on the
following lemma.

Lemma 1. For any graph G, µ(G) ≤ cwd(G).

Proof. Let T be an optimal decomposition tree, t a node of T and Ut the set of
vertices of G that are leaves of the subtree of T rooted at t. It is known (see e.g.
[12]) that cwd(G) ≥ µG(Ut) for any node t of T . According to a well known
folklore result, the binary tree T has a node t such that 1

3 |V (G)| ≤ |Ut| ≤
2
3 |V (G)|, in which case µG(Ut) ≥ µ(G). Hence the lemma. ut

Let U ⊆ V (Dn), and let P be the body of Dn. We denote by PU the
subgraph of P induced by U . In other words, PU is obtained from Dn[U ] by
removing the clique edges. Since P is a path, PU is a graph every connected
component of which is a path.

Lemma 2. If PU has c+ 1 connected components, then µDn(U) ≥ c/2.

Proof. In the i-th connected component of PU , i ≤ c, we choose the last vertex
(listed along the path P ) and denote it by ui. The next vertex of P , denoted
ui, belongs to U . This creates a matching of size c with edges (ui, ui). Note
that none of (ui, uj) is a path edge for i < j. Among the chosen vertices of
U at least half have the same parity. Their respective matched vertices of U
have the opposite parity. Since the clique edges connect only the vertices of the
same parity, we conclude that at least c/2 vertices of U have pairwise different
neighbourhoods in U , i.e. µDn(U) ≥ c/2. ut

Note that if PU has c connected components, then PU has at least c − 1
connected components. Therefore, in light of Lemma 2, it remains to consider
the case where both PU and PU have a limited number of connected compo-
nents. Taking into account the definition of µ(G) and Lemma 1 we can assume
that both U and U are ‘large’ (between one third and two thrid of |V (G)|), and
hence each of PU and PU has a ‘large’ connected component. In order to ad-
dress this case we use the following lemma which states that a large number of
power cliques intersecting both U and U implies a large value of µDn(U).

Lemma 3. If there exist c different power cliques Q1, . . . , Qc each of which



(1) corresponds to a power of 2 greater than 1 and
(2) intersects both U and U

then µDn(U) ≥ c.

Proof. Let ui and ui be some vertices in Qi, which belong to U and U , respec-
tively. Since all the vertices in M = {u1, u1, . . . , uc, uc} are even and two even
vertices are adjacent in Dn if and only if they belong to the same power clique,
M induces a matching inDn with edges (ui, ui), i = 1, . . . , c. This implies that
u1, . . . , uc have pairwise different neighbourhoods in U , that is µDn(U) ≥ c.

ut

The only remaining ingredient to prove the main result of this section is the
following lemma.

Lemma 4. Let c be a constant and P ′ a subpath of P of length at least 2c+1.
Then P ′ intersects each of the power cliques corresponding to 21, . . . , 2c.

Proof. The statement easily follows from the fact that for a fixed k vertices v
with q(v) = 2k are of the form v = 2k(2p + 1). That is, they occur in P with
period 2k+1. ut

Now we are ready to prove the main result of this section.

Theorem 2. Let n and c be natural numbers such that n ≥ 3((2c+ 1)(2c+1 −
1) + 1). Then cwd(Dn) ≥ c and hence the clique-width of graphs in D is
unbounded.

Proof. Let U be an arbitrary subset of vertices of Dn, such that n
3 ≤ |U | ≤

2n
3 .

Note that the choice of U implies that the cardinalities of both U and U are at
least n

3 ≥ (2c+ 1)(2c+1 − 1) + 1.
IfPU has at least 2c+1 connected components, then by Lemma 2 µDn(U) ≥

c. Otherwise PU has less than 2c + 1 connected components and PU has less
than 2c + 2 connected components. By the pigeonhole principle, both graphs
have connected components of size at least 2c+1. Clearly, these connected com-
ponents are disjoint subpaths of P . By Lemma 4, the power cliques correspond-
ing to 21, . . . , 2c intersect both U and U , and hence, by Lemma 3, µDn(U) ≥ c.

Since U has been chosen arbitrarily, we conclude that µ(Dn) ≥ c, and
therefore, by Lemma 1, cwd(Dn) ≥ c, as required. ut



4 D is WQO by induced subgraphs

A binary relation ≤ on a set W is a quasi-order (also known as preorder) if it
is reflexive and transitive. Two elements x, y ∈ W are said to be comparable
with respect to ≤ if either x ≤ y or y ≤ x. Otherwise, x and y are incom-
parable. A set of pairwise comparable elements is called a chain and a set of
pairwise incomparable elements an antichain. A quasi-order (W,≤) is a well-
quasi-order (WQO) if it contains neither infinite strictly decreasing chains nor
infinite antichains.

In this section, we show that graphs in D are well-quasi-ordered by the in-
duced subgraph relation. In the proof we apply the celebrated Higman’s lemma
[8] which can be stated as follows.

For an arbitrary set M , let M∗ be the set of all finite sequences of elements
of M . Any quasi-order ≤ on M defines a quasi-order � on M∗ as follows:
(a1, . . . , am) � (b1, . . . , bn) if and only if there is an order-preserving injection
f : {a1, . . . , am} → {b1, . . . , bn} with ai ≤ f(ai) for each i = 1, . . . ,m.

Lemma 5. [8] If (M,≤) is a WQO, then (M∗,�) is a WQO.

Obviously, the induced subgraph relation contains no infinite strictly de-
creasing chains. Therefore, to prove that this relation is a WQO on D we need
to show that for each infinite sequence G = G1, G2 . . . of graphs in D there are
i, j such that Gi is an induced subgraph of Gj .

We recall that V (Dn) is the set of integers 1, 2, . . . , n listed along the body
of Dn and any graph in D is an induced subgraph of Dn with some n. Among
all possible sets of integers inducing a graph (isomorphic to) G ∈ D we pick
one (arbitrarily) and identify V (G) with this set.

Any set of consecutive integers will be called an interval and any subgraph
of Dn induced by an interval will be called a factor. The number of elements in
an interval inducing a factor is called the length of the factor. If a graph G ∈ D
is not a factor, its vertex set can be split into maximal intervals and we call the
subgraphs of G induced by these intervals factor-components of G. The set of
all factor-components of G will be denoted F(G).

Lemma 6. If G contains graphs with arbitrarily long factor-components, then
G is not an antichain.

Proof. Pick an arbitrary Gi and let n be the smallest number such that Gi is an
induced subgraph ofDn. By our assumption, there isGj with factor-component
F of length at least 5n. Let us show that Dn is an induced subgraph of Gj . By
the transitivity of the induced subgraph relation, this will imply that Gi is an
induced subgraph of Gj .



Let 2k be the smallest power of 2 larger than n. Clearly, 2k+1 ≤ 4n. Hence,
by Lemma 4, there is a vertex y among the first 4n vertices of F with q(y) = 2k.
Let F ′ be the factor induced by the vertices of F starting at y + 1. Since F is
of length at least 5n and y is among the first 4n vertices of F , the length of F ′

is at least n. Thus we can define an injective function f : V (Dn) → V (F ′) as
follows: f(z) = y + z for 1 ≤ z ≤ n. We claim that f is an induced subgraph
isomorphism from Dn to a subgraph of Gj . Clearly, f(z + 1) = f(z) + 1 for
1 ≤ z < n, hence it remains to verify that adjacencies and non-adjacencies are
preserved for vertices z1, z2 of Dn such that z2 > z1 + 1. Clearly, in this case
z1 and z2 are adjacent if and only if q(z1) = q(z2). Moreover, since f(z2) >
f(z1) + 1, f(z2) and f(z1) are adjacent if and only if q(f(z1)) = q(f(z2)).
Below we prove that q(f(z)) = q(z) for 1 ≤ z ≤ n and hence q(z1) = q(z2) if
and only if q(f(z1)) = q(f(z2)), implying the lemma.

Indeed, f(z) = y + z = 2kp + 2k1p1, where 2k1 = q(z) and p, p1 are
odd numbers. Since 2k1 ≤ n < 2k, k1 < k and hence y + z can be written as
2k1(2k−k1p + p1). Since k > k1, 2k−k1 is even and hence 2k−k1p + p1 is odd.
Consequently, q(y + z) = 2k1 , as required. ut

From now on, we assume the length of factor-components of graphs in G is
bounded by some constant c = c(G). In what follows we prove that in this case
G is not an antichain as well.

Let F be a factor. We say that a vertex u of F is maximal if q(u) ≥ q(v) for
each vertex v of F different from u.

Lemma 7. Every factor F of Dn contains precisely one maximal vertex.

Proof. Suppose that F contains two maximal vertices 2kp and 2k(p + r) for
some odd number p and even number r ≥ 2. Then F also contains the vertex
2k(p + 1). Clearly p + 1 is an even number and hence q(2k(p + 1)) ≥ 2k+1,
which contradicts the maximality of 2k. ut

In light of Lemma 7, we denote the unique maximal vertex of F by m(F ).
Also, let s(F ) be the smallest vertex of F .

Now we define two equivalence relations on the set of factor graphs as fol-
lows. We say that two factors F1 and F2 are

– t-equivalent if they are of the same length and m(F1)− s(F1) = m(F2)−
s(F2),

– `-equivalent if q(m(F1)) = q(m(F2)).



We denote by Li the `-equivalence class such that q(m(F )) = 2i for every
factor F in this class. We also order the t-equivalence classes (arbitrarily) and
denote by Tj the j-th class in this order.

Lemma 8. Let F be a factor of length at most c. Let v be a vertex of F different
from its maximal vertex m = m(F ). Then q(v) = q(|m−v|) and, in particular,
q(v) < c.

Proof. We can assume without loss of generality that v > m. Let k1, p1, k2, p2
be such that m = 2k1p1 and v −m = 2k2p2, with p1, p2 being odd numbers.
Observe that k2 < k1. Indeed, otherwise v = 2k1p1 + 2k2p2 = 2k1(p1 +
2k2−k1p2), where p1 + 2k2−k1p2 is a natural number. Therefore, q(v) ≥ 2k1 =
q(m) in contradiction either to the maximality of m or to Lemma 7.

Consequently, v = 2k1p1+2k2p2 = 2k2(2k1−k2p1+p2), where 2k1−k2p1+
p2 is an odd number because of 2k1−k2p1 being even. Hence, q(v) = 2k2 =
q(v −m).

Finally, since the length of F is at most c, we conclude that v −m < c, and
therefore q(v) = q(v −m) < c. ut

Corollary 1 Let F be a factor of length at most c. Let m be a vertex of F with
q(m) ≥ c. Then m is the maximal vertex of F .

Corollary 2 Let F1, F2 be two t-equivalent factors. Then there exists an iso-
morphism f from F1 to F2 such that:

(a) f(m(F1)) = m(F2);
(b) q(f(v)) = q(v) for all v ∈ V (F1) except possibly for m(F1).

Proof. We claim that the function f that maps the i-th vertex of factor F1 (start-
ing from the smallest) to the i-th vertex of factor F2 is the desired isomorphism.
Indeed, property (a) follows from the condition that the factors are t-equivalent.
Now property (a) together with Lemma 8 implies property (b). Finally, since ad-
jacency between vertices in a factor is completely determined by their adjacency
in the body and by their powers, we conclude that f is, in fact, isomorphism.

ut

For a graph G ∈ D, we denote by Gi,j the set of factor-components of G
in Li ∩ Tj , and define a binary relation ≤ on graphs of D as follows: G ≤ H
if and only if |Gi,j | ≤ |Hi,j | for all i and j (clearly in this definition one can be
restricted to non-empty sets Gi,j).

Finally, for a constant c = c(G) we slightly modify the definition of≤ to≤c

as follows. We say that a mapping h : N→ N is c-preserving if it is injective and



h(i) = i for all i ≤ blog cc. Then G ≤c H if and only if there is a c-preserving
mapping h such that |Gi,j | ≤ |Hh(i),j | for all i and j.

The importance of the binary relation ≤c is due to the following lemma.

Lemma 9. Suppose the length of factor-components of G and H is bounded by
c and G ≤c H , then G is an induced subgraph of H .

Proof. We say that a factor F is low-powered if F ∈ Li, for some i ≤ blog cc,
i.e. q(m(F )) ≤ c.

It can be easily checked that the definition of ≤c implies the existence of an
injective function φ : F(G)→ F(H) that possesses the following properties:

(1) φ maps each of the factors in F(G) to a t-equivalent factor in F(H);
(2) F ∈ F(G) is a low-powered factor if and only if φ(F ) is;
(3) φ preserves power of the maximal vertex for each of the low-powered fac-

tors, i.e. q(m(F )) = q(m(φ(F ))) for every low-powered factor F ∈ F(G);
(4) for any two factors F1, F2 ∈ F(G), q(m(F1)) = q(m(F2)) if and only if

q(m(φ(F1))) = q(m(φ(F2))).

To show thatG is an induced subgraph ofH we define a witnessing function
that maps vertices of a factor F ∈ F(G) to vertices of φ(F ) ∈ F(H) according
to an isomorphism described in Corollary 2. This mapping guarantees that a
factor F of G is isomorphic to the factor φ(F ) of H . Therefore it remains to
check that adjacency relation between vertices in different factors is preserved
under the defined mapping.

Note that adjacency between two vertices in different factors is determined
entirely by powers of these vertices. Moreover, Corollary 2 and property (3)
of φ imply that our mapping preserves powers of all vertices except possibly
maximal vertices of power more that c. Therefore in order to complete the proof
we need only to make sure that in graph G a maximal vertex m of a factor F
with q(m) > c is adjacent to a vertex v in a factor different from F if and only
if the corresponding images of m and v are adjacent in H .

Taking into account Corollary 1 we derive that a maximal vertex with q(m) >
c is adjacent to a vertex v in a different factor if and only if v is maximal and
q(m) = q(v). Now the desired conclusion follows from Corollary 2 and prop-
erties (2) and (4) of function φ. ut

Lemma 10. The set of graphs in D in which factor-components have size at
most c is well-quasi-ordered by the ≤c relation.

Proof. We associate with each graph G ∈ D containing no factor-component
of size larger than c a matrix MG = m(i, j) with m(i, j) = |Gi,j |.



Each row of this matrix corresponds to an `-equivalence class and we delete
any row corresponding to Li with i > blog cc which is empty (contains only
0s). This leaves a finite amount of rows (since G is finite).

Each column of MG corresponds to a t-equivalence class and we delete all
columns corresponding to t-equivalence classes containing factors of size larger
than c (none of these classes has a factor-component ofG). This leaves precisely(
c+1
2

)
columns in MG.

We define the relation �c on the setM of matrices constructed in this way
as follows. For M1,M2 ∈ M we say that M1 �c M2 if and only if there is a
c-preserving mapping β such that m1(i, j) ≤ m2(β(i), j) for all i and j.

It is not difficult to see that if MG1 �c MG2 , then G1 ≤c G2. Therefore,
if �c is a well-quasi-order, then ≤c is a well-quasi-order too. The well-quasi-
orderability of matrices follows by repeated applications of Higman’s lemma.
First, we split each matrix M ∈ M into two sub-matrices M ′ and M ′′ so that
M ′ contains the first blog cc rows and M ′′ contains the remaining rows. Let
M′ = {M ′|M ∈M} andM′′ = {M ′′|M ∈M}

To see that the set of matricesM′ is WQO we apply Higman’s lemma twice.
First, the set of rows is WQO since each of them is a finite word over the alphabet
of non-negative integers (which is WQO by the ordinary arithmetic ≤ relation).
Second, the set of matrices is WQO since each of them is a finite word over the
alphabet of rows. Similarly, the set of matricesM′′ is WQO.

Note that in both applications of Lemma 5 toM′ and in the first application
toM′′, we considered sets of sequences of the same length. Hence, in this, case,
Higman’s lemma in fact implies the existence of two sequences one of them is
coordinate-wise smaller than the other, exactly what we need in these cases.

Finally, the set of matricesM is WQO since each of them is a word of two
letters over the alphabetM′ ∪M′′ which is WQO. ut

Combining Lemmas 6 and 10, we obtain the main result of this section.

Theorem 3. D is WQO by the induced subgraph relation.
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