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Abstract. The Deep Web consists of data accessible through HTML
forms but not as web pages; usually such data are modelled as relations
that can be queried only by operating a selection on certain attributes
— such restrictions are called access limitations. In this paper we illus-
trate the problem of Boolean conjunctive query answering under access
limitations; we define and motivate the problem’s two main cases, we
provide some preliminary results on its computational complexity and
we suggest some research directions.

1 Introduction

Data Exchange and Integration [9, 12, 17] are core problems in data management,
especially in the case where heterogeneous data sources, possibly on the Web,
are integrated as a single database. In this scenario, it is often the case that
data sources impose access limitations, i.e., they require that the query that is
executed on them has a special form. In particular, in the relational case, certain
(fixed) attributes are required to be selected, i.e., associated to a constant. This
is true, for instance, when the data source is accessible through a web form, that
requires some fields to be filled in, or in some legacy databases.

The presence of access limitations complicates query processing, as they pre-
vent data to be queried freely. Therefore, limitations need to be circumvented
with recursive query plans [16, 14], expressible in Datalog. The following example
is taken from [4].

Example 1. Consider the following relational sources: r1(Title,City ,Artist),
representing information about concerts, with song title, city of perfor-
mance, and artist name, and requiring the second attribute to be selected;
r2(Artist ,Nation,City), representing name, nationality and city of birth of
artists, and requiring the first attribute to be selected. In this case, given the
conjunctive query q(A) ← r2(A, italian,modena) asking for names of Italian
artists born in Modena, we notice that q cannot be immediately evaluated, since
r2 requires the first attribute to be bound to a constant (selected). However,



the two attributes named City in r1 and r2 both represent city names, and sim-
ilarly the attributes named Artist represent artist names1. In such a case, we
can use names of artists extracted from r1 to access r2 and thus extract tuples
that may contribute to the answer. More precisely, we start from the constant
modena present in the query, and access r1; this will return tuples with new
artist names; such constants (artist names) can be used to access r2. In turn,
new tuples from r2 may provide new constants representing city names, that can
be used to access r1, and so on. Once this recursive process has terminated, we
can evaluate the query on the retrieved tuples.

The issue of processing queries under access limitations has been widely in-
vestigated in the literature [1, 16, 14, 13, 10, 8]; in particular, [10] considers the
optimization of non-recursive plans, [8] addresses the problem in the case of
query answering using views, and [16] presents a polynomial-time algorithm to
decide whether a CQ can be answered in the presence of access limitations.
Recursive query plans were introduced in [15], where the query containment
problem is addressed. Several works [5, 2, 3] deal with reducing (or optimising)
query processing under access limitations, both dynamically (at query process-
ing time) and statically (at query plan generation time) — see [1] for a survey
of the related work on this.

In this paper we address the problem of Boolean conjunctive query (BCQ)
containment in the presence of access limitations, and provide some results on
its complexity. In particular:

1. We state and motivate two variants of the BCQ answering (decision) problem
in the case of access limitations: the restricted case, where relations are to be
accessed only according to their limitations, and the restricted case, where
relations can be freely accessed.

2. We show that the introduction of access limitations does not increase the
complexity of BCQ answering if the predicate arities are bounded.

3. We show that in the unrestricted case, even in the case of unbounded arities,
the complexity of BCQ answering is the same as in the absence of limitations.

4. For the unrestricted case, we have devised a backward-style algorithm for
determining whether a fact of the database is obtainable by querying the
data according to the access limitations. We argue that this algorithm is, in
practice, more efficient than the obvious forward-style one.

5. We argue that our preliminary results could lead us to extend the results
on tractable classes of BCQs in the absence of limitations to our case with
access limitations.

2 Preliminaries

In this section we present a formalisation of the problem of answering queries
under access limitations.
1 This is captured by the notion of abstract domain (see Section 2), which we do not
take into account in this paper.
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We consider relations as sets of facts whose arguments (a.k.a. attributes)
are values belonging to an infinite domain, which we denote with ∆. In some
cases (see e.g. [5]) some more specific domains, called abstract domains, are
associated to attributes; these attributes are used to distinguish, for instance,
strings representing names from strings representing car registration numbers.
In this paper, however, this distinction is not relevant, and we assume that each
attribute can have values in ∆.

Access limitations on a relation are constraints that impose that certain
attributes must be selected (bound to a constant) for the relation to be accessed.
More formally, a schema with access limitations is a pair 〈R, Λ〉, where

(i) R is a set of relational predicates (i.e. a relational schema), each with an
associated arity (number of arguments); a predicate r of arity n is denoted
r/n; its j-th argument (or position, or attribute), with 1 ≤ j ≤ n, is denoted
by r[j].

(ii) Λ is a set of access limitations that specifies, for every attribute of every
relational predicate, whether it is an input or an output attribute; in order
to access a relation, all input attributes must be selected2.

For convenience of notation, we indicate the access limitations of each relation
as a sequence, of ‘i’ and ‘o’ symbols written as a superscript in the signature
of the relation; an ‘i’ (resp., ‘o’) indicates that the corresponding argument is
an input (resp., output) argument. A signature has therefore the form rΛr/n,
where Λr the access limitation on r. We sometimes indicate a sequence of terms
(i.e., variables or constants) t1, . . . , tn as t and its length n as |t|. An atom a is
a formula of the form a = r(t1, . . . , tn); if all t1, . . . , tn are constants of ∆, a is
said to be ground ; a ground atom is also called fact. The instance of a predicate
r ∈ R is a set of (ground) facts of the form r(c1, . . . , cn) such that ci ∈ ∆ for
all i such that 1 ≤ i ≤ n. A database instance, or simply database, of a schema
R is the union of the instances of all predicates r in R. Given a database D,
the instance of r in D is denoted r(D); it is constituted of all facts of D having
r as predicate. Given the set of atoms S, we denote with dom(S) the active
domain of S, that is, the set of all values appearing as arguments of atoms in
S. In the following, we shall implicitly assume that we are considering a schema
S = 〈R, Λ〉, if not otherwise stated.

A conjunctive query (CQ) q of arity n over a schema S is written in the form
q(X) ← conj (X,Y ), where |X| = n, q(X) is called the head of q, conj (X,Y)
is called the body of q and is a conjunction of atoms involving the variables in
X and Y and possibly some constants, and the predicate symbols of the atoms
are in R; q(X) is denoted as head(q), the set of atoms in the body is denoted as
body(q), and |q| denotes |body(q)| (number of atoms in q); notice that the head
predicate q is not in R. The set of constants appearing in q is denoted const(q),
the set of variables var(q).

2 In general, there could be more than one annotation for each predicate, that is,
more than one way of accessing the corresponding relation. However, in this paper
we assume there is exactly one access limitation (or pattern) per predicate. Our
results are easily extended to the general case.
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ρ1 : q() ← r̂(X,Y ), ŝ(Z, Y )
ρ2 : r̂(X,Y ) ← dom(X), r(X,Y )
ρ3 : ŝ(X,Y ) ← dom(X), s(X,Y )
ρ4 : dom(X) ← ŝ(X,Y )

ρ5 : dom(Y ) ← ŝ(X,Y )
ρ6 : dom(X) ← r̂(X,Y )
ρ7 : dom(Y ) ← r̂(X,Y )
ρ8 : dom(a)

Fig. 1. Datalog program for Example 2

In the following we shall extensively use the notion of mapping from terms
to terms, and typically we will map variables to terms. The term resulting from
the application of such a mapping µ to a term t is written µ(t); note that µ also
induces a mapping from an atom f = r(t1, . . . , tn) to another atom indicated
µ(f) = r(µ(t1), . . . , µ(tn)), and from a set of atoms S = {f1, . . . , fm} to another
set of atoms indicated µ(S) = {µ(f1), . . . , µ(fm)}. An homomorphism µ from
a set of atoms S1 to another set of atoms S2 is a mapping that sends every
constant into itself and all atoms of S1 into atoms of S2, that is, µ(S1) ⊆ S2.

Given a database D, the answer q(D) to a CQ q on D is the set of tuples
〈c〉 of constants, with |c| = |head(q)|, such that there is an homomorphism that
sends body(q) to atoms (facts) of D and head(q) to q(c). A a Boolean CQ (BCQ)
is a CQ whose head predicate has arity zero. A BCQ is often represented, for
convenience, as the set of its body atoms. A BCQ q has positive answer on a
database D if there exists a homomorphism µ from body(q) to D (or better from
q to D, being q represented as a set of atoms). In this case we write D |= q. In
the following we will concentrate, w.l.o.g., on BCQs only.

In the presence of access limitations on the sources, queries cannot be usu-
ally evaluated as in the traditional case, as we show in Example 2. Given a
query, an algorithm exists (see, e.g., [5]) that retrieves, starting from a set of
initial constants of ∆, all the obtainable facts in a database, according to the
access limitations. The query is then evaluated on the obtainable facts, as all
non-obtainable ones cannot contribute to the answer. Roughly speaking, the
computation of the obtainable facts starts from an initial sets of constants, that
must include those appearing in the query; with such constants, we access all the
relations we can, according to their access limitations. The new obtained facts
(if any exists) contain other constants, that are used again to access relations in
all possible ways, and the process goes on until no new facts are obtained.

Definition 1. Given a BCQ q posed over a schema S = 〈R, Λ〉, a set of con-
stants I ⊆ ∆, and a database D for R, we denote the set of (Λ, I)-obtainable
tuples of D under Λ and I as ρΛ,I(D). We say that q has positive answer on D
under Λ and I if ρΛ,I(D) |= q. In this case, we write D |=Λ,I q.

Example 2. Consider a schema with predicates rio/2 and sio/2, a set of initial
constants I = {a}, and the BCQ q = {r(X,Y ), s(Z, Y )}. The Datalog program
Πq for q is shown in Figure 1. The query is rewritten over the cache relations
r̂, ŝ (rule ρ1) defined in the cache rules ρ2 and ρ3; the cache relations contain
the obtainable facts. Rules ρ2 and ρ3 also ensure that the facts that are stored
in the caches are retrieved from the sources according to the access limitations
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— in our case, we access r and s only if we have a constant in dom (relation
that containts all extracted or initial constants) with which to “bind” (select)
the input argument. Rules ρ4 − ρ7 put all extracted constants in dom.

Notice that if Πq entails a fact a in a cache relation (r̂(D) or ŝ(D), in Ex-
ample 2 above), then a is in ρΛ,I(D) or, equivalently, a is (Λ, I)-obtainable.

Example 3. Consider again the schema of Example 2, where I = {a}, and the
database D = {r(a, b), r(c, d), s(b, c), s(e, a)}. In computing ρΛ,I(D) we start
from a and obtain r(a, b), then with b we obtain s(b, c), and finally with c we
obtain r(c, d). The fact s(e, a) is not (Λ, I)-obtainable.

3 The Query Answering Problem

In this section we formally define the problem of answering BCQs on databases
under access limitations, given a set of initial constants. We identify two variants
of such problem, depending on the setting.

Definition 2. Given a database D, a set of initial constants I ⊆ ∆, a set Λ of
access limitations and a BCQ q, the problem of answering q on D under Λ and I
amounts to determine whether D |=Λ,I q. We have two variants of the problem,
which we define below.

(i) BCQ answering under access limitations, unrestricted case: this is the
problem of determining whether D |=Λ,I q, while having arbitrary access to
the relations of D.

(ii) BCQ answering under access limitations, restricted case: this is the prob-
lem of determining whether D |=Λ,I q, while having access to the relations
of D only according to Λ.

Notice that the problem in the restricted case is the “classic” case [5, 4], where
we are computing the answers to a BCQ having only limited access to the data,
according to Λ. The BCQ answering problem in the unrestricted case is also rele-
vant in real-world scenarios; we now explain why. Assume that access limitations
are enforced by an organisation in order to limit access to data by external users
(e.g., those outside the organisation). The organisation has arbitrary access to
the data, and it is interested in determining what external users, whose access
to the data is limited by Λ, can retrieve by posing certain queries; in order to de-
termine this, of course, an algorithm will have the advantage of freely accessing
the data, regardless of access limitations. In the next section we shall see how
these two settings affect the complexity of BCQ answering.

4 Complexity

In this section we illustrate some preliminary results about the computational
complexity of BCQ answering under access limitations. We consider instances
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of the BCQ answering problem of the form 〈D,Λ, I, q〉, where D is a database
for R, Λ the access limitations on R (S = 〈R, Λ〉 is implicit), I ⊆ ∆ a set
of initial constants, and q a BCQ. We now present some preliminary results,
first in the restricted case, and then in the unrestricted case. We will see that,
not surprisingly, the latter case allows for more efficient BCQ processing. In
particular, let W be the maximum arity of predicates in R. In the restricted
case, to check whether an atom is (Λ, I)-obtainable requires time exponential in
W , while in the unrestricted case the same check can be executed in polynomial
time.

4.1 Restricted Case

In the restricted case, one can only explore ρΛ,I(D) in a “blind” fashion, trying
all possible accesses to the relations — see Example 2. From the considerations
in Example 2 and [7], we obtain the following.

Proposition 1. Given an instance a database D for a schema R with access
limitations Λ, ρΛ,I(D) can be computed in time polynomial in |D| and exponen-
tial in W .

As an immediate corollary, we obtain that, if W is fixed, the complexity of
BCQ answering is not altered by the presence of access limitations. This holds
because we can simply compute ρΛ,I(D) in polynomial time and then evaluate
q on it. Alternatively, we can guess an homomorphism µ : var(q) → dom(D),
compute ρΛ,I(D), and then check whether µ(q) ⊆ ρΛ,I(D).

Corollary 1. BCQ answering under access limitations in the restricted case,
for fixed W , is np-complete.

Notice that in the restricted case there is no hope of checking (determinis-
tically) whether a fact a is in ρΛ,I(D) in time less than exponential in W , as
shown by the following example.

Example 4. Consider the schema R = {ri···i/k} (with k input arguments and
no output arguments), the database D = {r(a1, . . . , ak)}, and the set I =
{c1, . . . , cm} ⊇ {a1, . . . , ak+1}. In order to determine whether a = r(a1, . . . , ak)
is (Λ, I)-obtainable (in fact, it is), we need to try to access the relation r(D)
with all possible k-tuples of constants of I; in the worst case, this will necessar-
ily require mk accesses (queries) to r(D). As a consequence, every deterministic
BCQ answering algorithm, even for atomic BCQs, will require time exponential
in W ; consider, for instance, the query q = {r(X1, . . . , Xk+1)}.

4.2 Unrestricted Case

We now come to BCQ answering in the unrestricted case. We first show that
ρΛ,I(D) can be computed in time polynomial in |D| and W . This can be shown
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by exhibiting an algorithm that computes all (Λ, I)-obtainable facts similarly to
the restricted case, but with the following difference. Consider again Example 4,
but with a different D. Instead of trying all possible k-tuples of constants of
I, the algorithm gets all facts of r(D) and considers as obtainable those whose
input arguments are in {c1, . . . , cm}. The constants in the output arguments of
the so obtained facts are then added to {c1, . . . , cm} and the new set is then
used again to discover new obtainable facts, and so on.

Corollary 2. BCQ answering under access limitations in the restricted case is
np-complete.

The above technique, like the one for the restricted case, has the disadvan-
tage of “blindly” trying to reach all possible obtainable facts. Indeed, a smarter
technique exists, which proceeds backwards from a fact r to determine if it is
(Λ, I)-obtainable. The algorithm constructs a graph whose nodes are labelled
with facts of D, and the children of each node labelled with a are those atoms of
D that could provide constants to retrieve a. The graph is then visited to check
whether there actually is a “proof” of the (Λ, I)-obtainability of r.

Example 5. Assume a schema R = {riio1 /3, rioo2 /3}, and that we have the atom
r = r1(a, b, c) labelling a node β. To determine the children of β, the following
queries are executed on the database D, using C = {a, b} (we use the head
predicate q):

q(X,Y, a)← r1(X,Y, a)
q(X,Y, b)← r1(X,Y, b)
q(X, a, Z)← r2(X, a, Z)

q(X, b, Z)← r2(X, b, Z)
q(X,Y, a)← r2(X,Y, a)
q(X,Y, b)← r2(X,Y, b)

Each obtained tuple (without repetitions), will label a successor of β.

5 Discussion

We have presented some preliminary results on the complexity BCQ answering
under access limitations. First, we have identified and motivated two principal
settings: the restricted case, where all relations are accessible only according
to the access limitations, and the unrestricted one, where relations are freely
accessible. We have shown that access limitations do not increase the complexity
of BCQ answering, provided that in the restricted case the arity of the predicates
is bounded. We have shown that in the unrestricted case we can check whether a
fact of the database is obtainable under limitations ((Λ, I)-obtainable) by means
of an algorithm that performs a backward search for a “proof” that the fact can
be obtained.

Future work and directions. We argue that the aforementioned backward algo-
rithm is more efficient, in real world scenarios, than the simple forward one, as
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the latter proceeds “blindly” in a breadth-first fashion. We are setting up ex-
periments to validate our claim. We suggest that the backward algorithm might
be “plugged” into known algorithms for CQ answering in the case of tractable
queries — possibly acyclic, bounded-treewidth [6] or bounded-hypertree-width
queries [11]. This will allow us to study tractable cases of BCQ answering in
the presence of access limitations, verifying whether the introduction of such
limitations increases the computational complexity of the problem.
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