
Almost 2-SAT Is Fixed-Parameter Tractable
(Extended Abstract)

Igor Razgon and Barry O’Sullivan

Cork Constraint Computation Centre
Computer Science Department, University College Cork, Ireland

{i.razgon,b.osullivan}@cs.ucc.ie

Abstract. We consider the following problem. Given a 2-cnf formula,
is it possible to remove at most k clauses so that the resulting 2-cnf

formula is satisfiable? This problem is known to different research com-
munities in theoretical computer science under the names Almost 2-SAT,
All-but-k 2-SAT, 2-cnf deletion, and 2-SAT deletion. The status of the
fixed-parameter tractability of this problem is a long-standing open ques-
tion in the area of parameterized complexity. We resolve this open ques-
tion by proposing an algorithm that solves this problem in O(15k ∗k∗m3)
time showing that this problem is fixed-parameter tractable.

1 Introduction

We consider the following problem. Given a 2-cnf formula, is it possible to re-
move at most k clauses so that the resulting 2-cnf formula is satisfiable? This
problem is known to different research communities in theoretical computer sci-
ence under the names Almost 2-SAT, All-but-k 2-SAT, 2-cnf deletion, and 2-
SAT deletion. The status of the fixed-parameter tractability of this problem is a
long-standing open question in the area of parameterized complexity. The ques-
tion regarding the fixed-parameter tractability of this problem was first raised in
1997 by Mahajan and Raman [11,12]. This question has been posed in the book
of Niedermeier [15], being referred as one of central challenges for parameterized
algorithms design. Finally, in July 2007, this question was included by Fellows in
the list of open problems of the Dagstuhl seminar on Parameterized Complexity
[5]. In this paper we resolve this open question by proposing an algorithm that
solves this problem in O(15k ∗ k ∗ m3) time. Thus we show that this problem is
fixed-parameter tractable (fpt).

Regarding the name of this problem, we call Almost 2-SAT (2-asat) the op-
timization problem whose output is the smallest subset of clauses that have to
be removed from the given 2-cnf formula so that the resulting formula is satis-
fiable. The parameterized 2-asat problem gets as additional input a parameter
k, and the corresponding decision problem is to determine whether at most k
clauses can be removed so that the resulting formula becomes satisfiable. The
algorithm proposed in this paper solves the parameterized 2-asat problem.

Overview of the Algorithm. We define a variation of the 2-asat problem
called the Annotated 2-asat problem with a single literal (2-aslasat). The

L. Aceto et al. (Eds.): ICALP 2008, Part I, LNCS 5125, pp. 551–562, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

552 I. Razgon and B. O’Sullivan

input of this problem is a triple (F, L, l), where F is a 2-cnf formula, L is a
set of literals such that F is satisfiable with respect to L (i.e. F ∧

∧
l′∈L l′ is

satisfiable), l is a single literal. The task is to find a smallest subset of clauses of
F such that after their removal the resulting formula is satisfiable with respect to
(L∪{l}). The description of the algorithm for the parameterized 2-asat problem
is divided into two parts. In the first, and most important part we provide an
O(5k ∗k∗m2) time algorithm that solves the parameterized 2-aslasat problem,
where the parameter k is the maximum number of clauses to be removed and m
is the number of clauses of F . In the second part we show that the parameterized
2-asat problem can be solved by O(3k ∗m) applications of the algorithm solving
the parameterized 2-aslasat problem. The resulting runtime follows from the
product of the last two complexity expressions. The transformation of the 2-

asat problem into the 2-aslasat problem is based on iterative compression
and can be seen as an adaptation of the method employed in [8] in order to solve
the graph bipartization problem. In the following we overview the first part.

We introduce a polynomially computable lower bound on the solution size of
the 2-aslasat problem for input (F, L, l). Then we prove that if a literal l∗ is
neutral, i.e. the lower bound on the solution size for (F, L ∪ {l∗}, l) is the same
as for (F, L, l), then the solution size for (F, L∪{l∗}, l) and (F, L, l) is the same.
This theorem allows us to introduce an algorithm that selects a clause C of F
and applies the following branching rule. If C includes a neutral literal l∗ then
the algorithm applies itself recursively to (F, L∪{l∗}, l) without any branching. If
not, the algorithm produces at most three branches. On one of them it removes
C from F and decreases the parameter. On each of the other branches the
algorithm adds one of the literals of C to L and applies itself recursively without
changing the size of the parameter. The search tree produced by the algorithm is
bounded because on each branch either the parameter is decreased or the lower
bound on the solution size is increased (because the literals of the selected clause
are not neutral). Thus on each branch the gap between the parameter and the
lower bound of the solution size is decreased which ensures that the size of the
search tree exponentially depends only on k and not on the size of F .

The lower bound mentioned in the previous paragraph is obtained by rep-
resenting the 2-aslasat as a separation problem. In particular, we define the
notion of a walk of a 2-cnf formula and show that, given an instance (F, L, l) of
the 2-aslasat problem, F is insatisfiable with respect to L ∪ {l} if and only if
there is a walk from ¬L (i.e. from the set of negations of the literals of L) to ¬l or
a walk from ¬l to ¬l. Thus the 2-aslasat problem can be viewed as a problem
of finding the smallest set of clauses whose removal breaks all these walks. The
considered lower bound on the solution size is the smallest number of clauses
separating ¬L from ¬l. We show that the size of this separator equals the largest
number of clause-disjoint paths (i.e. walks without repeated clauses) from ¬L to
¬l and that it can be computed in a polynomial time by a Ford-Fulkerson-like
procedure. For this proof it is essential that F is satisfiable with respect to L.

Related Work. As said above, the parameterized 2-asat problem has been
introduced in [11]. In [10], this problem was shown to be a generalization of the

Almost 2-SAT Is Fixed-Parameter Tractable 553

parameterized graph bipartization problem, which was also an open problem at
that time. The latter problem was resolved in [16]. The additional contribution
of [16] was introducing a method of iterative compression that has had a con-
siderable impact on the design of parameterized algorithms. The most recent
algorithms based on this method are currently the best one for the undirected
Feedback Vertex Set [1] and the first parameterized algorithm for the famous
Directed Feedback Vertex Set problem [3]. For earlier results based on iterative
compression, we refer the reader to a survey article [9].

The study of parameterized graph separation problems was initiated in [13].
The technique introduced by the author allowed him to design fixed-parameter
algorithms for the multiterminal cut problem and for a more general multi-
cut problem. The latter assumed that the number of pairs of terminals to be
separated was also a parameter. The latter result was extended in [7] where
fixed-parameter algorithms for multicut problems on several classes of graphs
were proposed. The first O(ck ∗ poly(n)) algorithm for the multiterminal cut
problem was proposed in [2]. A reformulation of the main theorem of [2] is an
essential part of the parameterized algorithm for the Directed FVS problem [3]
mentioned in the previous paragraph. In the present paper, we applied the strat-
egy of proof of this theorem in order to show that adding a neutral literal to
the set of literals of the input does not increase the solution size. Along with
computing the separators, the methods of computing disjoint paths have been
investigated. The research led to intractability results [17] and parameterized
approximability results [6].

The parameterized MAX-SAT problem (a complementary problem to the one
considered in the present paper) where the goal is to satisfy at least k clauses of
arbitrary sizes also received a considerable attention from the researchers. The
best currently known algorithm for this problem runs in O(1.37k + |F |), where
|F | is the size of the given formula [4].

Structure of the Paper. In Section 2 we introduce the terminology which we
use in the rest of the paper. In Section 3 we prove that the 2-aslasat problem is
fixed-parameter tractable. In Section 4 we show that the 2-asat problem is fixed-
parameter tractable. We conclude by mentioning a number of problems known to
be fpt-equivalent to parameterized 2-asat and notice that the fixed-parameter
tractability of these problems follows as a by-product of our main result. Due to
space constraints, proofs are either omitted or replaced by sketches.1

2 Terminology

A CNF formula F is called a 2-cnf formula if each clause of F is of size at
most 2. Throughout the paper we make two assumptions regarding the 2-cnf

formulas we consider. Firstly, we assume that all the clauses are of size 2. If a
formula has a clause (l) of size 1 then this clause is represented as (l∨l). Secondly,

1 A manuscript available at http://arxiv.org/abs/0801.1300 contains a complete
description of the result of the present paper with all the proofs and technical details.

http://arxiv.org/abs/0801.1300

554 I. Razgon and B. O’Sullivan

everywhere except the very last theorem, we assume that all the clauses of any
formula are pairwise distinct, i.e. no two clauses have the same set of literals.
This assumption allows us to represent the operation of removing clauses from
a formula in a set-theoretical manner. In particular, let S be a set of clauses.
Then F \ S is a 2-cnf formula that is the conjunction of clauses of F that are
not contained in S. The result of removing a single clause C is denoted by F \C
rather than F \ {C}.

Let F , S, C, L be a 2-cnf formula, a set of clauses, a single clause, and a set
of literals, respectively. Then V ar(F), V ar(S), V ar(C), V ar(L) denote the set
of variables whose literals appear in F , S, C, and L, respectively. For a single
literal l, we denote by V ar(l) the variable of l. Also we denote by Clauses(F)
the set of clauses of F .

A set of literals L is called non-contradictory if it does not contain a literal and
its negation. A literal l satisfies a clause (l1∨ l2) if l = l1 or l = l2. Given a 2-cnf

formula F , a non-contradictory set of literals L such that V ar(F) = V ar(L) and
each clause of F is satisfied by at least one literal of L, we call L a satisfying
assignment of F . F is satisfiable if it has at least one satisfying assignment.
Given a set of literals L, we denote by ¬L the set consisting of negations of all
the literals of L. For example, if L = {l1, l2, ¬l3} then ¬L = {¬l1, ¬l2, l3}.

Let F be a 2-cnf formula and L be a set of literals. F is satisfiable with
respect to L if F ∧

∧
l′∈L l′ is satisfiable. The notion of satisfiability of a 2-cnf

formula with respect to the given set of literals will be very frequently used in the
paper, hence, in order to save the space, we introduce a special notation for this
notion. In particular, we say that swrt(F, L) is true (false) if F is, respectively,
satisfiable (not satisfiable) with respect to L. If L consists of a single literal l
then we write swrt(F, l) rather than swrt(F, {l}).

Definition 1 (Walk of a 2-CNF). A walk of the given 2-cnf formula F is
a non-empty sequence w = (C1, . . . , Cq) of (not necessarily distinct) clauses of
F having the following property. For each Ci one of its literals is specified as
the first literal of Ci, the other literal is the second literal, and for any two
consecutive clauses Ci and Ci+1 the second literal of Ci is the negation of the
first literal of Ci+1. The walk w is a path if all its clauses are pairwise distinct.

Let w = (C1, . . . , Cq) be a walk and let l′ and l′′ be the first literal of C1 and
the second literal of Cq, respectively. Then we say that l′ is the first literal of w,
that l′′ is the last literal of w, and that w is a walk from l′ to l′′. Let L be a set of
literals such that l′ ∈ L. Then we say that w is a walk from L. Let C = (l1 ∨ l2)
be a clause of w. Then l1 is a first literal of C with respect to w if l1 is the first
literal of some Ci such that C = Ci. A second literal of a clause with respect to
a walk is defined accordingly. In general a literal of a clause may be both a first
and a second with respect to the given walk.

Definition 2 (Culprit Sets, 2-ASAT and 2-ASLASAT Problems)

– A Culprit Set (CS) of a 2-cnf formula F is a subset S of Clauses(F) such
that F \S is satisfiable. We call the problem of finding a Smallest CS (SCS)
of F the Almost 2-SAT Problem (2-asat problem).

Almost 2-SAT Is Fixed-Parameter Tractable 555

– Let (F, L, l) be a triple where F is a 2-cnf formula, L is a non-contradictory
set of literals such that swrt(F, L) is true and l is a literal such that V ar(l) /∈
V ar(L). A CS of (F, L, l) is a subset S of Clauses(F) such that swrt(F \
S, L ∪ {l}) is true. We call the problem of finding a SCS of (F, L, l) the
Annotated Almost 2-SAT problem with single literal (2-aslasat problem).

In this paper we consider the parameterized versions of the 2-asat and 2-

aslasat problems. In particular, the input of the parameterized 2-asat problem
is (F, k), where F is a 2-cnf formula and k is a non-negative integer. The output
is a CS of F of size at most k, if one exists. Otherwise, the output is ‘NO’. The
input of the parameterized 2-aslasat problem is (F, L, l, k) where (F, L, l) is as
specified in Definition 3. The output is a CS of (F, L, l) of size at most k, if one
exists. Otherwise, the output is ‘NO’.

3 Parameterized Algorithm for the 2-ASLASAT Problem

We begin our analysis from the following Theorem.

Theorem 1. Given a 2-aslasat problem instance (F, L, l), then swrt(F, L ∪
{l}) is false if and only if F has a walk from ¬l to ¬l or a walk from ¬L to ¬l.

Theorem 1 allows us to view the 2-aslasat problem as a separation problem.
In particular, a SCS of (F, L, l) can be viewed as the smallest number of clauses
whose removal separates all walks from ¬L to ¬l and from ¬l to ¬l. Our next
step is to introduce a polynomially computable lower bound for the size of a
SCS of (F, L, l).

Consider a smallest subset S of clauses such that F \S has no path from ¬L to
¬l. We denote |S| by SepSize(F, ¬L, ¬l). From Theorem 1, SepSize(F, ¬L, ¬l)
is a lower bound on the size of an SCS of (F, L, l). In order to prove polynomial
computability of SepSize(F, ¬L, ¬l), we recall a well known notion of the impli-
cation graph of F . This is a digraph D whose set V (D) of vertices corresponds
to the set of literals of the variables of F and (l1, l2) is an arc in its set A(D) of
arcs if and only if (¬l1 ∨ l2) ∈ Clauses(F). It is easy to establish a one-to-one
correspondence between the walks of F and the walks of D. In particular, a
walk w = (l1 ∨ ¬l2), (l2 ∨ ¬l3), . . . , (lt−1 ∨ ¬lt) of F from l1 to ¬lt corresponds
to the walk w(D) = (¬l1, ¬l2), (¬l2, ¬l3), . . . , (¬lt−1, ¬lt) in D from ¬l1 to ¬lt.
The opposite correspondence holds as well. Observe that in the above walk each
clause Ci = (li ∨ ¬li+1) is represented by arc ei = (¬li, ¬li+1) and the first and
the second literals of Ci with respect to w correspond to the tail and the head
of ei, respectively.

This correspondence suggests that a Menger-like dependence in F might hold,
i.e. the number of clause-disjoint paths from ¬L to ¬l equals SepSize(F, ¬L, ¬l),
and that SepSize(F, ¬L, ¬l) might be computed by a Ford-Fulkerson-like pro-
cedure. This statement would immediately follow if one established a one-to-one
correspondence between the sets of clause-disjoint paths of F and the sets of
clause-disjoint paths of D. The subtle point is that this correspondence does not

556 I. Razgon and B. O’Sullivan

hold in general. The reason is that a clause (l1 ∨ l2) where l1 and l2 are distinct
is represented by two arcs of D: (¬l1, l2) and (¬l2, l1). It follows that a path of
D may correspond to a walk of F which is not a path (i.e. has repeated clauses).
Moreover, a set of arc-disjoint paths of D may correspond to a set of walks of F
which are not clause-disjoint.

Fortunately, it is sufficient for us to establish the correspondence only between
the paths from ¬L in F and the paths from L in D. Taking into account that
swrt(F, L) is true, by definition of the 2-aslasat problem, this correspondence
can be shown based on the following lemma.

Lemma 1. Let F be a 2-cnf formula and let L be a set of literals such that
swrt(F, L) is true. Let C = (l1 ∨ l2) be a clause of F and let w be a walk of F
from ¬L containing C and assume that l1 is a first literal of C with respect to
w. Then l1 is not a second literal of C with respect to any walk from ¬L.

It immediately follows from this lemma that there are no two paths p1 and p2 of
D starting at L such that (¬l1, l2) participates in p1, while (¬l2, l1) participates
in p2 because it would mean that in the corresponding walks in F , l1 is the first
literal of C with respect to one of them and the second literal with respect to
the other. Thus Lemma 1 eliminates the above obstacle to establishing the de-
sired correspondence. Formalizing this argument allows us to prove the following
theorem.

Theorem 2. Given a 2-aslasat problem instance (F, L, l), SepSize(F, ¬L, ¬l)
equals the largest number of clause-disjoint paths from ¬L to ¬l in F as well as
the largest number of arc-disjoint paths from L to ¬l in D.

Based on Theorems 1 and 2, we can give an informal outline of a parameterized
algorithm for the 2-aslasat problem. For the main case of this algorithm we
have an instance (F, L, l) of the problem where L is non-empty and select a
clause C = (l1 ∨ l2) such that l1 ∈ ¬L. We branch on the removal/non-removal
of this clause. If this clause is not removed then any satisfying assignment with
respect to L must contain ¬l1 and, hence, also must contain l2 in order to satisfy
C. Therefore, we can say that we branch on the removal of this clause, or the ad-
dition of l2 to L. The first branch decreases the parameter but the second branch
does not. Hence the second branch is problematic for the design of the param-
eterized algorithm. One fortuitous case occurs if SepSize(F, ¬(L ∪ {l2}), ¬l) >
SepSize(F, ¬L, ¬l). According to the combination of Theorem 1 and Theorem
2, this condition means that adding l2 to L increases a polynomially computable
lower bound on the size of a SCS of (F, L, l). Therefore if C satisfies this for-
tuitious case then both branches decrease the gap between parameter and the
lower bound: one by decreasing the parameter, the other by increasing the lower
bound. It can be shown that if only such fortuitious clauses are selected then
the algorithm terminates in O∗(ck). However what about the case where adding
l2 to L does not increase the lower bound? The following Theorem proves that
in this case the size of a SCS of (F, L, l) is not increased as well and, hence,

Almost 2-SAT Is Fixed-Parameter Tractable 557

the non-removal decision can be safely made regarding C. That is, the branching
is applied only for the fortuitious case, which leads to a parameterized algorithm.

Definition 3 (Neutral Literal). Let (F, L, l) be an instance of the 2-aslasat

problem. A literal l∗ is a neutral literal of (F, L, l) if (F, L∪{l∗}, l) is an instance
of the 2-aslasat problem and SepSize(F, ¬L, ¬l) = SepSize(F, ¬(L∪{l∗}), ¬l).

Theorem 3. Let (F, L, l) be an instance of the 2-ASALSAT problem and let
l∗ be a neutral literal of (F, L, l). Then there is a CS of (F, L ∪ {l∗}, l) of size
smaller than or equal to the size of an SCS of (F, L, l).

Proof. (Sketch) We begin by introducing a number of sets. Let X be a SCS
of (F, L, l), SP be a set of clauses of F such that F \ SP has no path from
¬(L ∪ {l∗}) to ¬l and |SP | = SepSize(F¬(L ∪ {l∗}), ¬l) (due to the neutrality
of l∗, |SP | = SepSize(F, ¬L, ¬l)). Let R be the subset of all clauses C of F \SP
such that F \ SP has a walk wR(C) from ¬L ending by C. We denote the
rest of the clauses of F \ SP by NR. We denote X ∩ R by XR. Finally, we
denote by Y the set of all clauses C of SP \ X such that there is a walk w(C)
having the following properties. The first clause of w(C) is C, the last literal
of w(C) is ¬l, all the literals of w(C) except C belong to NR \ X , and there
is a walk from ¬(L ∪ {l∗}) to ¬l having w(C) as a suffix. We are going to
prove that X∗ = (X \ XR) ∪ Y is a CS of (F, L ∪ {l∗}, l) and that |Y | ≤
|XR|. The present theorem immediately follows from the combination of these
two facts.

By Theorem 1, to prove that X∗ is a CS of (F, L∪{l∗}, l) all we need to show
is that F \ X∗ has no walk from ¬(L ∪ {l∗}) to ¬l and from ¬l to ¬l. We show
here only the former. Assume that F \ X∗ has a walk w∗ from ¬(L ∪ {l∗}) to
¬l in contradiction with the considered statement. Then w∗ intersects with SP
by definition. Fix the last clause C of w∗ such that C ∈ SP . We claim that
C ∈ Y , which leads to a contradiction with Y ⊆ X∗ confirming the statement.
To show this we assume the opposite and fix an entry C′ ∈ R of w∗ following C.
According to Lemma 1, C′ has the same ‘orientation’ in both w∗ and wR(C′),
hence we may replace the prefix of w∗ ending with C′ by wR(C′). As a result
we get a new walk w′′ from ¬L to ¬l in F \ X∗ which meets SP after C′. That
is, w∗ meets SP after C′ and hence after C in contradiction to the definition of
C. This shows that C ∈ Y .

To show that |Y | ≤ |XR|, we take a set P of |SP | clause-disjoint paths of
F from ¬L to ¬l guaranteed to exist according to Theorem 2. We observe that
every path of P contains exactly one clause of SP and every clause of SP is
contained in exactly one path of P. Let p ∈ P be the path containing a clause
C ∈ Y . We claim that C is preceded in C by a clause of XR. Otherwise, applying
Lemma 1, we can replace the suffix of p starting from C by w(C). As a result
we get a walk from ¬L to ¬l that does not intersect with X , i.e. a walk from
¬L to ¬l in F \ X which is impossible according to Theorem 1. Since P has |Y |
clause-disjoint paths containing the clauses of Y , |XR| ≥ |Y | as required. ��

We provide the formal description of the algorithm below.

558 I. Razgon and B. O’Sullivan

FindCS(F, L, l, k)
Input: An instance (F, L, l, k) of the parameterized 2-aslasat problem.
Output: A CS of (F, L, l) of size at most k if one exists. Otherwise ‘NO’ is returned.

1. if swrt(F, L ∪ {l}) is true then return ∅
2. if k = 0 then Return ‘NO’
3. if k ≥ |Clauses(F)| then return Clauses(F)
4. if SepSize(F, ¬L, ¬l) > k then return ‘NO’
5. if F has a walk from ¬L to ¬l then

Let C = (l1 ∨ l2) be a clause such that l1 ∈ ¬L and V ar(l2) /∈ V ar(L)
6. else Let C = (l1 ∨ l2) be a clause which belongs to a walk of F from ¬l to ¬l and

swrt(F, {l1, l2}) is true 2

7. if Both l1 and l2 belong to ¬(L ∪ {l}) then
7.1 S ← FindCS(F \ C, L, l, k − 1)
7.2 if S is not ‘NO’ then Return S ∪ {C}
7.3 Return ‘NO’

8. if Both l1 and l2 do not belong to ¬(L ∪ {l}) then
8.1 S1 ← FindCS(F, L ∪ {l1}, l, k)
8.2 if S1 is not ‘NO’ then Return S1

8.3 S2 ← FindCS(F, L ∪ {l2}, l, k)
8.4 if S2 is not ‘NO’ then Return S2

8.5 S3 ← FindCS(F \ C, L, l, k − 1)
8.6 if S3 is not ‘NO’ then Return S3 ∪ {C}
8.7 Return ‘NO’
(In the rest of the algorithm we consider the cases where exactly one literal of C
belongs to ¬(L ∪ {l}). W.l.o.g. we assume that this literal is l1)

9. if l2 is not neutral in (F, L, l) then
9.1 S2 ← FindCS(F, L ∪ {l2}, l, k)
9.2 if S2 is not ‘NO’ then Return S2

9.3 S3 ← FindCS(F \ C, L, l, k − 1)
9.4 if S3 is not ‘NO’ then Return S3 ∪ {C}
9.5 Return ‘NO’

10. Return FindCS(F, L ∪ {l2}, l, k)

The algorithm is presented as a function FindCS(F, L, l, k). The first part of
the algorithm (lines 1-4) is processing the stopping conditions. Lines 1-3 are
trivial. Line 4 is correct because SepSize(F¬L, ¬l) is a lower bound on the size
of a SCS of (F, L, l) according to Theorem 1. The second part of the algorithm
is selecting the clause C to be considered during the branching process. The
selection procedure is designed so that it guarantees that if a literal l′ is added
to the set L then V ar(l′) /∈ V ar(L). This ensures that on any path from the root
of the search tree to the leaves there may be at most n nodes that add literals
to L, where n = |V ars(F)|. Taking into account that along a path in a search
tree at most k nodes that remove clauses can occur, we derive that the height
of the search tree is at most n + k.

The remaining part of the algorithm describes the process of applying an
appropriate branching rule depending on the literals of clause C. The correctness
2 Doing the analysis, we will prove that on Steps 5 and 6 F has at least one clause

with the required property.

Almost 2-SAT Is Fixed-Parameter Tractable 559

of the branching rules is based on the observation that if C does not belong to
the CS S of (F, L, l) being constructed, then any satisfying assignment of F \ S,
including the one that does not intersects with ¬(L ∪ {l}), has to satisfy C.
It follows that on the branches where C is not removed, at least one literal of
C is added to L. There are two cases where branching is not performed at all.
The first case occurs if the condition of line 7 is satisfied: in this case C itself
is not satisfiable with respect to L ∪ {l}. Consequently, C belongs to any CS of
(F, L, l). The second case occurs in line 10. The correctness of this step follows
from Theorem 3 by taking into account that l2 is a neutral literal with respect
to (F, L, l).

The key part of the runtime analysis is to prove that as a result of adding a
literal l′ of clause C to L on lines 8.1, 8.3, and 9.1, SepSize(F, ¬(L∪{l′}), ¬l) >
SepSize(F, ¬L, ¬l). Regarding line 9.1, the algorithm explicitly states that l′ =
l2 is not neutral and hence the required property follows from Definition 3.
Regarding lines 8.1 and 8.3 our proof uses the following intuitive argument. A
clause with both literals outside ¬(L ∪ {l}) can be selected only on line 6 i.e
in the case where SepSize(F, ¬L, ¬l) = 0. The selected clause (l1 ∨ l2) belongs
to a walk w from ¬l to ¬l in F . We also show that V ar(l1)
= V ar(l) and
that V ar(l2)
= V ar(l). Then we derive from the combination of these facts
that there are subwalks of w that are walks from ¬l1 to ¬l and from ¬l2 to ¬l.
Consequently, F has a walk from ¬(L ∪ {li}) to ¬l for i = 1, 2. It can be shown
that in this case, the respective paths also exist which implies by Theorem 2
that SepSize(F¬(L ∪ {li}), ¬l) > 0 = SepSize(F, ¬L, ¬l).

To prove that the exponential part of the runtime of FindCS depends only
on k we show that the number of leaves of the search tree depends only on k.
In order to do this we introduce a measure on (F, L, l, k) which is bounded from
above by a function of k and which is decreased by each branch whenever a
branching rule with 2 or 3 branches is applied. A measure β = β(F, L, l, k) =
2k − SepSize(F, ¬L, ¬l) satisfies these requirements.3 Indeed, if we add a non-
neutral literal to L then the second item increases and hence the whole measure
decreases. If we remove a clause from F (thus decreasing k) then the first item
decreases by 2 while the second item decreases by at most 1, thus the whole
measure decreases again. Taking into account that β ≤ 2k, we obtain that on
each path from the root of the search tree to a leaf at most 2k nodes with 2 or
3 outgoing branches. Since each node of the search node has at most 3 outgoing
branches, the number of leaves of the search tree is at most 32k = 9k. This already
implies the fixed-parameter tractability of the 2-aslasat problem. Using a more
careful assessment we reduce the upper bound on the number of leaves to 5k. We
omit the details here due to the lack of space. As we noticed above, the height
of the search tree is at most n + k, hence the number of nodes of the search tree
is at most (n + k)5k. It is also not hard to show that (n + k) = O(m), where
m = |Clauses(F)|. Therefore, the number of nodes of the search tree is bounded
by O(5km).

3 In fact, we use the measure max(0, 2k − SepSize(F,¬L, ¬l)). We demonstrate our
argument on a simplified measure to make it more intuitive.

560 I. Razgon and B. O’Sullivan

In the remaining part of the analysis we notice that the heaviest operations
performed by FindCS per node of the search tree are checking on line 4 whether
the lower bound is exceeded or not and neutrality checking on line 9. According
to Theorem 2, these operations can be performed by O(k) iterations of the
Ford-Fulkerson algorithm applied to the implication graph of F . The runtime of
each iteration is O(m + |L|), where the additional item |L| takes into account
the literals whose variables do not belong to V ars(F). Combining this with the
bound on the number of nodes obtained in the previous paragraph, we get the
following theorem.

Theorem 4. The 2-aslasat problem is fixed-parameter tractable. It particular
it can be solved in O(5kkm(m + |L|) time.

4 Algorithm for the 2-ASAT Problem

In the final part of our proof of the fixed-parameter tractability of the 2-asat

problem we show that it can be solved by O(3km) calls to a procedure solving the
2-aslasat problem. First we get rid of the repeated clauses by associating with
each clause C = (l′ ∨ l′′) of the given formula a unique literal li and replacing C
by a pair of clauses (l′ ∨ li) and (¬li ∨ l′′). Note that the number of clauses of the
resulting formula remains O(m). Thus we may assume that in the given instance
(F, k) of the 2-asat problem F has no repeated clauses. Next we observe that the
2-asat problem can be solved by O(m) calls to a problem with input (F1, S1, k),
where F1 is a 2-cnf formula with Clauses(F1) ⊆ Clauses(F), and S1 is a CS of
F1 of size k + 1. This transformation is known to the parameterized complexity
community under the name iterative compression [9].

Next we observe that F1 has a CS of size at most k if and only if there a set
I ⊂ S1 such that there is a subset S2 of Clauses(F1 \ I) such that S2 ∩ S1 = ∅,
|S2| ≤ k − |I|, and S2 is a CS of F1 \ I. Thus in order to find the required CS
of F1, we explore 2k+1 subsets of S1 and for each subset I we solve the problem
with input (F2, S2, k2), where F2 = F1 \ I, S2 = S1 \ I, k2 = k − |I|. The output
of the problem is a CS of F2 having size at most k2 and disjoint with S2.

Set F3 = F2\S2 and observe that the set Y is the required CS of F2 if and only
if |Y | ≤ k2 and there is a non-contradictory set of literals satisfying F3 \ Y and
all the clauses of S2. The last condition can be reformulated as follows: there is a
non-contradictory set L3 of literals satisfying the clauses of S2 such that F3 \ Y
is satisfiable with respect to L3. Our next transformation is based on this view.
In particular, we explore all possible non-contradictory sets of literals obtained
by taking one literal from each clause of S2 (there may be at most 2k2+1 such
combinations) and for each considered set L3 we solve a problem with input
(F3, L3, k2) whose output is a set such that Y ⊆ Clauses(F3), |Y | ≤ k2, and
swrt(F3 \Y, L3) is true. Note that F3 is satisfiable because F3 = F2 \S2 = F \S
while S is a CS of F .

In the last stage, based on the satisfiability of F3, we guess a satisfying as-
signment P3 of F3. If P3 does not intersect with ¬L3 we return the empty set.
Otherwise we partition L3 into the subsets L′

3 and L′′
3 such that P3 does not

Almost 2-SAT Is Fixed-Parameter Tractable 561

intersect with L′
3, while ¬L′′

3 ⊆ P3. Then we introduce two new literals l∗1 and l∗2
and transform F3 into a 2-cnf F ∗ by replacing the literals of L′

3 by l∗1 , the literals
of ¬L′

3 by ¬l∗1 , the literals of L′′
3 by l∗2 , and the literals of ¬L′′

3 by ¬l∗2 . We observe
that the set of literals P ∗ obtained from P3 by the analogous replacement is a
satisfying assignment of F ∗ that does not contain ¬l∗1 , from which we conclude
that swrt(F ∗, l∗1) is true. It follows that (F ∗, {l∗1}, l∗2) is a valid instance of the
2-aslasat problem. Moreover, we show that (F ∗, {l∗1}, l∗2) has a CS Y ∗ of size
at most k2 if and only if there is a set Y , |Y | ≤ k2 such that swrt(F3 \ Y, L)
is true and show a transformation from Y ∗ to Y . Taking into account that the
2-aslasat problem is known to be fpt according to Theorem 4, it follows that
the 2-asat problem is fpt as well.

It follows from the above description that 2-asat problem can be solved by
O(4km) calls to an algorithm solving the 2-aslasat problem. A simple combi-
natorial argument decreases the upper bound to O(3km). Combining this with
Theorem 4 we obtain the following theorem.

Theorem 5. The 2-asat problem is fixed-parameter tractable. In particular, it
can be solved in O(15kkm3) time.

5 Concluding Remarks

We conclude by noting a number of consequences of our main result. It was
noticed in [5] that the parameterized 2-asat problem is fpt-equivalent to the
following problem: given a graph G having a perfect matching, find whether G
has a vertex cover of size at most n/2 + k. This problem is called vertex cover
problem parameterized above the perfect matching (vc-pm). It is shown [14] that
the vc-pm problem is fpt-equivalent to the vertex cover problem parameterized
above the size of a maximum matching and that the latter problem is fpt-
equivalent to a problem of finding whether at most k vertices can be removed
from the given graph so that the size of the minimum vertex cover of the resulting
graph equals the size of its maximum matching. It follows from Theorem 5 that
all these problems are fixed parameter tractable.

Acknowledgements

We thank Venkatesh Raman for pointing out to several relevant references, Som-
nath Sikdar for his help in fixing a bug in an earlier version of the archived
manuscript, and an anonymous reviewer for suggestions of improvement the
presentation of the extended abstract. Finally, we acknowledge the Science Foun-
dation Ireland for supporting our research through grant 05/IN/I886.

References

1. Chen, J., Fomin, F., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for the
feedback vertex set problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS
2007. LNCS, vol. 4619, pp. 422–433. Springer, Heidelberg (2007)

562 I. Razgon and B. O’Sullivan

2. Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum
node multiway cut problem. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007.
LNCS, vol. 4619, pp. 495–506. Springer, Heidelberg (2007)

3. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. In: STOC 2008 (to appear, 2008)

4. Chen, J., Kanj, I.A.: Improved exact algorithms for max-sat. Discrete Applied
Mathematics 142(1-3), 17–27 (2004)

5. Demaine, E., Gutin, G., Marx, D., Stege, U.: Open problems from dagstuhl
seminar 07281 (2007),
http://drops.dagstuhl.de/opus/volltexte/2007/1254/pdf/
07281.SWM.Paper.1254.pdf

6. Grohe, M., Grüber, M.: Parameterized approximability of the disjoint cycle prob-
lem. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 363–374. Springer, Heidelberg (2007)

7. Guo, J., Hüffner, F., Kenar, E., Niedermeier, R., Uhlmann, J.: Complexity and
exact algorithms for multicut. In: SOFSEM, pp. 303–312 (2006)

8. Hüffner, F.: Algorithm engineering for optimal graph bipartization. In: Nikoletseas,
S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 240–252. Springer, Heidelberg (2005)

9. Hüffner, F., Niedermeier, R., Wernicke, S.: Techniques for practical fixed-parameter
algorithms. The Computer Journal 51(1), 7–25 (2008)

10. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with heredi-
tary properties. Theoretical Computer Science 289(2), 997–1008 (2002)

11. Mahajan, M., Raman, V.: Parametrizing above guaranteed values: Maxsat and
maxcut. Electronic Colloquium on Computational Complexity (ECCC) 4(33)
(1997)

12. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: Maxsat and
maxcut. Journal of Algorithms 31(2), 335–354 (1999)

13. Marx, D.: Parameterized graph separation problems. Theoretical Computer Sci-
ence 351(3), 394–406 (2006)

14. Mishra, S., Raman, V., Saurabh, S., Sikdar, S., Subramanian, C.: The complexity
of finding subgraphs whose matching number equals the vertex cover number. In:
ISAAC, pp. 268–279 (2007)

15. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford Lecture Series
in Mathematics and Its Applications, vol. 31 (2006)

16. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research
Letters 32(4), 299–301 (2004)

17. Slivkins, A.: Parameterized tractability of edge-disjoint paths on directed acyclic
graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 482–
493. Springer, Heidelberg (2003)

http://drops.dagstuhl.de/opus/volltexte/2007/1254/pdf/07281.SWM.Paper.1254.pdf
http://drops.dagstuhl.de/opus/volltexte/2007/1254/pdf/07281.SWM.Paper.1254.pdf

	Introduction
	Terminology
	Parameterized Algorithm for the 2-ASLASAT Problem
	Algorithm for the 2-ASAT Problem
	Concluding Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

