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ABSTRACT
The (parameterized) feedback vertex set problem on di-
rected graphs, which we refer to as the dfvs problem, is
defined as follows: given a directed graph G and a param-
eter k, either construct a feedback vertex set of at most k
vertices in G or report that no such set exists. Whether or
not the dfvs problem is fixed-parameter tractable has been
a well-known open problem in parameterized computation
and complexity, i.e., whether the problem can be solved in
time f(k)nO(1) for some function f . In this paper we develop
new algorithmic techniques that result in an algorithm with
running time 4kk!nO(1) for the dfvs problem, thus showing
that this problem is fixed-parameter tractable.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: General; G.2 [Discrete Mathematics]: Graph The-
ory.

General Terms
Algorithms.

1. INTRODUCTION
Let G be a directed graph. A feedback vertex set (FVS)

F for G is a set of vertices in G such that every directed
cycle in G contains at least one vertex in F , or equivalently,
that the removal of F from the graph G leaves a directed
acyclic graph (i.e., a DAG). The (parameterized) feedback
vertex set problem on directed graphs, which we refer to
as the dfvs problem, is defined as follows: given a directed
graph G and a parameter k, either construct an FVS of at
most k vertices for G or report that no such a set exists.

The dfvs problem is a classical NP-complete problem that
appeared in the first list of NP-complete problems in Karp’s
seminal paper [21], and has a variety of applications in areas
such as operating systems [30], database systems [14], and
circuit testing [23]. In particular, the dfvs problem has
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played an essential role in the study of deadlock recovery in
database systems and in operating systems [30, 14]. In such
a system, the status of system resource allocations can be
represented as a directed graph G (i.e., the system resource-
allocation graph), and a directed cycle in G represents a
deadlock in the system. Therefore, in order to recover from
deadlocks, we need to abort a set of processes in the system,
i.e., to remove a set of vertices in the graph G, so that all
directed cycles in G are broken. Equivalently, we need to
find a FVS in the graph G. In practice, one may expect and
desire that the number of vertices removed from the graph
G, which is the number of processes to be aborted in the
system, be small. This motivates the study of parameterized
algorithms for the dfvs problem that find a FVS of k vertices
in a directed graph of n vertices and run in time f(k)nO(1)

for a fixed function f , thus the algorithms become efficient
in practice when the value k is small.

This study has been part of a systematic investigation of
the theory of fixed-parameter tractability [12], which has re-
ceived considerable attention in recent years. A problem
Q is a parameterized problem if each instance of Q con-
tains a specific integral parameter k. A parameterized prob-
lem is fixed-parameter tractable if it can be solved in time
f(k)nO(1) for a function f(k) that is independent of the in-
stance size n. A large number of NP-hard parameterized
problems, such as the vertex cover problem [5] and the ml
type-checking problem [24], have been shown to be fixed-
parameter tractable. On the other hand, strong evidence
has been given that another group of well-known parame-
terized problems, including the independent set problem
and the dominating set problem, are not fixed-parameter
tractable [12]. The study of fixed-parameter tractability of
parameterized problems has become increasingly interesting,
for both theoretical research and practical computation.

The fixed-parameter tractability of the dfvs problem was
posted as an open question in the very first papers on fixed-
parameter tractability [9, 10, 11]. After numerous efforts,
however, the problem remained open. In the past 15 years,
the problem has been constantly and explicitly posted as an
open problem in a large number of publications in the liter-
ature (see, for example, [7, 8, 9, 10, 11, 16, 17, 18, 20, 26,
27, 28]). The problem has become a well-known and out-
standing open problem in parameterized computation and
complexity.

In this paper we propose an algorithm solving the dfvs
problem in time O(4kk!nO(1)). Thus we show that this prob-
lem is fixed-parameter tractable. Intuitively, this algorithm
comprises four stages that are outlined below.
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In the first stage the dfvs problem is transformed into a
problem called the dfvs reduction problem where the in-
put is a directed graphG, a parameter k and a FVS F ofG of
size k+1. The task is to find a FVS of G of size smaller than
the size of F . In particular, we show that the dfvs problem
can be solved by O(n) calls to the algorithm solving the dfvs
reduction problem. The transformation we use is known
in the parameterized complexity community under the name
iterative compression. The power of this transformation is
that computing a solution of size k in the presence of a so-
lution of size k + 1 frequently reveals very useful structural
information that is not easy to observe when the solution is
computed with respect to the original problem. In the last
three years, the use of iterative compression facilitated the
resolution of the status of fixed parameter tractability, and
the design of faster parameterized algorithms, for a number
of problems. For more information related to the iterative
compression method we refer the reader to a book [25] and
to a survey article [19].

In the second stage the dfvs reduction problem is trans-
formed into the disjoint dfvs reduction problem whose
only difference from the former one is that the FVS in the
output is required to be disjoint from a given FVS F . In
particular, the dfvs reduction problem is solved by guess-
ing the intersection I of F and the FVS S in the out-
put and for each of 2k+1 possible guesses, solving the dis-
joint dfvs reduction problem with respect to the input
(G − I, F − I, k − |I|). Clearly the desired FVS S exists
if and only if there is an I such that S − I is returned by
the respective application of the disjoint dfvs reduction
problem.

Solving the disjoint dfvs reduction problem, we ob-
serve that due to F being a FVS of G, any directed cycle
of G can be represented as a union of paths between the
vertices of F . In other words, for any FVS S of G disjoint
with F , one can specify a set of pairs (u, v) of vertices of
F so that G − S has no path from u to v. Thus, we note
that the disjoint dfvs reduction problem can be solved
by iteratively guessing a set of pairs of vertices of V and
solving the directed multicut problem with respect to this
set of pairs. Moreover, we specify a template that this set of
pairs of vertices has to satisfy. To do that we first observe
that in G − S, any vertex of u ∈ F is separated from itself,
i.e. there is no path from u to u just because this path would
contain a directed cycle. Moreover, we notice that there ex-
ists u ∈ F such that for any v ∈ F , G − S has no path
from u to v. The way to show this is similar to the way one
shows that at least one vertex of a directed acyclic graph
has no outgoing edges: if for each vertex of F , graph G− S
has an outgoing path to another vertex of F , then going so
from a vertex to a vertex one will eventually return to an
already visited vertex which means that G− S has a cycle,
hence a contradiction. Furthermore, a repeated application
of this argument shows that there is an ordering u1, . . . uk+1

of the vertices of F such that G − S has no path from ui

to uj whenever i ≥ j. Finally, we show that this separation
template is sufficient. In particular, we demonstrate that for
any ordering u1, . . . , uk+1 of vertices of F and any S′ such
that G − S′ has no path from ui to uj whenever i ≥ j, S′

is a FVS of G. Indeed, by the definition of F , any directed
cycle of G is a path from some ui to itself. By definition of
S′, such a path does not exist in G− S′.

It follows from the argument presented in the previous

paragraph that the disjoint dfvs reduction problem can
be solved by considering all possible (k+1)! orderings of ver-
tices of F and solving the above separation problem for each
ordering. If for at least one ordering the required separator
S, of size at most k, is found then S is the desired FVS.
Otherwise, we can safely conclude that no such FVS exists.
After a slight syntactic modification we can formulate the
separation problem with respect to the given order of F as
the skew separator problem defined as follows. Given two
collections [S1, . . . , Sl] and [T1, . . . , Tl] of subsets of terminal
vertices of a directed graph G, decide whether it is possible
to remove at most k non-terminal vertices so that there is
no path from Si to Tj in the resulting graph whenever i ≥ j.

Therefore, in the third stage of the algorithm the disjoint
dfvs reduction problem is transformed into the skew sep-
arator problem. In this context, it is worth noting that
the relationship between the dfvs problem and multi-cut
problems has been studied in the research of approximation
algorithms for the feedback vertex set problem [13, 22].
The originality of our approach is that we specify the tem-
plate for the set of pairs of the multicut problem and use a
transformation whose runtime exponentially depends on k;
the latter seems inappropriate for the design of an approxi-
mation algorithm.

In the last stage, the algorithm solves the skew sepa-
rator problem using a bounded search tree method [25],
which uses the following main branching rule: pick an edge
(sl, u) where sl ∈ Sl and u is a non-terminal vertex, on
the first branch remove u (i.e include u into the separator),
on the second branch join u into Sl, proceed recursively on
each of these branches while decreasing the parameter on
the branch where u is removed. Thus, it is clear how the
search tree is bounded if u is removed but it is non-trivial
to see the bounding factor when u is joined to Sl. To han-
dle this, we consider two cases. In the first case, joining u
into Sl increases the size of the smallest vertex cut from Sl

to [T1, . . . , Tl], which is clearly a lower bound on the size of
the smallest skew separator from [S1, . . . , Sl] to [T1, . . . , Tl].
Thus, in this case, on any branch the gap between the size of
the parameter and the lower bound decreases, which implies
that along each path from the root to a leaf there are at
most 2k branching nodes of this type. The most important
point of the algorithm is that these are the only branching
nodes that occur ! More specifically, we prove that if joining
u to Sl does not increase the size of the smallest vertex cut
from Sl to [T1, . . . , Tl], then it does not increase the size of
the smallest skew separator from [S1, . . . , Sl] to [T1, . . . , Tl].
Consequently, in this case there is no need to branch on u
and it can be safely joined to Sl. The resulting algorithm
for the skew separator problem takes O(4knO(1)) time.

The straightforward multiplication of the runtimes for the
above four stages results in an upper bound of O(8kk!nO(1))
for the runtime of the algorithm. A slightly more careful
analysis results in an upper bound of O(4kk!nO(1)).

Before we move to the technical discussion of our algo-
rithms, we remark that the feedback vertex set problem
on undirected graphs (the ufvs problem) has also been an
interesting and active research topic in parameterized com-
putation and complexity. Since the first fixed-parameter
tractable algorithm for the ufvs was published almost 20
years ago [2], there has been an impressive list of improved
algorithms for the problem. Currently the best algorithm
for the ufvs problem runs in time O(5kkn2) [4]. The feed-
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back vertex set problem on directed graphs (i.e., the dfvs
problem ) seems very different from the problem on undi-
rected graphs (i.e., the ufvs problem). This fact has also
been reflected in the study of approximation algorithms for
these problems. The feedback vertex set problem on
undirected graphs is polynomial-time approximable with a
ratio 2. This holds true even for weighted graphs [1]. On
the other hand, it still remains open whether the feedback
vertex set problem on directed graphs has a constant-ratio
polynomial-time approximation algorithm. The current best
such algorithm for the problem on directed graphs has a ra-
tio of O(logn log log n) [13].

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the necessary terminology. In Section 3 an
algorithm for the skew separator problem is presented.
Section 4 and 5 present a two-stage transformation from the
dfvs problem to the skew separator problem, and Sec-
tion 6 describes an extension of the results and outlines some
possible future research.

2. PRELIMINARIES
Let G = (V,E) be a directed graph. Without loss of

generality, we assume that G contains no self-loops. We
say that the edge e = [u, v] goes out from the vertex u and
comes into the vertex v. The edge e is called an outgoing
edge of the vertex u, and an incoming edge of the vertex
v. These concepts can be extended from single vertices to
general vertex sets. Thus, for two vertex sets S1 and S2, we
can say that an edge goes out from S1 and comes into S2

if the edge goes out from a vertex in S1 and comes into a
vertex in S2. Moreover, we say that an edge goes out from
S1 if the edge goes out from a vertex in S1 and comes into
a vertex not in S1. An edge comes into S2 if the edge goes
out from a vertex not in S2 and comes into a vertex in S2.

A path P from a vertex v1 to a vertex vh in the graph
G is a sequence {v1, v2, . . . , vh} of vertices in G such that
[vi, vi+1] is an edge in G for all 1 ≤ i ≤ h − 1. The path
P is simple if no vertex is repeated in P . The path P is a
cycle if v1 = vh, and the cycle is simple if no other vertices
are repeated. We say that a path is from a vertex set S1 to
a vertex set S2 if the path is from a vertex in S1 to a vertex
in S2. The graph G is a DAG (i.e., directed acyclic graph)
if it contains no cycles.

For a vertex subset V ′ ⊆ V in the directed graph G =
(V,E), we denote by G[V ′] the subgraph of G that is induced
by the vertex subset V ′. Without ambiguity, we will denote
by G− V ′ the induced subgraph G[V − V ′], and by G−w,
where w is a vertex in G, the induced subgraph G[V −{w}].
A vertex subset F in the directed graph G is a feedback
vertex set (FVS) if the graph G− F is a DAG.

Definition 2.1. (Skew Separator) Let [S1, . . . , Sl] and
[T1, . . . , Tl] be two collections of l vertex subsets in a di-
rected graph G = (V,E). A skew separator X for the pair

([S1, . . . , Sl], [T1, . . . , Tl]) is a vertex subset in V −
Sl

i=1(Si∪
Ti) such that for any pair of indices i and j satisfying l ≥
i ≥ j ≥ 1, there is no path from Si to Tj in the graph G−X.

The subsets S1, . . . , Sl will be called the source sets and
the subsets T1, . . . , Tl will be called the sink sets. A vertex is
a non-terminal vertex if it is not in

Sl
i=1(Si∪Ti). Note that

by definition, all vertices in a skew separator must be non-
terminal vertices. Moreover, a skew separator X is asym-

metric to the source sets and the sink sets: a path from Si

to Tj with i < j may exist in the graph G−X.
When there is only one source set S1 and one sink set T1,

a skew separator for the pair ([S1], [T1]) becomes a regular
cut for S1 and T1, i.e., a vertex set whose removal leaves a
graph in which there is no path from S1 to T1. Therefore,
a skew separator for the pair ([S1], [T1]) is also called a cut
from S1 to T1. A cut from S1 to T1 is a min-cut (i.e., a
minimum cut) if it has the smallest cardinality over all cuts
from S1 to T1.

Lemma 2.2. Let S and T be two vertex subsets in a di-
rected graph G of n vertices, and let k be a parameter. There
is an O(kn2) time algorithm that, on input (G,S, T, k), ei-
ther constructs a min-cut of size bounded by k from S to T
in the graph G, or reports that the size of a min-cut from S
to T in G is larger than k.

Proof. The lemma can be proved by first shrinking the
sets S and T into two vertices s and t then constructing a
min-cut of size k from s to t in the resulting graph. This
can be done in time O(kn2) using the standard maximum
flow technique.

The algorithm for the dfvs problem is obtained through
a development of algorithms for a series of problems. In the
following, we give the formal definitions of these problems.

skew separator: Given (G, [S1, . . . , Sl], [T1, . . . , Tl], k),
where G is a directed graph, S1, . . . , Sl are l source sets and
T1, . . . , Tl are l sink sets in G, and a parameter k, such that:
(1) all sets S1, . . ., Sl, T1, . . ., Tl are pairwise disjoint;
(2) for each i, 1 ≤ i ≤ l − 1, there is no edge coming into
the source set Si; and
(3) for each j, 1 ≤ j ≤ l, there is no edge going out from the
sink set Tj ,
either construct a skew separator of at most k vertices for
the pair ([S1, . . . , Sl], [T1, . . . , Tl]), or report that no such a
separator exists.

Note that in an instance of the skew separator, condi-
tion (2) on sources and condition (3) on sinks are not com-
pletely symmetric: the first l− 1 source sets are not allowed
to have incoming edges, but the last source set Sl is allowed
to have incoming edges. On the other hand, all sink sets are
not allowed to have outgoing edges.

We remark that conditions (1)-(3) in the definition of the
skew separator problem, plus the restriction that the skew
separator can consist of only non-terminal vertices, may be
relaxed and our techniques for the problem may still be ap-
plicable. However, the above formulation of the problem will
make our discussion simpler, and also will be sufficient for
our solution to the dfvs problem, which is the focus of the
current paper. We leave the investigation of the separator
problems of more general forms to future research.

The following two problems are special versions of the
feedback vertex set problem.

The dfvs reduction problem: Given a triple (G,F, k),
where G is a directed graph and F is a FVS of size k + 1
for G, either construct a FVS of size bounded by k for G,
or report that no such FVS exists.

The disjoint dfvs reduction problem: Given a triple
(G,F, k), where G is a directed graph and F is a FVS of size
k+ 1 for G, either construct a FVS of G of size bounded by
k and disjoint with F , or report that no such FVS exists.
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The central problem in this paper can be stated as follows.

The dfvs problem: Given a pair (G, k), where G is a
directed graph and k is the parameter, either construct a
FVS of size bounded by k for G, or report that no such a
FVS exists.

3. SOLVING SKEW SEPARATOR

Let (G, [S1, . . . , Sl], [T1, . . . , Tl], k) be an instance of the
skew separator problem. Define Tall =

S
1≤i≤l Ti. There

are some cases in which we can reduce the instance size:

Rule R1. There is no path from Sl to Tall: then we only
need to find a skew separator of size k that separates
Si from Tj for all indices i and j satisfying l − 1 ≥
i ≥ j ≥ 1, i.e., we can work instead on the instance
(G, [S1, . . . , Sl−1], [T1, . . . , Tl−1], k). Note that in this
case, by definition, if l = 1, then the solution to the
instance (G, [S1, . . . , Sl−1], [T1, . . . , Tl−1], k) is simply
the empty set ∅;

Rule R2. There is an edge from Sl to Tall: then there is
no way to separate Sl from Tall – we can simply stop
and report that the given instance is a “No” instance;

Rule R3. There exists a non-terminal vertex w, an edge
from Sl to w, and an edge from w to Tall: then the
vertex w must be included in the skew separator in
order to separate Sl and Tall – we can simply work on
the instance (G−w, [S1, . . . , Sl], [T1, . . . , Tl], k−1) and
recursively find a skew separator of size k − 1.

Note that in Rule R1 and Rule R3, the two reduced instances
(G, [S1, . . . , Sl−1], [T1, . . . , Tl−1], k) and (G − w, [S1, . . . , Sl],
[T1, . . . , Tl], k − 1) are still valid instances of the skew sep-
arator problem.

In the following discussion, assume that for the input in-
stance (G, [S1, . . . , Sl], [T1, . . . , Tl], k), none of the rules above
is applicable. In particular, since Rule R1 is not applicable, a
min-cut from Sl to Tall has size larger than 0. Because Rules
R1-R3 are not applicable, there must be a non-terminal ver-
tex u0 such that (1) there is an edge from Sl to u0; and (2)
there is no edge from u0 to Tall. Such a vertex u0 will be
called an Sl-extended vertex. Fix an Sl-extended vertex u0,
let S′l = Sl ∪ {u0}.

Lemma 3.1. Let X be a subset of vertices in the graph G
that does not contain the Sl-extended vertex u0. Then X is
a skew separator for the pair ([S1, . . . , Sl], [T1, . . . , Tl]) if and
only if X is a skew separator for the pair ([S1, . . . , Sl−1, S

′
l ],

[T1, . . . , Tl−1, Tl]).

Proof. (→) Suppose that X is a skew separator for the
pair ([S1, . . . , Sl−1, S

′
l ], [T1, . . . , Tl−1, Tl]). We show thatX is

also a skew separator for ([S1, . . . , Sl], [T1, . . . , Tl]). Suppose
that there is a (simple) path P from Si to Tj for some i ≥ j
in the graph G−X. If P does not contain the Sl-extended
vertex u0, then either P is a path from Si to Tj (when i < l),
or P is a path from S′l to Tj (when i = l, note Sl ⊆ S′l), either
case would contradict the assumption that X is a skew sep-
arator for the pair ([S1, . . . , Sl−1, S

′
l ], [T1, . . . , Tl−1, Tl]). On

the other hand, suppose that P contains the Sl-extended
vertex u0. Then the subpath of P from u0 to Tj would
give a path from S′l to Tj in G − X, again contradicting
the assumption that X is a skew separator for the pair

([S1, . . . , Sl−1, S
′
l ], [T1, . . . , Tl−1, Tl]). These contradictions

prove that X is also a skew separator for the pair
([S1, . . . , Sl], [T1, . . . , Tl]).

(←) Suppose that X is a skew separator for the pair
([S1, . . . , Sl], [T1, . . . , Tl]). If, by contradiction, X is not a
skew separator for ([S1, . . . , Sl−1, S

′
l ], [T1, . . . , Tl−1, Tl]), then

there is a path P ′ in G − X that is either from S′l to Tj

for some j, or from Si to Tj for some i ≥ j. The path
P ′ must contain the Sl-extended vertex u0 (recall that the
set X does not contain u0), otherwise the path P ′ in G −
X would be from some Si to some Tj with i ≥ j, con-
tradicting the assumption that X is a skew separator for
([S1, . . . , Sl], [T1, . . . , Tl]). However, this would imply that
the path from Sl directly to u0 (recall that there is an edge
from Sl to u0), then following the path P ′ to the set Tj ,
would give a path in G − X from Sl to Tj , again con-
tradicting the assumption that X is a skew separator for
([S1, . . . , Sl], [T1, . . . , Tl]). Therefore, the path P ′ does not
exist in G−X, and X must be a skew separator for the pair
([S1, . . . , Sl−1, S

′
l ], [T1, . . . , Tl−1, Tl]).

Corollary 3.2. A skew separator for the pair ([S1, . . . ,
Sl−1, S

′
l ], [T1, . . . , Tl−1, Tl]) is also a skew separator for the

pair ([S1, . . . , Sl], [T1, . . . , Tl]).

Corollary 3.3. The size of a min-cut from S′l to Tall in
the graph G is at least as large as the size of a min-cut from
Sl to Tall in G.

Theorem 3.4. If the size of a min-cut from Sl to Tall

is equal to the size of a min-cut from S′l to Tall, then the
pair ([S1, . . . , Sl], [T1, . . . , Tl]) has a skew separator of size
bounded by k if and only if the pair ([S1, . . . , Sl−1, S

′
l ], [T1, . . . ,

Tl−1, Tl]) has a skew separator of size bounded by k.

Proof. (→) Suppose the pair ([S1, . . . , Sl−1, S
′
l ], [T1, . . . ,

Tl−1, Tl]) has a skew separator X ′ of size bounded by k. By
Corollary 3.2, X ′ is also a skew separator for ([S1, . . . , Sl],
[T1, . . . , Tl]). Thus, ([S1, . . . , Sl], [T1, . . . , Tl]) has a skew sep-
arator of size bounded by k.

(←) Suppose that the pair ([S1, . . . , Sl], [T1, . . . , Tl]) has
a skew separator X of size bounded by k. If the skew sepa-
rator X does not contain the Sl-extended vertex u0, then by
Lemma 3.1, X is also a skew separator of size bounded by
k for the pair ([S1, . . . , Sl−1, S

′
l ], [T1, . . . , Tl−1, Tl]), and the

theorem is proved. Therefore, we can assume that the set
X contains the Sl-extended vertex u0.

Let Y be a min-cut from S′l to Tall. Then Y does not
contain the Sl-extended vertex u0. Moreover, since there is
no edge coming into Si from outside of Si for all i ≤ l − 1,
the set Y does not contain any vertex in

Sl−1
i=1 Si. In con-

sequence, the set Y consists of only non-terminal vertices.
By Corollary 3.2, Y is also a cut from Sl to Tall. Moreover,
by the assumption of the theorem that the size of a min-cut
from Sl to Tall is equal to the size of a min-cut from S′l to
Tall, Y is actually also a min-cut from Sl to Tall. Let RY (Sl)
be the set of vertices v such that either v ∈ Sl or there is
a path from Sl to v in the subgraph G − Y . In particular,
u0 ∈ RY (Sl) because Y does not contain u0 and there is an
edge from Sl to u0.

We introduce a number of sets as follows.

Z = X ∩ Y ;Xin = X ∩RY (Sl);Xout = X − (Xin ∪ Z).

That is, the skew separator X for ([S1, . . . , Sl], [T1, . . . , Tl])
is decomposed into three disjoint subsets Z, Xin, and Xout;
note that by definition, RY (Sl) and Y do not intersect.
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Y : a min-cut from S′l to Tall

X: a skew separator for
([S1, . . . , Sl], [T1, . . . , Tl])

RY (Sl): vertices reachable from Sl

in G− Y

Z = X ∩ Y

Xin = X ∩RY (Sl)

Xout = X − (Xin ∪ Z)

YT : vertices in Y from which Tall is

reachable in G−X

YS = Y − (YT ∪ Z)

Figure 1: The sets in the proof of Theorem 3.4

Let YT be the set of vertices v in the min-cut Y such
that there is a path from v to Tall in G−X. By definition,
YT ∩ Z = ∅. Let YS = Y − (YT ∪ Z). Thus, the min-cut Y
from Sl to Tall is decomposed into three disjoint subsets Z,
YT , and YS . See Figure 1 for an intuitive illustration of all
the defined sets.

We first show that the set Y ′ = YS ∪Z ∪Xin is also a cut
from Sl to Tall. If by contradiction Y ′ is not a cut from Sl to
Tall, then there is a path P1 from Sl to Tall in the subgraph
G−Y ′. The path P1 must contain vertices in the set Y since
Y is a cut from Sl to Tall. Let w be the first vertex on the
path P1 that is in Y when we traverse from Sl to Tall along
the path P1. Then w must be in YT since Y ′ contains both
YS and Z. Now the partial path P ′1 of P1 from Sl to w, not
including w, must be entirely contained in RY (Sl); note that
the path P1 does not intersect YS∪Z. Moreover, the path P ′1
contains neither vertices in Xin ∪Z, by the definition of the
set Y ′, nor vertices in Xout, since the sets Xout and RY (Sl)
are disjoint. In summary, the subpath P ′1 from Sl to w
contains no vertex in the set X. Moreover, by the definition
of the set YT , and w ∈ YT , there is a path P ′′1 from w to Tall

in the subgraph G−X. Now the concatenation of the paths
P ′1 and P ′′1 would result in a path from Sl to Tall in the graph
G−X, contradicting the fact that X is a skew separator for
the pair ([S1, . . . , Sl], [T1, . . . , Tl]). This contradiction shows
that the set Y ′ must be a cut from Sl to Tall.

Since Y is a min-cut from Sl to Tall, we have |Y | ≤ |Y ′|.
By definition, Y = YS ∪Z∪YT and Y ′ = YS ∪Z∪Xin. Also
note that YS , Z, and YT are pairwise disjoint, and that YS ,
Z, and Xin are also pairwise disjoint. Therefore, we must
have |YT | ≤ |Xin|.

Consider the set X ′ = Xout ∪Z ∪ YT . The set X ′ has the
following properties: (1) X ′ consists of only non-terminal
vertices (because both X and Y consist of only non-terminal
vertices); (2) |X ′| ≤ |X| (because |YT | ≤ |Xin|), so the size

of X ′ is bounded by k; and (3) the set X ′ does not contain
the Sl-extended vertex u0 (this is because u0 is in Xin and Y
does not contain u0). Therefore, if we can prove that X ′ is
a skew separator for the pair ([S1, . . . , Sl], [T1, . . . , Tl]), then
by Lemma 3.1, X ′ is also a skew separator of size bounded
by k for the pair ([S1, . . . , Sl−1, S

′
l ], [T1, . . . , Tl−1, Tl]). This

will complete the proof of the theorem.
Therefore, what remains is to prove that the set X ′ =

Xout∪Z∪YT is a skew separator for the pair ([S1, . . . , Sl], [T1,
. . . , Tl]). Let RY (Tall) be the set of vertices v such that
either v ∈ Tall, or there is a path from v to Tall in the
subgraph G− Y .

Suppose by contradiction that X ′ is not a skew separator
for ([S1, . . . , Sl], [T1, . . . , Tl]). Then there is a path P2 in the
subgraph G−X ′ from Si to Tj for some i ≥ j. The path P2

has the following properties:

1. The path P2 contains a vertex in RY (Sl): since X is a
skew separator for the pair ([S1, . . . , Sl], [T1, . . . , Tl]),
the path P2 from Si to Tj with i ≥ j must contain
at least one vertex w1 in X = Xin ∪ Z ∪ Xout. Now
since the path P2 is in the subgraph G − X ′, where
X ′ = Xout ∪ Z ∪ YT , the vertex w1 must be in Xin,
which is a subset of RY (Sl);

2. The path P2 contains a vertex in YS : by Property 1,
P2 contains a vertex w1 in RY (Sl). From the vertex
w1 to Tall along the path P2, there must be a vertex
w2 in Y = YS ∪Z ∪YT since Y is a cut from Sl to Tall

while w1 is reachable from Sl in the subgraph G− Y .
Now since X ′ = Xout ∪ Z ∪ YT , and the path P2 is in
the subgraph G − X ′, the vertex w2 on the path P2

must be in the set YS ;

3. The path P2 ends at a vertex in RY (Tall): this is sim-
ply because P2 is ended in Tall. Note that by definition,
no vertex in YS can be in RY (Tall).
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By Properties 2 and 3, the path P2 contains a vertex not
in RY (Tall) and ends at a vertex in RY (Tall). Thus, there
must be an internal vertex w in the path such that w is
not in RY (Tall) but all vertices after w along the path P2

(from Si to Tj) are in RY (Tall). Note that no vertex w′

after the vertex w along the path P2 can be in the set
X: w′ in X would imply w′ in Xin (since P2 is a path
in the subgraph G − X ′), which would imply that there is
another vertex after w′ that is in Y thus is not in RY (Tall).
Moreover, the vertex w must be in the set Y (otherwise, w
would be in RY (Tall)). Since P2 is a path in G − X ′ and
X ′ = Xout ∪ Z ∪ YT , the vertex w must be in the set YS .
However, this derives a contradiction: the subpath of P2

from w to Tall shows that the vertex w should belong to the
set YT (note that all vertices after w on the path are not
in X), and the sets YS and YT are disjoint. This contradic-
tion proves that the set X ′ must be a skew separator for the
pair ([S1, . . . , Sl], [T1, . . . , Tl]). Since the size of the set X ′

is bounded by k and X ′ does not contain the Sl-extended
vertex u0, by Lemma 3.1, the set X ′ is also a skew separa-
tor for the pair ([S1, . . . , Sl−1, S

′
l ], [T1, . . . , Tl−1, Tl]), and the

size of X ′ is bounded by k.

Theorem 3.4 leads to a parameterized algorithm for the
skew separator problem, as given in Figure 2.

Algorithm SMC(G, [S1, . . . , Sl], [T1, . . . , Tl], k)
Input: An instance (G, [S1, . . . , Sl], [T1, . . . , Tl], k) of the skew sep-
arator problem.
Output: A skew separator of size bounded by k for the pair
([S1, . . . , Sl], [T1, . . . , Tl]), or report “No” (i.e., no such a separator
exists).

1. if l = 1 then solve the problem in time O(kn2);
2. if Rule R2 applies or k < 0 then return “No”;
3. if Rule R1 applies then

return SMC(G, [S1, . . . , Sl−1], [T1, . . . , Tl−1], k);
4. if Rule R3 applies on a vertex w then

return {w} ∪ SMC(G \ w, [S1, . . . , Sl], [T1, . . . , Tl], k − 1); §

5. pick an Sl-extended vertex u0; let S′l = Sl ∪ {u0};
6. let m be the size of a min-cut from Sl to Tall =

Sl
i=1 Ti;

7. if m > k then return “No”;
8. let m′ be the size of a min-cut from S′l to Tall;
9. if (m = m′) then
9.1. return SMC(G, [S1, . . . , Sl−1, S′l ], [T1, . . . , Tl−1, Tl], k);
9.2. else

X = {u0} ∪ SMC(G \ u0, [S1, . . . , Sl], [T1, . . . , Tl], k − 1);
if X 6= “No” then return X;

9.3. else return SMC(G, [S1, . . . , Sl−1, S′l ], [T1, . . . , Tl−1, Tl], k).

§ We assume that a “No” plus anything gives a “No”.

Figure 2: Algorithm for the skew separator problem

Theorem 3.5. The algorithm SMC solves the skew sep-
arator problem in time O(4kkn3), where n is the number
of vertices in the input graph G.

Proof. We first prove the correctness of the algorithm.
Let (G, [S1, . . . , Sl], [T1, . . . , Tl], k) be an input to the algo-
rithm, which is an instance of the skew separator prob-
lem, where G = (V,E) is a directed graph, [S1, . . . , Sl] and
[T1, . . . , Tl] are the source sets and the sink sets, respectively,
and k is the upper bound of the size of the skew separator
we are looking for.

If l = 1, then the problem becomes the construction of a
min-cut of size bounded by k from S1 to T1, which can be
solved in time O(kn2) by Lemma 2.2. Steps 2-4 were justi-
fied in the discussions of Rules 2, 1, 3, respectively, at the

beginning of this section (note that we have also consistently
defined that an instance is a “No” instance if the parameter
k has a negative value). Therefore, if the algorithm reaches
Step 5, then none of the Rules 1-3 is applicable. In partic-
ular, since Rule 1 is not applicable and the sets Sl and Tall

are disjoint, there must be an edge [v, w], where v ∈ Sl and
w 6∈ Sl. Since Rule 2 is not applicable, the vertex w is not
in the set Tall. The vertex w also cannot be in any source
set Si for i < l because there is no edge coming into Si from
outside of Si. Therefore, the vertex w is a non-terminal ver-
tex. Finally, since Rule 3 is not applicable, there is no edge
from w to Tall. Thus, w must be an Sl-extended vertex.
This proves that at Step 5, the algorithm can always find an
Sl-extended vertex u0.

In the case m > k in Step 7, i.e., the size m of a min-
cut from Sl to Tall is larger than the parameter k, then
even separating a single source set Sl from the sink sets
Tall =

Sl
j=1 Tj requires more than k vertices. Thus, no

skew separator of size bounded by k can exist to separate Si

from Tj for all l ≥ i ≥ j ≥ 1. Step 7 correctly handles this
case by returning “No”.

In the case m = m′ in Step 9, i.e., the size m of a min-cut
from Sl to Tall is equal to the size m′ of a min-cut from S′l
to Tall, by Theorem 3.4, the pair ([S1, . . . , Sl], [T1, . . . , Tl])
has a skew separator of size bounded by k if and only if the
pair ([S1, . . . , Sl−1, S

′
l ], [T1, . . . , Tl−1, Tl]) has a skew separa-

tor of size bounded by k. Moreover, by Corollary 3.2, a skew
separator for the pair ([S1, . . . , Sl−1, S

′
l ], [T1, . . . , Tl−1, Tl]),

of size bounded by k, is also a skew separator for the pair
([S1, . . . , Sl], [T1, . . . , Tl]). Therefore, in this case we can re-
cursively call SMC(G, [S1, . . . , Sl−1, S

′
l ], [T1, . . . , Tl−1, Tl], k),

and look instead for a skew separator of size bounded by k
for the pair ([S1, . . . , Sl−1, S

′
l ], [T1, . . . , Tl−1, Tl]), as handled

by Step 9.1.
In the case m 6= m′, then the algorithm branches into two

subcases: Step 9.2 includes the Sl-extended vertex u0 in the
skew separator and recursively looks for a skew separator
of size bounded by k − 1 in the remaining graph G − u0

for the pair ([S1, . . . , Sl], [T1, . . . , Tl]); and Step 9.3 excludes
the Sl-extended vertex u0 from the skew separator and re-
cursively looks for a skew separator that does not contain
u0 and is of size bounded by k in the graph G for the pair
([S1, . . . , Sl], [T1, . . . , Tl]) (which, by Lemma 3.1, is a skew
separator for the pair ([S1, . . . , Sl−1, S

′
l ], [T1, . . . , Tl−1, Tl]) of

size bounded by k).
This completes the verification of the correctness of the

algorithm. Now we analyze its complexity.
The recursive execution of the algorithm can be described

as a search tree T . We first count the number of leaves in the
search tree T . Note that only Steps 9.2–9.3 of the algorithm
correspond to branches in the search tree T . Let D(k,m)
be the total number of leaves in the search tree T for the
algorithm SMC(G, [S1, . . . , Sl], [T1, . . . , Tl], k), where m is
the size of a min-cut from Sl to Tall. Then Steps 9.2–9.3
induce the following recurrence relation:

D(k,m) ≤ D(k − 1,m1) +D(k,m2) (1)

where m1 is the size of a min-cut from Sl to Tall in the graph
G− u0 as given in Step 9.2, and m2 is the size of a min-cut
from S′l to Tall in the graph G as given in Step 9.3. Note
that m− 1 ≤ m1 ≤ m because removing the vertex u0 from
the graph G cannot increase the size of a min-cut from Sl

to Tall, and can decrease the size of a min-cut for the two
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sets by at most 1. Moreover, by Corollary 3.3, in Step 9.3
we must have m2 ≥ m+ 1. Summarizing these, we have

m− 1 ≤ m1 ≤ m and m2 ≥ m+ 1. (2)

Introduce a new function D′ such that D′(2k − m) =
D(k,m), and let t = 2k −m. Then by Inequalities (1) and
(2), the branch in Steps 9.2–9.3 in the algorithm becomes

D′(t) ≤ D′(t1) +D′(t2) (3)

where when t = 2k −m we have

t1 = 2(k−1)−m1 ≤ t−1, and t2 = 2k−m2 ≤ t−1. (4)

We also point out that certain non-branching steps (i.e.,
Steps 3, 4, and 9.1) may also change the values of k and
m, thus changing the value of t = 2k −m. However, none
of these steps increases the value of t = 2k −m: (i) Step 3
keeps the value of k unchanged and does not decrease the
value of m (because in this case the size of a min-cut from Sl

to Tall is 0 that cannot be larger than the size of a min-cut
from Sl−1 to

Sl−1
j=1 Tj); (ii) Step 4 decreases the value of k

by 1 and the value of m by at most 1 (because removing a
vertex from G can reduce the size of a min-cut from Sl to
Tall by at most 1), which as a total will decrease the value
of t = 2k −m by at least 1; (iii) by the condition assumed,
Step 9.1 keeps both the values of k and m unchanged, thus
unchanging the value of t = 2k−m. In summary, the value
of t = 2k −m after a branching step to the next branching
step can never be increased.

Our initial instance starts with t = 2k − m ≤ 2k. In
the case t = 2k −m = 0, because we also have the condi-
tions k ≥ m ≥ 0, we must have m = 0 and k = 0, in this
case the algorithm can solve the instance without further
branching. Therefore, we have D′(0) = 1. Combining this
with Inequalities (3) and (4), we get D′(k) ≤ 2k. Therefore,

D(k,m) = D′(2k −m) ≤ 22k−m ≤ 22k = 4k,

and the search tree T has at most 4k leaves.
The running time of each execution of the algorithm SMC,

not counting the time for the recursive calls in the execution,
is bounded by O(kn2), where n is the number of vertices in
the input graph. In particular, by Lemma 2.2, Step 1 that
looks for a min-cut of size bounded by k from S1 to T1, Steps
6-7 that determine if the size m of a min-cut from Sl to Tall

is bounded by k, and Steps 8-9 that determine if the size
of a min-cut from S′l to Tall is equal to m (m ≤ k at this
point), all have their running time bounded by O(kn2).

Observe that for each recursive call in an execution of
the algorithm SMC, either the number of source-sink pairs
in the instance is decreased by 1 (Step 3), or the number
of non-terminal vertices in the instance is decreased by 1
(Steps 4, 9.1, 9.2, and 9.3). When the number of source-
sink pairs is equal to 1, the problem is solved in time O(kn2)
by Step 1, and when the number of non-terminal vertices is
equal to 0, one of the Steps 2 and 3 can be applied directly.
In conclusion, along each root-leaf path in the search tree
T , there are at most O(n) recursive calls to the algorithm
SMC. Therefore, the running time along each root-leaf path
in the search tree T is bounded by O(kn3).

Summarizing the above discussions, we conclude that the
running time of the algorithm SMC is bounded byO(4kkn3).
This completes the proof of the theorem.

4. SOLVING DISJOINT DFVS REDUCTION

In this section we prove the fixed-parameter tractability
of the disjoint dfvs reduction problem. Recall that the
problem gets as input a triple (G,F, k) where G is a directed
graph, k is a parameter and F is a FVS of G of size k + 1.
The output is a FVS of G disjoint from F and having size
at most k or a report that no such FVS exists.

Theorem 4.1. The disjoint dfvs reduction problem
can be solved in time O(4kk!k2n3) where n is the number of
vertices of G.

We will prove the theorem by showing that the disjoint
dfvs reduction problem can be solved by solving at most
(k+1)! instances of the skewed separator problem. Then
the result will immediately follow from Theorem 3.5. Before
the proof of Theorem 4.1, we prove a number of auxiliary
statements.

Lemma 4.2. Let (G,F, k) be an instance of the disjoint
dfvs problem and let S be a FVS of G which is disjoint
with F . Let F ′ ⊆ F . Then there is u ∈ F ′ such that for any
v ∈ F ′, G− S has no path from u to v.

Proof. Suppose the lemma does not hold, then for any
vertex u in F ′ there is at least one vertex v in F ′ such that
G−S contains a path from u to v. Thus, starting from any
vertex u1 in F ′, we would be able to find an infinite sequence
u1, u2, . . ., of vertices in F ′ such that there is a path from
ui to ui+1 in G − S for all i ≥ 1. Since F ′ is a finite set,
there is at least one vertex that repeats in the sequence,
which corresponds to a cycle in the subgraph G − S. But
this would contradict our assumption that S is a FVS.

Corollary 4.3. Let (G,F, k) and S be as in Lemma 4.2.
Then there is an ordering u1, . . . , uk+1 of the vertices of F
such G − S does not have a path from ui to uj whenever
i ≥ j.

Proof. According to Lemma 4.2 there is a vertex uk+1 ∈
F such that G − S has no path from uk+1 to any v ∈ F .
Proceeding inductively, consider i such that 1 ≤ i < k + 1
and assume that there are vertices ui+1, . . . , uk+1 such that
for any j, i+1 ≤ j ≤ k+1, G−S has no path from uj to any
other vertex of F , in case j = k + 1 or to any other vertex
of F − {uj+1, . . . , uk+1} otherwise. Apply Lemma 4.2 once
again and choose a vertex ui such that G − S has no path
from ui to any other vertex of F − {ui+1, . . . , uk+1}. Con-
tinuing so until i = 1, we establish the desired ordering.

Lemma 4.4. Let (G,F, k) be an instance of the disjoint
dfvs reduction problem and let u1, . . . , uk+1 be an arbi-
trary ordering of vertices of F . Let S be a subset of vertices
of G disjoint with F and such that G− S has no path from
ui to uj whenever i ≥ j. Then S is a FVS of G.

Proof. Since F is a FVS of G any cycle of G − S is a
path of G − S from ui to ui. Such path is impossible by
definition of S.

Proof. (Theorem 4.1) It follows from the combination
of Corollary 4.3 and Lemma 4.4 that the disjoint dfvs
reduction problem can be solved as follows. Consider all
possible orderings of vertices of F . For the given ordering
u1, . . . , uk+1, find out wether there is a set S of at most k
vertices not contained in F so that G− S has no path from
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ui to uj whenever i ≥ j. If such a set S is found for at least
one ordering, it is returned, otherwise the algorithm reports
that no FVS with the required properties exists.

Observe that the above separation problem with respect
to the given ordering u1, . . . , uk+1 of vertices of F can be
solved as follows. Split each ui into two vertices si and
ti such that si is incident to all the outgoing edges of ui

and ti is incident to all the incoming edges of ui. Let G′

be the resulting graph. Then solve the skew separator
problem with respect to G′ and the collections [S1, . . . , Sk+1]
and [T1, . . . , Tk+1] where Si = {si} and Ti = {ti} for i =
1, . . . , k + 1. Indeed, let S be a skew separator with respect
to this instance. Then S separates u1, . . . , uk+1 in the sense
that G−S has no path from ui to uj whenever i ≥ j because
otherwise such a path can be transformed into a path from si

to tj by just renaming the first and last vertices. Similarly,
any S such that G− S has no path from ui to uj whenever
i ≥ j is a skew separator with respect to G′, [S1, . . . , Sk+1],
and [T1, . . . , Tk+1] because any path from si to tj , i ≥ j can
be transformed into a path from ui to uj by renaming its
first and last vertices.

Thus the disjoint dfvs reduction problem can be solved
by O(k!k) applications of the algorithm for the skewed sep-
arator problem on a graph with O(n) vertices. Multiply-
ing the runtime of solving the skew separator problem
obtained in Theorem 3.5 into O(k!k) yields the desired run-
time for solving the disjoint dfvs reduction problem.

5. SOLVING DFVS

Based on the previous sections, we can present our algo-
rithm for the dfvs problem. We start with a more restricted
version of the problem, the dfvs reduction problem, which
has been defined in Section 2.

Lemma 5.1. The dfvs reduction problem on a triple
(G,F, k) is solvable in time O(n34kk3k!), where n is the
number of vertices in the input graph G.

Proof. Assume that we are given a set I ⊆ F , |I| ≤
k and the requirement is to find a FVS S of G of size at
most k such that F ∩ S = I or to report that there is no
such FVS. Clearly this can be done by solving the instance
(G − I, F − I, k − |I|) of the disjoint dfvs reduction
problem. If the output is a FVS S′ of G − I then S′ ∪ I is
the required FVS of G. Otherwise, we may safely conclude
that G has no required FVS.

Thus the dfvs reduction problem can be solved by guess-
ing all possible intersections i.e. by considering all 2k+1 − 1
subsets of F of size at most k and for each subset I ap-
plying the disjoint dfvs reduction problem as shown in
the previous paragraph. A straightforward evaluation yields
the O(n38kk3k!) upper bound on the runtime of the result-
ing algorithm. We improve the upper bound through a more
careful analysis.

To do this we calculate the runtime spent on processing
the sets I of the given size i, 0 ≤ i ≤ k. If i = 0 then
the only possibility is I = ∅ hence by Theorem 4.1, the
runtime spent is O(4kk!k2n3). For 1 ≤ i ≤ k, there are`

k+1
i

´
possible guesses and the runtime spent for each guess is

O(4k−i(k−i)!(k−i)2n3) by Theorem 4.1. Hence the general
time spent is proportional to

`
k+1

i

´
4k−i(k − i)!(k − i)2n3

which is at most (k+1)!
(k+1−i)!

4k−i(k − i)!(k − i)2n3. By simple

transformation, the latter expression can be shown equal to

(k + 1)!

k + 1
4k−i(k − i)2n3 = k!4k−i(k − i)2n3 ≤ 4kk!k2n3.

Since the guessed sets may have at most (k+1) distinct sizes
the resulting time of solving the dfvs reduction problem
is O(4kk!k3n3), as required.

The rest of our process for solving the dfvs problem is to
apply the iterative compression method. The method was
proposed by Reed, Smith, and Vetta [29] and has been used
for solving the feedback vertex set problem on undi-
rected graphs [7, 17]. Here we extend the method and apply
it to solve the dfvs problem.

Theorem 5.2. The dfvs problem is solvable in time
O(n44kk3k!).

Proof. Let (G, k) be an instance of the dfvs problem,
where G = (V,E) is a directed graph with n = |V | vertices,
and k is the parameter. Pick any subset V0 of k+ 1 vertices
in G, and let F0 be any subset of k vertices in V0. Note that
the set F0 is an FVS of k vertices for the induced subgraph
G0 = G[V0] since the graph G0 − F0 consists of a single
vertex (note that by our assumption, the graph G contains
no self-loops).

Let V−V0 = {v1, v2, . . . , vn−k−1}. Let Vi = V0∪{v1, . . . , vi},
and let Gi = G[Vi] be the subgraph induced by Vi, for
i = 0, 1, . . . , n − k − 1. Inductively, suppose that for an
integer i, 0 ≤ i < n − k − 1, we have constructed an FVS
Fi of size bounded by k for the induced subgraph Gi (this
has been the case for i = 0). Without loss of generality, we
can assume that the set Fi consists of exactly k vertices –
otherwise we simply pick k− |Fi| vertices (arbitrarily) from
Gi − Fi and add them to the set Fi. Now consider the
set F ′i+1 = Fi + vi+1. Since Gi+1 − F ′i+1 = Gi − Fi and
Fi is an FVS for Gi, the set F ′i+1 is an FVS of size k + 1
for the induced subgraph Gi+1. In particular, the triple
(Gi+1, F

′
i+1, k) is a valid instance for the dfvs reduction

problem.
Apply Lemma 5.1 to the instance (Gi+1, F

′
i+1, k), which

either returns an FVS Fi+1 of size bounded by k for the
graph Gi+1, or claims that no such an FVS exists. It is easy
to see that if the induced subgraph Gi+1 = G[Vi+1] does not
have an FVS of size bounded by k, then the original graph
G cannot have an FVS of size bounded by k. Therefore, in
this case, we can simply stop and conclude that there is no
FVS of size bounded by k for the original input graph G. On
the other hand, suppose that an FVS Fi+1 of size bounded
by k is constructed for the graph Gi+1 in the above process,
then the induction successfully proceeds from i to i+ 1 with
a new pair (Gi+1, Fi+1).

In conclusion, the above process either stops at some point
and correctly reports that the input graph G has no FVS of
size bounded by k, or eventually ends with an FVS Fn−k−1

of size bounded by k for the graph Gn−k−1 = G[Vn−k−1] =
G.

This process is involved in solving at most n − k − 1 in-
stances (Gi, Fi, k) of the dfvs reduction problem, for 0 ≤
i ≤ n−k− 2. By Theorem 5.1, the running time of the pro-
cess is bounded by O(n34kk3k!(n− k − 1)) = O(n44kk3k!),
and the process correctly solves the dfvs problem.

Remark. The running time of the algorithm in Theo-
rem 5.2 can be further improved by taking advantage of

184



existing approximation algorithms for the feedback ver-
tex set problem on directed graphs. Even, Naor, Schieber,
and Sudan [13] have developed a polynomial time approx-
imation algorithm for the feedback vertex set problem
that for a given directed graph G, produces a FVS F of size
bounded by c · τ log τ log log τ , where c is a constant and τ
is the size of a minimum FVS for the graph G. Therefore,
for a given instance (G, k) of the dfvs problem, we can first
apply the approximation algorithm in [13] to construct a
FVS F for the graph G. If |F | > c · k log k log log k, then we
know that the graph G has no FVS of size bounded by k.
On the other hand, suppose that |F | ≤ c · k log k log log k.
Then we pick a subset F0 of arbitrary k vertices in F , and
let G0 = G − (F − F0). The set F0 is a FVS of size k for
the graph G0. Now we can proceed exactly the same way as
we did in the theorem: let F − F0 = {v1, v2, . . . , vh}, where
h ≤ c · k log k log log k − k, and let Vi = V0 ∪ {v1, . . . , vi},
and Gi = G[Vi], for i = 0, 1, . . . , h. By repeatedly applying
the algorithm in Lemma 5.1, we can either stop with certain
index i where the induced subgraph Gi+1 has no FVS of size
bounded by k (thus the original input graph G has no FVS
of size bounded by k), or eventually construct a FVS Fh of
size bounded by k for the graph Gh = G[Vh] = G. This pro-
cess calls for the execution of the algorithm in Lemma 5.1 at
most h = O(k log k log log k) times, and each execution takes
time O(n34kk3k!). In conclusion, the dfvs problem can be
solved in time O(n34kk4k! log k log log k + t(n)), where t(n)
is a polynomial of n, independent of k, that is the running
time of the approximation algorithm given in [13].

6. REMARKS AND FUTURE RESEARCH
We presented a parameterized algorithm with running

time O(n44kk3k!) for the dfvs problem, which shows that
the problem is fixed-parameter tractable, and resolves an
outstanding open problem in parameterized computation
and complexity. Before we close the paper, we give a few
remarks on our results and for future research.

There is an edge version of the feedback set problem,
which is called the feedback arc set problem (briefly, the
dfas problem): given a directed graph G and a parame-
ter k, either construct a set of at most k edges in G whose
removal leaves a DAG, or report that no such an edge set
exists. The dfas problem is also a well-known NP-complete
problem [15]. As shown by Even, Naor, Schieber, and Sudan
[13], the dfas problem and the dfvs problem can be reduced
in linear time from one to the other with the same parame-
ter. Therefore, our results also imply an O(n44kk3k!) time
algorithm for the dfas problem.

The techniques developed in this paper for solving the
skew separator problem seem to be powerful and gen-
erally useful in the study of a variety of separator prob-
lems. For example, it has been used recently in developing
improved algorithms for a multi-cut problem on undirected
graphs in which a separator is sought to (uniformly) separate
a set of given terminals [6]. It will be interesting to identify
the conditions for the multi-cut problems under which these
techniques, and their variations and generalizations, are ap-
plicable. In particular, it will be interesting to see if the tech-
niques are applicable to derive the fixed-parameter tractabil-
ity of the feedback vertex set problem on weighted and
directed graphs. Note that the fixed-parameter tractability
of the problem on weighted and undirected graphs has been
derived recently [4].

It will be interesting to develop new techniques that lead
to faster parameterized algorithms for the dfvs problem and
other related problems. For example, is it possible that the
dfvs problem can be solved in time O(cknO(1)) for a con-
stant c? Another direction is to look at the kernelization of
the dfvs problem, by which we refer to a polynomial-time
algorithm that on an instance (G, k) of the dfvs problem,
produces a (smaller) instance (G′, k′) of the problem, such
that the size of the graph G′ (the kernel) is bounded by
a function of k but independent of the size of the original
graph G, that k′ ≤ k, and that the graph G has a FVS of size
bounded by k if and only if the graph G′ has a FVS of size
bounded by k′. Since now it is known that the dfvs prob-
lem is fixed-parameter tractable, by a general theorem in
parameterized complexity theory [12], such a kernelization
algorithm exists for the dfvs problem. However, how small
can the kernel G′ be? Taking into account that the ufvs
problem has a kernel of a polynomial size [3], this question
becomes especially intriguing.
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