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Abstract. An r-component connected coloring of a graph is a coloring of the
vertices so that each color class induces a subgraph having at most r connected
components. The concept has been well-studied for r = 1, in the case of trees,
under the rubric of convex coloring, used in modeling perfect phylogenies. Sev-
eral applications in bioinformatics of connected coloring problems on general
graphs are discussed, including analysis of protein-protein interaction networks
and protein structure graphs, and of phylogenetic relationships modeled by splits
trees. We investigate the r-COMPONENT CONNECTED COLORING COMPLE-
TION (r-CCC) problem, that takes as input a partially colored graph, having k
uncolored vertices, and asks whether the partial coloring can be completed to an
r-component connected coloring. For r = 1 this problem is shown to be NP-
hard, but fixed-parameter tractable when parameterized by the number of uncol-
ored vertices, solvable in time O∗(8k). We also show that the 1-CCC problem,
parameterized (only) by the treewidth t of the graph, is fixed-parameter tractable;
we show this by a method that is of independent interest. The r-CCC problem is
shown to be W [1]-hard, when parameterized by the treewidth bound t, for any
r ≥ 2. Our proof also shows that the problem is NP-complete for r = 2, for
general graphs.

Topics: Algorithms and Complexity, Bioinformatics.

1 Introduction

The following two problems concerning colored graphs can be used to model several
different issues in bioinformatics.
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r-COMPONENT CONNECTED RECOLORING (r-CCR)
Instance: A graph G = (V, E), a set of colors C, a coloring function Γ : V →

C, and a positive integer k.
Parameter: k
Question: Is it possible to modify Γ by changing the color of at most k ver-

tices, so that the modified coloring Γ ′ has the property that each color class
induces a subgraph with at most r components?

In the case where G is a tree and r = 1, the problem is of interest in the context of
maximum parsimony approaches to phylogenetics [17,13]. A connected coloring corre-
sponds to a perfect phylogeny, and the recoloring number can be viewed as a measure of
distance from perfection. The problem was introduced by Moran and Snir, who showed
that CONVEX RECOLORING FOR TREES (which we term 1-CCR) is NP-hard, even for
the restriction to colored paths. They also showed that the problem is fixed-parameter
tractable, and described an FPT algorithm that runs in time O(k(k/ log k)kn4) for col-
ored trees [17]. Subsequently, Bodlaender et al. have improved this to an FPT algorithm
that runs in linear time for every fixed k, and have described a polynomial-time kernel-
ization to a colored tree on at most O(k2) vertices [3].

Here we study a closely related problem.

r-COMPONENT CONNECTED COLORING COMPLETION (r-CCC)
Instance: A graph G = (V, E), a set of colors C, a coloring partial function

Γ : V → C where there are k uncolored vertices.
Parameter: k
Question: Is it possible to complete Γ to a total coloring function Γ ′ such that

each color class induces a subgraph with at most r components?

The problem is of interest in the following contexts.
(1) Protein-protein interaction networks. In a protein-protein interaction network

the vertices represent proteins and edges model interactions between that pair of pro-
teins [22,7,20,21]. Biologists are interested in analyzing such relationship graphs in
terms of cellular location or function (either of which may be represented by vertex col-
oring) [16]. Interaction networks colored by cellular location would be expected to have
monochrome subgraphs representing localized functional subnetworks. Conversely, in-
teraction networks colored by function may also be expected to have monochrome
connected subgraphs representing cellular localization. The issue of error makes the
number of recolorings (corrections) needed to attain color-connectivity of interest [17],
and the issue of incomplete information may be modeled by considering uncolored
vertices that are colored to attain color-connectivity, the main combinatorial problem
we are concerned with here. Protein-protein interaction graphs generally have bounded
treewidth.

(2) Phylogenetic networks. Phylogenetic relationships can be represented not only
as trees, but also as networks, as in the splits trees models of phylogenetic relationships
that take into account such issues as evidence of lateral genetic transfer, inconsistencies
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in the phylogenetic signal, or information relevant to a specific biological hypothesis,
e.g., host-parasite relationships [15,14]. Convex colorings of splits trees have essentially
the same modeling uses and justifications as in the case of trees [17,4,13]. Splits trees
for natural datasets have small treewidth.

Our main results are summarized as follows:

1. 1-CCC is NP-hard for general colored graphs, even if there are only two colors.
2. 1-CCC for general colored graphs, parameterized by the number k of uncolored

vertices, is fixed-parameter tractable, and can be solved in time O∗(8k).
3. 1-CCC is in XP for colored graphs of treewidth at most t, parameterized by t.

(That is, it is solvable in polynomial time for any fixed t. Note that under this
parameterization the number of uncolored vertices is unbounded.)

4. 1-CCC is fixed-parameter tractable when parameterized by treewidth.
5. For all r ≥ 2, r-CCC, parameterized by a treewidth bound t, is hard for W [1].

For basic background on parameterized complexity see [10,11,19].

2 Connected Coloring Completion Is NP-Hard

Theorem 1. The 1-CCC problem is NP-hard, even if there are only two colors.

Proof. (Sketch.) The reduction from 3SAT can be inferred from Figure 1 (the details
are omitted due to space limitations). The two colors are T and F.
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Fig. 1. The reduction from 3SAT
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3 1-CCC for k Uncolored Vertices Is Fixed-Parameter Tractable

The input to the problem is a partially colored graph G = (V, E), and the parameter is
the number of uncolored vertices.

Soundness for the following reduction rules is easy to verify.

Rule 1. A maximal connected monochromatic subgraph (of colored vertices) can be
collapsed to a single vertex. The parameter is unchanged.
Rule 2. If a color occurs on only a single vertex, then that vertex can be deleted. The
parameter is unchanged.
Rule 3. An edge between two colored vertices of different color can be deleted. The
parameter is unchanged.

Suppose that a partially colored graph G is reduced with respect to the above three
reduction rules. The situation can be represented by a bipartite model graph that on
one side (let us say, the left side), has vertices representing the vertices created by Rule
1, but not deleted by Rule 2. On the right side are the k uncolored vertices (and their
adjacencies), and between the two sides are edges that represent an incidence relation-
ship. Clearly, if in this representation, there are more than k vertices on the left, then
the answer is NO. Thus, there are at most k colors represented on the left, and an FPT
algorithm that runs in time O∗(kk) follows by exploring all possibilities of coloring
the k uncolored vertices (on the right) with the k colors represented on the left of the
model. We can do better than this.

Theorem 2. 1-CCC parameterized by the number of uncolored vertices is fixed-
parameter tractable, solvable in time O∗(8k).

Proof. We use the model graph described above. Instead of the brute-force exploration
of all possibilities of coloring the right-side vertices with the left-side colors, we em-
ploy a dynamic programming algorithm. Let H denote the set of at most k uncolored
vertices, and let C denote the set of colors represented on the left of the model graph.
Create a table of size 2C × 2H . We employ a table T to be filled in with 0/1 entries.
The entry T (C′, H ′) of the table T indexed by (C′, H ′), where C′ ⊆ C and H ′ ⊆ H ,
represents whether (1) or not (0), it is possible to solve the connectivity problem for the
colors in C′ by assigning colors to the vertices of H ′. (The only way this can happen,
is that, for each color c ∈ C′, the (single) connected component of c-colored vertices
on the right, dominates all the c-colored vertices on the left.) We have the following
recurrence relationship for filling in this table:

T (C′, H ′) = 1 ⇐⇒ ∃(c, H ′′), c ∈ C′, H ′′ ⊂ H ′, such that T (C′ − c, H ′′) = 1
and H ′ − H ′′ induces a connected subgraph that dominates the vertices of color c. The
table T has at most 2k × 2k = 4k entries, and computing each entry according to the
recurrence requires time at most O(k · 2k), so the total running time of the dynamic
programming algorithm is O∗(8k).

4 Bounded Treewidth

Most natural datasets for phylogenetics problems have small bounded treewidth. 1-
CCR is NP-hard for paths (and therefore, for graphs of treewidth one) [17]. Bodlaender
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and Weyer have shown that 1-CCR parameterized by (k, t), where k is the number
of vertices to be recolored, and t is a treewidth bound, is fixed-parameter tractable,
solvable in linear time for all fixed k [6].

4.1 1-CCC Parameterized by Treewidth is Linear-Time FPT

We describe an algorithm for the 1-CCC problem that runs in linear time for any fixed
treewidth bound t, and we do this by using the powerful machinery of Monadic Second
Order (MSO) logic, due to Courcelle [9] (also [1,5]). At first glance, this seems either
surprising or impossible, since MSO does not provide us with any means of describing
families of colored graphs, where the number of colors is unbounded. We employ a
“trick” that was first described (to our knowledge) in a paper in these proceedings [3].
Further applications of what appears to be more a useful new method, rather than just a
trick, are described in [12].

The essence of the trick is to construct an auxiliary graph that consists of the original
input, augmented with additional semantic vertices, so that the whole ensemble has
— or can safely be assumed to have — bounded treewidth, and relative to which the
problem of interest can be expressed in MSO logic.

Let G = (V, E) be a graph of bounded treewidth, and Γ : V ′ → C a vertex-coloring
function defined on a subset V ′ ⊆ V . (Assume each color in C is used at least once.)
We construct an auxiliary graph G′ from G in the following way: for each color c ∈ C,
create a new semantic vertex vc (these are all of a second type of vertex, the vertices of
V are of the first type). Connect vc to every vertex in G colored c by Γ .

Consider a tree decomposition Δ for G, witnessing the fact that it has treewidth at
most t. This can be computed in linear time by Bodlaender’s algorithm.

Say that a color c ∈ C is relevant for a bag B of Δ if either of the following holds:
(1) There is a vertex u ∈ B such that Γ (u) = c. (When this holds, say that c is present
in B.)
(2) There are bags B′ and B′′ of Δ such that B is on the unique path from B′ to B′′

relative to the tree that indexes Δ, and there are vertices u′ ∈ B′ and u′′ ∈ B′′ such
that Γ (u′) = Γ (u′′) = c, and furthermore, c is not present in B. (When this holds, say
that c is split by the bag B.)

Lemma 1. If the colored graph G is a yes-instance for 1-CCC, then for any bag B,
there are at most t + 1 relevant colors.

Proof. Suppose that a bag B has more than t+1 relevant colors, and that p of these are
present in B. If s denotes the number of colors split by B, then s > t + 1 − p. Since
B contains at most t + 1 vertices, the number of colors split by B exceeds the number
of uncolored vertices in B, and because each bag is a cutset of G, it follows that G is a
no-instance for 1-CCC.

Lemma 2. If the colored graph G is a yes-instance for 1-CCC, then the auxiliary graph
G′ has treewidth at most 2t + 1.

Proof. Consider a tree decomposition Δ for G witnessing that the treewidth of G is at
most t. By the above lemma, if we add to each bag B of Δ all those vertices vc for
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colors c that are relevant to B, then (it is easy to check) we obtain a tree-decomposition
Δ′ for G′ of treewidth at most 2t + 1.

Theorem 3. The 1-CCC problem, parameterized by the treewidth bound t, is fixed-
parameter tractable, solvable in linear time for every fixed t.

Proof. The algorithm consists of the following steps.

Step 1. Construct the auxiliary graph G′.
Step 2. Compute in linear time, using Bodlaender’s algorithm, a tree-decomposition for
G′ of width at most 2t + 1, if one exists. (If not, then correctly output NO.)
Step 3. Otherwise, we can express the problem in MSO logic. That this is so, is not
entirely trivial, and is argued as follows (sketch).

The vertices of G′ can be considered to be of three types: (i) the original colored
vertices of G (that is, the vertices of V ′), (ii) the uncolored vertices of G (that is, the
vertices of V −V ′), and (iii) the color-semantic vertices added in the construction of G′.
(The extension of MSO Logic to accomodate a fixed number of vertex types is routine.)

If G is a yes-instance for the problem, then this is witnessed by a set of edges F
between vertices of G (both colored and uncolored) that provides the connectivity for
the color classes. In fact, we can choose such an F so that it can be partitioned into
classes Fc, one for each color c ∈ C, such that the classes are disjoint: no vertex v ∈ V
has incident edges e ∈ Fc and e′ ∈ Fc′ where c 
= c′.

The following are the key points of the argument:

(1) Connectivity of a set of vertices, relative to a set of edges, can be expressed by
an MSO formula.

(2) We assert the existence of a set of edges F of G ⊆ G′, and of a set of edges F ′

between uncolored vertices of G and color-semantic vertices of G′ such that:

– Each uncolored vertex of G has degree 1 relative to F ′. (The edges of F ′ thus
represent a coloring of the uncolored vertices of G.)

– If u and v are colored vertices of G that are connected relative to F , then there is a
unique color-semantic vertex vc such that both u and v are adjacent to vc.

– If u is a colored vertex of G and v is an uncolored vertex of G that are connected via
edges in F , then there is a unique color-semantic vertex vc such that v is adjacent
to vc by an edge of F ′, and u is adjacent to vc by an edge of G′.

– If u is an uncolored vertex of G and v is an uncolored vertex of G that are con-
nected via edges in F , then there is a unique color-semantic vertex vc such that v is
adjacent to vc by an edge of F ′, and u is adjacent to vc by an edge of F ′.

– If u and v are colored vertices of G that are both adjacent to some color-semantic
vertex vc, then u and v are connected relative to F .

4.2 r-CCC Parameterized by Treewidth is W [1]-Hard for r ≥ 2

In view of the fact that 1-CCC is fixed-parameter tractable for bounded treewidth, it
may be considered surprising that this does not generalize to r-CCC for any r ≥ 2.

Theorem 4. The 2-CCC problem, parameterized by the treewidth bound t, is hard for
W [1].
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Proof. (Sketch.) The proof is an FPT Turing reduction, based on color-coding [2]. We
reduce from the W [1]-hard problem of k-CLIQUE. Let (G = (V, E), k) be an instance
of the parameterized CLIQUE problem. Let H be a suitable family of hash functions
h : V → A = {1, ..., k}.

If G is a yes-instance for the k-CLIQUE problem, then for at least one h ∈ H, the
coloring function h is injective on the vertices of a witnessing k-clique in G (that is,
each vertex of the k-clique is assigned a different color).

We describe a Turing reduction to instances G′(h) of the 2-CCC problem, one for
each h ∈ H, such that G is a yes-instance for the k-CLIQUE problem if and only at
least one G′(h) is a yes-instance for the 2-CCC problem. Each G′(h) has treewidth
t = O(k2).

The construction of G′(h) is based on an edge-representation of the clique strategy.
We will describe the construction of G′(h) in stages, building up in a modular fashion.
A module of the construction will be a subgraph that occurs in G′(h) as an induced
subgraph, except for a specified set of boundary vertices of the module. These boundary
sets will be identified as the various modules are “plugged together” to assemble G′(h).
In the figures that illustrate the construction, each kind of module is represented by
a symbolic schematic, and the modules are built up in a hierarchical fashion. Square
vertices represent uncolored vertices.

Figure 2 illustrates the Choice Module that is a key part of our construction, and
its associated schematic representation. A Choice Module has four “output” boundary
vertices, labeled c1, ..., c4 in the figure. It is easy to see that the module admits a par-
tial solution coloring that “outputs” any one of the (numbered) colors occuring in the
module depicted, in the sense that the vertices c1, ..., c4 are assigned the output color
(which is unsolved, that is, this color class is not connected in the module), and that the
other colors are all solved internally to the module, in the sense that there is (locally)
only one connected component of the color class.

A Co-Incident Edge Set Module is created from the disjoint union of k − 1 Choice
Modules, as indicated in in Figure 3. The boundary of the module is the union of the
boundaries of the constituent Choice Modules.
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Fig. 2. A Choice Module of size 3
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Fig. 3. A Co-Incident Edge Choice Module of size s is the disjoint union of s Choice Modules

An XOR Stream Module is shown in Figure 4. This has two “input” boundary sets,
each consisting of four uncolored vertices, and one “output” boundary set of four un-
colored vertices.

α

α

x

Schematic
α

Fig. 4. An XOR Stream Module

Figure 5 shows how a Tree of Choice Module is assembled from Co-Incident Edge
Set modules and XOR Stream modules. By the size of a Tree of Choice module we refer
to the number of Co-Incident Edge Set modules occuring as leaves in the construction.

The overall construction of G′(h) for k = 5 is illustrated in Figure 6. Suppose the in-
stance graph G = (V, E) that is the source of our reduction from CLIQUE has |V | = n
and |E| = m. Then each Tree of Choice module T (h, i) has size n(h, i), where n(h, i)
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x

x

x

E

E

E

E

T

Schematic

Fig. 5. A Tree of Choice Module of size 4

is the number of vertices colored i ∈ {1, ..., k} by h. Let V (h, i) denote the subset of
vertices of V colored i by h.

In the coloring of G by h, if it should happen that a vertex v colored i has no neigh-
bors of color j, j 
= i, then v cannot be part of a multicolored k-clique in G, and can be
deleted. We consider only colorings of G that are reduced in this sense.

The “leaves” of T (h, i) consist of Co-Incident Edge Set modules E(h, i, u), one for
each u ∈ V (h, i). The Co-Incident Edge Set module E(h, i, u) consists of k−1 Choice
modules C(h, i, u, j), j ∈ {1, ..., k} and j 
= i, and each of these has size equal to the
number of edges uv incident to u in G, where v is colored j by h.

The colors used in the construction of E(h, i, u) are in 1:1 correspondence with the
edges incident to v in G. Overall, the colors of the colored vertices in G′ occuring in the
Choice modules represent, in this manner, edges of G. Each XOR module M has three
vertices colored α = α(M) where this color occurs nowhere else in G′ (see Figure 4).
One of these vertices colored α is an isolated vertex.

Verification that if G has a k-clique, then G′ admits a solution to the CCC problem
is relatively straightforward. It is important to note that if uv is an edge of G, where
h(u) = i and h(v) = j, then the color corresponding to uv occurs in exactly two Choice
modules: in C(h, i, u, j) and in C(h, j, v, i). If uv is “not selected” (with respect to a
coloring completion) then the two local connectivities yield two components of that
color.

The argument in the other direction is a little more subtle. First of all, one should
verify that the gadgets enforce some restrictions on any solution for G′:
(1) Each Choice module necessarily “outputs” one unsolved color (that is, a color not
connected into a single component locally), and thus a Co-Incident Edge Set module
E(v) “outputs” k − 1 colors representing edges incident on v.
(2) Each XOR module forces the “output” stream of unsolved colors to be one, or the
other, but not a mixture, of the two input streams of unsolved colors.
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T T

T

T

T

T T

Fig. 6. The modular design of G′ for k = 5

(3) The unsolved colors that are presented to the central gadget (see Figure 7) can be
solved only if these unsolved colors occur in pairs.

The treewidth of G′ is easily seen to be O(k2).
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