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Graphs without large bicliques and
well-quasi-orderability by the induced subgraph
relation”

Ai1sTis ATMINAS, VADIM LOZIN, AND IGOR RAZGON

Recently, Daligault, Rao and Thomassé asked in [3] if every hered-
itary class which is well-quasi-ordered by the induced subgraph
relation is of bounded clique-width. While the question has been
shown to have a negative answer in general [9], in the present paper
we show that the statement is true for a family of hereditary classes
of graphs that exclude large bicliques as subgraphs. In particular,
this implies (through the use of Courcelle theorem [2]) that any
problem definable in Monadic Second Order Logic can be solved
in a polynomial time for all well-quasi-ordered hereditary classes
of graphs that exclude large bicliques.

1. Introduction

Well-quasi-ordering is a highly desirable property and a frequently discov-
ered concept in mathematics and theoretical computer science [6, 8]. One
of the most remarkable recent results in this area is the proof of Wagner’s
conjecture stating that the set of all finite graphs is well-quasi-ordered by
the minor relation [12]. However, the subgraph or induced subgraph rela-
tion is not a well-quasi-order. On the other hand, each of these relations
may become a well-quasi-order when restricted to graphs with some special
properties.

A graph property (or a class of graphs) is a set of graphs closed under
isomorphism. A property is hereditary if it is closed under taking induced
subgraphs. It is well-known (and not difficult to see) that a graph property
X is hereditary if and only if X can be described in terms of forbidden
induced subgraphs. More formally, X is hereditary if and only if there is a
set M of graphs such that no graph in X contains any graph from M as an
induced subgraph. We call M the set of forbidden induced subgraphs for X
and say that the graphs in X are M-free.
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Of our particular interest in this paper are graphs without large bicliques.
We say that the graphs in a hereditary class X are without large bicliques if
there is a natural number ¢ such that no graph in X contains K;; as a (not
necessarily induced) subgraph. Equivalently, there are ¢ and r such K, , and
K, appear in the set of forbidden induced subgraphs for X. According to
[11], these are precisely the graphs with a subquadratic number of edges.
This family of properties includes many important classes, such as graphs
of bounded vertex degree, of bounded tree-width, all proper minor closed
graph classes. In all these examples, the number of edges is bounded by a
linear function in the number of vertices and all of the listed properties are
rather small (see e.g. [10] for the number of graphs in proper minor closed
graph classes). In the terminology of [1], they all are at most factorial. In
fact, the family of classes without large bicliques is much richer and contains
classes with a superfactorial speed of growth, such as projective plane graphs
(or more generally Cy-free bipartite graphs), in which case the number of
edges is O(n?).

Recently, Daligault, Rao and Thomassé asked in [3] if every hereditary
class which is well-quasi-ordered by the induced subgraph relation is of
bounded clique-width. While the question has been shown to have a neg-
ative answer in general [9], the relationship holds true for some families of
hereditary graph classes. Investigating such families is interesting because it
connects two seemingly unrelated notions and leads to a strong algorithmic
consequence. Indeed, it follows (through the use of Courcelle theorem [2])
that for such families any problem definable in Monadic Second Order Logic
can be solved in a polynomial time on any class well-quasi-ordered by the
induced subgraph relation.

In the present paper, we establish the relationship between well-quasi-
ordering and boundedness of clique-width for graphs without large bicliques.
More precisely, we prove that if a class X without large bicliques is well-
quasi-ordered by the induced subgraph relation, then the graphs in X have
bounded path-width, i.e. there is a constant ¢ such that the path-width of
any graph in X is at most c. Since bounded path-width implies bounded
clique-width, the result affirmatively answers the question in [3] for graphs
without large bicliques. Thus the above algorithmic consequence is confirmed
e.g. for classes of graphs of bounded degree.

Section 2 contains all preliminary information related to the topic. In
this section we define an infinite family of graphs pairwise incomparable by
the induced subgraph relation, which we call canonical graphs. In Section 3
we prove our main combinatorial result, Theorem 1, stating that a graph
without large bicliques and having a large path-width has a large induced
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canonical graph. A consequence of this result is that if a class X without
large bicliques has unbounded path-width, then X contains an infinite subset
of canonical graphs, i.e. an infinite antichain. This implies that classes of
graphs without large bicliques that are well quasi-ordered by the induced
subgraph relation must have bounded path-width.

2. Notation and definitions

In this work we will be using standard graph theory terminology and nota-
tion consistent with the book of Diestel [4]. In particular, K, and P,, denote
the complete graph and the chordless path with n vertices, respectively, and
K, m stands for a complete bipartite graph with parts of size n and m.

Throughout the text, whenever we say that G contains H, we mean
that H is a subgraph of GG, unless we explicitly say that H is an induced
subgraph of G (or G contains H as an induced subgraph). If H is not an
induced subgraph of G, we say that G is H-free. By R = R(k,r,m), we
denote the Ramsey number, i.e. the minimum R such that in every colouring
of k-subsets of an R-set with r colours there is a monochromatic m-set, i.e.
a set of m elements all of whose k-subsets have the same colour.

According to the celebrated Graph Minor Theorem of Robertson and
Seymour, the set of all graphs is well-quasi-ordered by the graph minor rela-
tion [12]. This, however, is not the case for the more restrictive relations such
as subgraph or induced subgraph. Indeed, a sequence of graphs Hi, Ho,...,
creates an infinite antichain with respect to both relations, where H; is the
graph represented in Figure 1.

Figure 1: The graph H;.

By connecting two vertices of degree one having a common neighbour
in H;, we obtain a graph represented on the left of Figure 2. Let us denote
this graph by H/. By further connecting the other pair of vertices of degree
one we obtain the graph H, represented on the right of Figure 2.

We call any graph of the form H;, H] or H]' an H-graph. Furthermore,
we will refer to H! a tight H-graph and to H] a semi-tight H-graph. In an
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Figure 2: Graphs H] and H]'.

H-graph, the path connecting two vertices of degree 3 will be called the body
of the graph, and the vertices which are not in the body the wings.

Following standard graph theory terminology, we call a chordless cycle
of length at least four a hole. Let us denote by

C the set of all holes and all H-graphs.

It is not difficult to see that any two distinct (i.e. non-isomorphic) graphs in
C are incomparable with respect to the induced subgraph relation. In other
words,

Claim 1. C is an antichain with respect to the induced subgraph relation.

Moreover, from the poof of Theorem 1 we will see that for classes of
graphs without large bicliques which are of unbounded path-width this an-
tichain is unavoidable, or canonical, in the terminology of [5]. Suggested by
this observation, we introduce the following definition.

Definition 1. The graphs in the set C will be called CANONICAL.

The order of a canonical graph G is either the number of its vertices, if
G is a hole, or the the number of vertices in its body, if G is an H-graph.

3. Main result

In this section we prove the following theorem which is the main result of
the paper.

Theorem 1. If X is a hereditary subclass of (K, K, 4)-free graphs which is
well-quasi-ordered by the induced subgraph relation, then graphs in X have
a bounded path-width.

To prove the theorem, we will show that a large path-width combined
with the absence of large bicliques implies the existence of a large induced
canonical graph, which is a much richer structural consequence than just the
existence of a long induced path. An important part of showing the existence
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of a large canonical graph is verifying that its body (see Section 2 for the
terminology) is induced. This will be done by application of the following
theorem proved in [7].

Theorem 2. For every s, t, and q, there is a number Z = Z(s,t,q) such
that every graph with a path of length at least Z contains either Ps or K; or
K4 as an induced subgraph.

A plan of the proof of Theorem 1 is outlined in Section 3.1. Sections 3.2,
3.3, 3.4, 3.5 contain various parts of the proof.

3.1. Plan of the proof

To prove Theorem 1 we will show that graphs of arbitrarily large path-
width contain either arbitrarily large bicliques as subgraphs or arbitrarily
large canonical graphs as induced subgraphs. The main notion in our proof
is that of a rake-graph.

A rake-graph (or simply a rake) consists of a chordless path, the base
of the rake, and a number of pendant vertices, called teeth, each having a
private neighbour on the base. The only neighbour of a tooth on the base
will be called the root of the tooth, and a rake with k teeth will be called
a k-rake. We will say that a rake is ¢-dense if any ¢ consecutive vertices of
the base contain at least one root vertex. An example of a 1-dense 9-rake is
given in Figure 3.

AT

Figure 3: 1-dense 9-rake.

We will prove Theorem 1 through a number of intermediate steps as
follows.

1. In Section 3.2, we observe that any graph of large path-width contains
a rake with many teeth as a subgraph.

2. In Section 3.3, we show that any graph containing a rake with many
teeth as a subgraph contains either

— a dense rake with many teeth as a subgraph or

— a large canonical graph as an induced subgraph.
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3. In Section 3.4, we prove that dense rake subgraphs necessarily imply
either

— a large canonical graph as an induced subgraph or
— a large biclique as a subgraph.

4. In Section 3.5, we use the results of sections 3.2-3.4 to deduce Theo-
rem 1.

3.2. Rake subgraphs in graphs of large path-width

Lemma 1. For any natural k, there is a number f(k) such that every graph
of path-width at least f(k) contains a k-rake as a subgraph.

Proof. In [13], Robertson and Seymour has shown that for any tree T" there
is a constant ¢y such that any graph of path-width is at least ¢y contains T
as a minor. Taking T to be some fixed k-rake, we obtain that there exist a
constant f(k) such that any graph of path-width at most f(k) contains a k-
rake as a minor. Finally, it is not hard to see that if a graph contains a k-rake
as a minor, then it also contains a k-rake as a subgraph. This observation
completes the proof. O

3.3. From rake subgraphs to dense rake subgraphs

Lemma 2. Let k and s be natural numbers. Every graph containing a k+2-
rake as a subgraph contains either

e an s+ 5-dense k-rake as a subgraph or
e a canonical graph of order at least s as an induced subgraph.

Proof. Consider a graph that contains a k+ 2-rake as a subgraph and choose
such a k 4 2-rake with the minimal number of vertices. We denote the base
of the rake by P. Let {uj,ug,...,urr2} denote the roots of the rake that
are indexed respecting the linear order of the path P, i.e. so that u; and
ug42 are the endpoints of P and the subpaths of P from u; to w;4+1, which
we denote by FP;, are all mutually disjoint apart from the endpoints. Note
that by minimality of the rake it follows that each endpoint of the path P is
indeed a root vertex of the rake and that each P; is an induced path. If each
P; for e =2,3,...,k has at most s + 5 vertices, then we have an s + 5-dense
k-rake as required. So assume now that P; for some i = 2,3, ...k has size
more than s + 5. To complete the proof we will show that this P; gives rise
to a canonical graph of order at least s as an induced subgraph. We proceed
with some notation.
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Let P; = wiws ... w, with w; = u; and w, = u;4+1. Extend P; by adding
the vertex wg of P;_; that is adjacent to wy and the vertex w,11 of P;11 that
is adjacent to w, (unique choice as P;_; and P;;; are induced paths). Note
that wowiws ..., w,wyy1 is a subpath of P, the tooth v; is adjacent to w;
and the tooth v;11 is adjacent to w,. Let G be a graph induced by vertices
{wo, w1, ..., wr41}U{v;, vi41} and note that G contains an H-graph formed
by edges {wow1, wiwa, ..., w,wyy1} U{v;wi, vip1w,} as a subgraph but not
necessarily as an induced subgraph. Note that the body of the H-graph,
spanned by vertices {wy,wsy...,w,}, is a chordless path P;. For the rest of
the proof we will be arguing on the adjacencies of the wings of the H-graph
in G, i.e. adjacencies of vertices wg,w,,v; and v;11 in G. It will follow G
contains a canonical subgraph of order at least s as an induced subgraph.

We first claim that wq is not adjacent to w; for any [ = 2,3,...,r — 1.
Indeed, suppose for contradiction that wg is adjacent to some w; for [ =
2,3,...,7r—1. Let a path P’ be obtained from path P by replacing subpath
wows - .. wy of P by path wowjwyy1 ...w,.. The path P’ has smaller number
of vertices than path P, and note that the missing root vertex w; can be
replaced by w; with the new tooth being w;_;. This gives us a k + 2-rake
that has smaller number of vertices than the original, which contradicts our
minimality assumption.

Next, we show that v; is not adjacent to wy, ws, ..., w,. Again, suppose
for contradiction that v; is adjacent to w; for some [ = 4,5,...,r. Let the
path P’ be obtained from path P by replacing the subpath wjws ... w, of
P by path wiv;wjwyq ... w,.. Again, the path P’ has fewer vertices than
path P, all the root vertices of P remain in path P’, but as v; is now in the
path P’, we assign a new tooth ws to correspond to the root w;. Again, we
obtain a k + 2-rake that has smaller number of vertices than the original, a
contradiction.

By symmetry, we can show that w,y; is not adjacent to w; for any

1 =23,...,7 — 1 and v;41 is not adjacent to any of wy,ws,...,w,—_3. We
conclude that none of the wings of the H-graph are adjacent to any of
Wy, Ws, - - . , Wr—3. In other words, vertices wy, ws, . . ., w,_3 are of degree 2 in

G. If wyws is a cut-edge of G, we have that no vertex of {wg, wi, wa, w3, v;}
is adjacent to any of the vertex of {w,_o, wyr_1, Wy, Wyy1,vi+1}. Let I <3 be
the largest possible such that w; has degree at least 3 in G, p > r — 2 the
smallest possible such that w, has degree at least 3 in G. Taking the path
wjwi41 - .. wp together with another two neighbours of w; and w, provides
us with an induced H-graph whose base wjw41...w, has at least s + 1
vertices. On the other hand, if wyws is not a cut-edge in G, then there
is a chordless cycle in G containing the edge wjqws and hence this cycle
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must contain wzwaws ... wy—o (because of vertices of degree 2). Therefore,
we obtain an induced cycle of G with at least r —4 > s + 1 vertices. Hence
in both cases we obtain a canonical graph of order at least s as an induced
subgraph. This finishes the proof. O

3.4. Dense rake subgraphs

Lemma 3. For every s,q and ¢, there is a number D = D(s, q,{) such that
every graph containing an £-dense D-rake as a subgraph contains either

e a canonical graph of order at least s as an induced subgraph or
e q biclique of order q as a subgraph.

Proof. To define the number D = D(s,q,¥), we introduce intermediate no-
tations as follows: b := 2(¢—1)s?+2sq+4 and ¢ := R(2,2, max(b, 2q)), where
R is the Ramsey number. With these notations the number D is defined as
follows: D = D(s,q,/) := Z(fc?,2q,q), where Z is the number defined in
Theorem 2.

Consider a graph G containing an ¢-dense D-rake R as a subgraph. The
base of this rake is a path P° of length at least D and hence, by Theorem 2,
the subgraph of G induced by the base contains either a biclique of order
at least ¢ as a subgraph (in which case we are done) or an induced path P
of length at least £c2. Let us call any (inclusionwise) maximal sequence of
consecutive vertices of P? that belong to P a block. Assume the number of
blocks is more than c. Let P’ be the subpath of P induced by the first ¢
blocks. Let wyq, ..., w. be the rightmost vertices of the blocks. Let v1, ..., v,
be the vertices such that each v; is the vertex of Py immediately following w;.
Then P’ together with vy, ...,v. create a c-rake with P’ being the induced
base, vy, ..., v. being the teeth and w1, ..., w, being the respective roots. If
the number of blocks is at most ¢, then P° must contain a block of size at
least fc, in which case this block also forms an induced base of a c-rake (since
RC is (-dense). We see that in either case G has a c-rake with an induced
base. According to the definition of ¢, the ¢ teeth of this rake induce a graph
which has either a clique of size 2¢ (and hence a biclique of order ¢ in which
case we are done), or an independent set of size b. By ignoring the teeth
outside this set we obtain a b-rake R with an induced base and with teeth
forming an independent set.

Let us denote the base of R by U, its vertices by u, ..., u,, (in the order
of their appearances in the path), and the teeth of R by t1,...,t, (following
the order of their root vertices).
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Denote r := (¢—1)s74-2 and consider two sets of teeth T7 = {ta,t3, ..., }
and Ty = {tp_1,tp—2,...,tp—r+1}. By definition of r and b, there are 2sq
other teeth between ¢, and ;_,.1, and hence there is a set M of 2sq con-
secutive vertices of U between the root of ¢, and the root of t;_,.1. We
partition M into 2¢q subsets (of consecutive vertices of U) of size s each and
for i = 1,...,2q denote the i-th subset by M;.

If each vertex of T} has a neighbour in each of the first ¢ sets M;, then
by the Pigeonhole Principle there is a biclique of order ¢ with ¢ vertices in
Ty and q vertices in M. Similarly, a biclique of order ¢ arises if each vertex
of Ty has a neighbour in each of the last ¢ sets M;. Therefore, we assume
that there are two vertices ¢, € 11 and t;, € T3 and two sets M, and M,
with < y such that ¢, has no neighbours in M, while ¢, has no neighbours
in M,.

By definition, ¢, has a neighbour in U (its root) on the left of M,. If
additionally t, has a neighbour to the right of M,, then a chordless cycle
of length at least s arises (since |M,| = s and t, has no neighbours in M,),
in which case the lemma is true. This restricts us to the case, when all
neighbours of ¢, in U are located to the left of M,. By analogy, we assume
that all neighbours of ¢, in U are located to the right of M,. Let u; be
the rightmost neighbour of ¢, in U and u; be the leftmost neighbour of t;,
in U. According to the above discussion, i < j and j — j > 2s. But then
the vertices tq, tp, Wi—1, Ui, . . . , uj, uj41 induce an H-graph (possibly tight or
semi-tight) of order more than s (the existence of vertices u;—; and wji1
follows from the fact that 77 does not include 1, while 75 does not include
ty). O

3.5. Proof of Theorem 1

Combining the results of Lemma 1, Lemma 2 and Lemma 3, we conclude
that for every s, q, there is a number X = X (s, ¢) such that every graph of
path-width at least X contains either

e a canonical graph of order at least s as an induced subgraph or
e a biclique of order ¢ as a subgraph.

From this it is not hard to conclude that a class of graphs with un-
bounded path-width that excludes a biclique of order ¢ must contain an
infinite family of distinct canonical graphs, hence the class must be not well-
quasi-ordered. Therefore, well-quasi-ordered classes that exclude a biclique
of order ¢ for some ¢, must be of bounded path-width, as required.
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