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The input of the Edge Multicut problem consists of an undirected graph G and pairs of
terminals {s1, t1}, . . . , {sm, tm}; the task is to remove a minimum set of edges such that si

and ti are disconnected for every 1 � i � m. The parameterized complexity of the problem,
parameterized by the maximum number k of edges that are allowed to be removed,
is currently open. The main result of the paper is a parameterized 2-approximation
algorithm: in time f (k) ·nO (1) , we can either find a solution of size 2k or correctly conclude
that there is no solution of size k.
The proposed algorithm is based on a transformation of the Edge Multicut problem into
a variant of the parameterized Max-2SAT problem, where the parameter is related to
the number of clauses that are not satisfied. It follows from previous results that the
latter problem can be 2-approximated in a fixed-parameter time; on the other hand, we
show here that it is W[1]-hard. Thus the additional contribution of the present paper
is introducing the first natural W[1]-hard problem that is constant-ratio fixed-parameter
approximable.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The minimum cut problem and its variants are among
the most well-studied combinatorial optimization prob-
lems. The focus of the paper is Edge Multicut: given a
graph G and pairs of vertices {s1, t1}, . . . , {sm, tm}, remove
a minimum set of edges such that si and ti are discon-
nected for every 1 � i � m. Edge Multicut generalizes the
classical s − t cut problem (disconnect s and t) and the
Multiway Cut problem (disconnect all the terminals from
each other). Edge Multicut can be approximated within a
factor of O (log m) in polynomial time [13] (even in the
weighted case where the goal is to minimize the total
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weight of the removed edges). However, under the Unique
Games Conjecture of Khot [17], no constant factor approx-
imation is possible for Edge Multicut [5].

Parameterized complexity approaches hard computa-
tional problems through a multivariate analysis of the run-
ning time. Instead of expressing the running time as a
function of the input size n only, the running time is ex-
pressed as a function of n and k, where k is a well-defined
parameter of the input instance. We say that a problem
(with a particular parameter k) is fixed-parameter tractable
(FPT) if it can be solved in time f (k) · nO (1) , where f is
an arbitrary function depending only on k. Thus we re-
lax polynomial time by allowing exponential (or worse!)
dependence on the parameter k. For more background on
parameterized complexity, the reader is referred to the
monographs [10,12,22].

Edge Multicut on trees is FPT, parameterized by the
maximum number k of edges that can be deleted [3,15].
The problem and its vertex-cut version were studied in
[14] for other classes of graphs. For general graphs, Edge
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Multicut is FPT if both k and m are chosen as parameters
(i.e., the problem can be solved in time f (k,m) ·nO (1)) [19,
26]. However, it is an open question whether Edge Mul-
ticut is FPT in general graphs parameterized by k only.
Besides the fundamental nature of the problem, there are
other reasons why this question is important. It has been
observed that Edge Multicut is equivalent to Fuzzy Cluster
Editing, a correlation clustering problem [1,2,8]. Further-
more, it seems that cut problems are important ingredi-
ents in the solution of certain parameterized problems. For
example, the fixed-parameter tractability of Directed Feed-
back Vertex Set [6] was a longstanding open question and
solving a variant of directed multicut was an important
step in its solution.

Recently, it has been proposed that the notion of ap-
proximability can be investigated in the framework of
fixed-parameter tractability as well [4,7,9,21]. Here we fol-
low this approach and present a parameterized 2-approxi-
mation for Edge Multicut: the main result of the paper is
an algorithm with running time f (k) · nO (1) that, given an
instance of the Edge Multicut problem and an integer k, ei-
ther finds a solution of size 2k or correctly concludes that
no solution of size k exists. As surveyed in [21], so far there
are very few natural problems where a parameterized ap-
proximation is possible, but the problem is not known to
be fixed-parameter tractable.

The main idea of our approximation algorithm is to re-
duce Edge Multicut to a variant of Almost 2SAT (delete k
clauses to make a 2-CNF formula satisfiable). The reduc-
tion is nontrivial: it consists of several steps and requires
the use of iterative compression. Almost 2SAT is known to
be fixed-parameter tractable [24] and this immediately im-
plies a parameterized 2-approximation for the variant we
use here. Proving that this variant is FPT would seem an
obvious approach for proving that Edge Multicut is FPT.
However, we rule out this possibility by showing the W[1]-
hardness of the Almost 2SAT variant. This might be of
independent interest, as it is the first natural W[1]-hard
problem having a constant-ratio parameterized approxima-
tion.

Besides giving an algorithm for a particular problem,
the paper has a conceptual contribution as well by intro-
ducing a new technique: we demonstrate that reduction
to Almost 2SAT can be a useful approach in the design of
fixed-parameter algorithms. We believe that this technique
will find uses for other problems in the future. However, it
is not obvious what type of problems can be handled this
way: for example, it was not apparent that Multicut has
any connections with 2SAT.

2. Preliminaries

The objects considered in the present paper are (simple
undirected) graphs and 2-cnf formulas. We define the re-
lated notation that will be used further in the paper. For a
graph G , we denote by V (G) and E(G) its set of vertices
and edges, respectively. For C such that either C ⊆ V (G) or
C ⊆ E(G), G \ C is the graph obtained from G by removal
of the elements of C (if C ⊆ V (G) then the edges incident
to C are removed from G as well). For E∗ ⊆ E(G), G[E∗] is

a graph whose set of edges is E∗ and the set of vertices is
the set of end points of E∗ .

Let us specify two sets {s1, . . . , s�} and {t1, . . . , t�} of
vertices of G and call their union the set of terminal ver-
tices. Let T = {{s1, t1}, . . . , {sl, t�}} and let C be either a set
of non-terminal vertices or a set of edges of G such that
G \ C has no path between si and ti for each i from 1 to l.
In this case, we say that C separates T in G . If C is a set
of edges, we also say that C is an edge multicut (emc) of
(G,T). Let Y ⊆ V (G). We say that C separates T and Y in
G if C separates T in G and G \ C has no path between any
two distinct vertices of Y . If C is a set of edges, we also say
that C is an emc of (G,T, Y ). Note that in the Edge Multi-
cut problem we have to find a set of edges that separates
a set T of terminal pairs.

Now we define the central problem considered in the
present paper.

The EMC problem

Instance: A graph G , an integer k, and a set T of pairs of
terminal vertices of G .

Parameter: k.
Output: An emc of (G,T) of size at most k or ‘NO’ if no

such emc exists.

We will also need the auxiliary problems defined below
and referred as aemc1 and aemc2.

The AEMC1 problem

Instance: A graph G , an integer k, a set T of pairs of termi-
nal vertices of G , a set Y of at most 2k + 1 non-terminal
vertices separating T in G .

Parameter: k.
Output: An emc of (G,T, Y ) of size at most k or ‘NO’ if no

such emc exists.

The AEMC2 problem

Instance: The same as in the aemc1 problem
Parameter: k
Output: An emc of (G,T) of size at most k or ‘NO’ if no

such emc exists.

Finally, we use the following modification of the Almost
2SAT problem [24]. Let F be a 2-cnf formula and let C =
(�1 ∨ �2) be a clause of F . A literal � satisfies C if � = �1
or � = �2. A set L of literals satisfies F or, in other words,
L is a satisfying assignment of F if L does not contain a
literal together with its negation and each clause of F is
satisfied by at least one literal of L. Let L = {�1, . . . , �r}.
We denote the 2-cnf formula

∧r
i=1(�i ∨ �i) by

∧
L. The

clause (�1 → �2) is shorthand for (¬�1 ∨ �2).

The Almost 2SAT problem with blocks and fixed literals
(2-ASAT-BFL)

Instance: (F , P , L,k) where
• F is a satisfiable 2-cnf formula with possible repeated

occurrences of clauses;
• P is a family of (not necessarily disjoint) subsets

(blocks) of at most 2 clauses covering all the clauses
of F ;
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• L is a set of literals;
• k is a non-negative integer.

Parameter: k.
Output: A set B of at most k blocks of P such that F ′ ∧∧

L is satisfiable (F ′ is the formula obtained from F as
a result of removal of the clauses of B) or ‘NO’ if no such
a set of blocks exists.

Let P be a parameterized problem where the parameter
k is an integer appearing in the input and the task is to
find some object of size at most k or report ‘NO’ if no such
object exists. Following [7,21], we say that problem P is
fixed-parameter approximable (FPA) with ratio c if there is
an f (k) · nO (1) time algorithm that either returns an object
satisfying all output specifications except that its size is at
most ck, or ‘NO’ and in the latter case it is guaranteed that
there is no object of size at most k satisfying the output
specifications.

Proposition 1. The 2-asat-bfl problem is FPA with ratio 2 and
the approximation can be achieved in time O (25kkm2) where m
is the number of clauses of F .

Proof. Claim 8 in [23] (this is the full version of [24])
states that in time O (5kkm2) it is possible either to com-
pute a set S of at most k clauses so that F ′ ∧ ∧

L is satis-
fiable, where F ′ is the formula obtained from F as a result
of the removal of S , or to conclude that no such a set of
clauses exists. Run this algorithm with parameter 2k (thus
raising the exponential part to 25k). Assume that the algo-
rithm returns a set S of clauses of size at most 2k. Then
return an arbitrary minimal set B of blocks covering these
clauses. Otherwise return ‘NO’. Clearly, if a set of blocks B
is returned and F ′ is the formula resulting from removal
of the clauses of these blocks from F then F ′ ∧ ∧

L is sat-
isfiable: in particular, all clauses of S are removed. If the
resulting algorithm returns ‘NO’, it follows that removal
of 2k clauses cannot make F satisfiable. Since each block
consists of at most 2 clauses, it follows that removal of k
blocks cannot make F satisfiable, implying that the ‘NO’
answer is correct. �
3. Reduction to Almost 2SAT

Let (G,T, Y ,k) be an instance of the aemc1 problem.
We define the instance (F , P , L,k) of the 2-asat-bfl prob-
lem corresponding to (G,T, Y ,k). Then we show that
(G,T, Y ,k) is a ‘YES’ instance of the aemc1 problem3 if
and only if (F , P , L,k) is a ‘YES’ instance of the 2-asat-bfl

problem. The fixed-parameter approximability of the aemc1

will then follow from Proposition 1.
The set of variables of F is {zu,y | u ∈ V (G), y ∈ Y }.

The variable zu,y represents the truth of the ground state-
ment “u and y belong to the same connected componen-
t”. The clauses of F can be partitioned into the following
3 groups.

3 A ‘YES’ instance is one whose output is not ‘NO’.

Group 1. For each {si, ti} ∈ T and for each y ∈ Y , the group
contains 2k+1 copies of clause (¬zsi ,y ∨¬zti ,y). The pur-
pose of these clauses is to forbid two terminals to be
separated to belong to the same connected component.

Group 2. For each pair {y1, y2} of vertices of Y such that
y1 	= y2, and for each u ∈ V (G) the group contains 2k+1
copies of clause (¬zu,y1 ∨ ¬zu,y2). The purpose of these
clauses is to forbid two different vertices of Y to belong
to the same connected component.

Group 3. For each {u, v} ∈ E(G) and for each y ∈ Y , the
group contains clause (zu,y → zv,y) and clause (zv,y →
zu,y). These clauses show that vertices u and v belong
to the same connected component.

Observe that F is satisfiable, for instance, by an assign-
ment including the negative literals of all the variables. The
set P of blocks is defined as follows. For each clause of F
there is a block containing this clause only. Also for all pos-
sible pairs {(u, y1), (v, y2)} where {u, v} ∈ E(G), y1 ∈ Y ,
y2 ∈ Y , there is a block {(zu,y1 → zv,y1 ), (zv,y2 → zu,y2)}.
Finally, L = {zy,y | y ∈ Y }.

Lemma 1. If (G,T, Y ,k) is a ‘YES’ instance of the aemc1 prob-
lem then (F , P , L,k) is a ‘YES’ instance of the 2-asat-bfl prob-
lem.

Proof. Let C be an emc of (G,T, Y ,k) of size at most k.
We associate with each {u, v} ∈ C the block B({u, v}) cor-
responding to the ‘location’ of u and v . In particular, if in
G \ C there are two different vertices y1 and y2 of Y such
that u belongs to the component of y1 while v belongs
to the component of y2 then B({u, v}) = {(zu,y1 → zv,y1 ),

(zv,y2 → zu,y2)}. Otherwise if exactly one of {u, v}, say, u
belongs to the connected component of some vertex y ∈ Y
while the connected component of v contains no vertex of
Y then B({u, v}) = {(zu,y → zv,y)}. Finally, if neither u nor
v belong to the same component with a vertex of Y then
B({u, v}) can be an arbitrarily chosen block.

Let F ′ be a 2-cnf formula obtained from F by removal
of the union of all B({u, v}). We claim that F ′ is satisfiable
by an assignment including L as a subset. In particular, let
L∗ be the set of literals of the variables of F created as
follows: zu,y ∈ L∗ whenever u belongs to the same compo-
nent with y in G \ C , otherwise ¬zu,y ∈ L∗ . Clearly, L ⊆ L∗ .
We claim that L∗ satisfies F ′ . Clauses of Group 1 are sat-
isfied because otherwise there is a pair {si, ti} of terminals
that belong to the same component (with some y ∈ Y )
in G \ C in contradiction to being C an emc of (G,T, Y ).
Clauses of Group 2 are satisfied because otherwise there
is a vertex of G \ C that belongs to two distinct connected
components, which is absurd. Finally, assume that a clause
c = (zu,y → zv,y) is not satisfied by L∗ . It can happen only
if u belongs to the same component with y, while v does
not. By description of Group 3, {u, v} ∈ E(G) and, since u
and v belong to different connected components of G \ C ,
{u, v} ∈ C . Observe that the first or the second condition
of creation of B({u, v}) is satisfied and hence c ∈ B({u, v}),
i.e., c is not a clause of F ′ . The proof is now complete. �
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Lemma 2. If (F , P , L,k) is a ‘YES’ instance of the 2-asat-bfl

problem then (G,T, Y ,k) is a ‘YES’ instance of the aemc1 prob-
lem. Furthermore, a solution B of the former problem can be
transformed into a solution C with |C | = |B| of the latter prob-
lem.

Proof. Let B (|B| � k) be a set of blocks whose removal
from F makes the resulting 2-cnf formula F ′ satisfiable
by an assignment L∗ such that L ⊆ L∗ . Observe that it
makes no sense to include in B any of the blocks contain-
ing only a single clause from Group 1 or 2: those clauses
are present in 2k + 1 copies in F , hence they have to be
satisfied in L∗ as well. Thus we can safely assume that ev-
ery block in B contains one or two clauses from Group 3.

By construction, each block of B corresponds to ex-
actly one edge of G . Let C be the set of all such edges.
We claim that C is an emc of (G,T, Y ). Assume first
that C does not separate Y , i.e., there are vertices y1
and y2 of Y such that G \ C has a path p from y1
to y2. If the length of p is 1 then let S = {(zy1,y1 →
zy2,y1 )}. Otherwise, let u1, . . . , uq be the intermediate ver-
tices of p listed in the order of their occurrence when
p is traversed from y1 to y2 and let S = {(zy1,y1 →
zu1,y1), (zu1,y1 → zu2,y1 ), . . . , (zuq−1,y1 → zuq,y1 ), (zuq,y1 →
zy2,y1 )}. Since L ⊆ L∗ , zy1,y1 ∈ L∗ as well as zy2,y2 ∈ L∗ . If
all the clauses of S are contained in F ′ , then zy2,y1 ∈ L∗
would follow from this chain of implications, contradicting
(¬zy2,y1 ∨ ¬zy2,y2 ) (that necessarily belongs to F ′). Hence
at least one clause of S belongs to a block of B , implying
that at least one edge of p belongs to C .

Thus, if C is not an emc of (G,T, Y ), it remains to as-
sume that C does not separate T, i.e., there is {s, t} ∈ T
such that G \ C has a path p between s and t . By defini-
tion of Y , p contains at least one vertex y ∈ Y .4 If s and y
are adjacent in p then let S = {(zy,y → zs,y)}. Otherwise,
let u1, . . . , uq be the intermediate vertices of p occurring
in p between y and s listed in the order they occur if p is
traversed from y to s. Then S = {(zy,y → zu1,y), (zu1,y →
zu2,y), . . . , (zuq−1,y → zuq,y), (zuq,y → zs,y)}. Arguing as in
the previous case, we derive that either zs,y ∈ L∗ or one of
the edges corresponding to S belongs to C . Arguing anal-
ogously regarding the subpath of p between y and t we
derive that either zt,y ∈ L∗ or at least one edge of this sub-
path belongs to C . It follows that if no edge of p belongs to
C then both zs,y ∈ L∗ and zt,y ∈ L∗ hold. But this is a con-
tradiction since in this case the clause (¬zs,y ∨¬zt,y) is not
satisfied. We conclude that C is an emc of (G,T, Y ). �

The following theorem is an immediate consequence of
Proposition 1, Lemmas 1 and 2.

Theorem 1. The aemc1 problem is FPA with ratio 2.

4. Fixed-parameter approximability of the EMC problem

We prove the main result of the paper in this section:
emc is fixed-parameter approximable with ratio 2. First,

4 Notice that this is the only place where it is essential that Y separates
all the pairs of terminals of T.

we reduce the aemc2 problem to the aemc1 problem. The
only difference between the two problems is that in the in-
stance (G,T, Z ,k) of the aemc2 problem, the solution does
not have to separate Z . However, the algorithm can be ex-
tended by trying all possible ways in which the solution
partitions the set Z .

Lemma 3. The aemc2 problem is FPA with ratio 2.

Proof. Apply the following algorithm. Explore all possible
partitions of vertices of Y into subsets. For the given par-
tition Z = Z1 ∪ · · · ∪ Zq , let G∗ be the graph obtained from
G by contracting each Zi into a vertex yi (loops produced
by the contraction are removed, multiple edges are sub-
divided). Let Y = {y1, . . . , yq}. Using Theorem 1, we can
obtain a 2-approximation for the instance (G∗,T, Y ,k) of
the aemc1. If for at least one such instance an emc S of
(G∗,T, Y ) is returned, then return S (which is clearly an
EMC of (G;T) as well). Otherwise, return ‘NO’.

Since the number of partitions of Z depends on |Z | �
2k + 1, the above algorithm is an FPT algorithm with pa-
rameter k. It is easy to see that if the algorithm returns
an emc S of (G∗,T, Y ,k), then S is an emc of (G,T) as
well. Conversely, assume that (G,T) has an emc C of size
at most k. Let Z1, . . . , Zq be the partition of Z so that two
vertices get into the same partition class if and only if they
belong to the same connected component of G \ C . Accord-
ing to Theorem 1, being applied to the tuple (G∗,T, Y ,k)

resulting from this partition, the above algorithm neces-
sarily produces an emc S of (G∗,T) having size at most 2k.
Consequently, if the above algorithm returns ‘NO’ an emc

of (G,T) of size at most k cannot exist and the answer ‘NO’
is valid. �

The problem aemc2 is easier than emc, since the input
contains more information, namely the set Z separating T.
We apply a methodology known under the name ‘itera-
tive compression’ which essentially gives us such a set
Z ‘for free’. Iterative compression was first used by Reed
et al. [25] and has become a very useful technique in the
design of parameterized algorithms [6,16,18,20,24].

Theorem 2. The emc problem is FPA with ratio 2.

Proof. Let (G,T,k) be an instance of the emc problem. Let
e1, . . . , em be the edges of G . Let G0, . . . , Gm be the graphs
defined as follows. For each Gi , V (Gi) = V (G). E(G0) = ∅
and for each i > 0, E(Gi) = {e1, . . . , ei}. One by one, we
consider the (Gi,T,k) instances of the emc problem in as-
cending order of i, and for each instance we find a 2-ap-
proximation. The approximation for each (Gi,T,k) results
in output Si , where Si is either a set of edges or ‘NO’.
In particular, S0 = ∅. Consider computing of Si , i > 0 pro-
vided that Si−1 is already known. If Si−1 = ‘NO’ then
Si = ‘NO’, as Si is a supergraph of Si−1. Otherwise, Si−1 is
an emc of size at most 2k for T in Gi−1, hence Si−1 ∪ {ei}
is an emc of size at most 2k + 1 for T in Gi . Subdivide
each edge of Si−1 ∪ {ei} with a new vertex; clearly, subdi-
visions does not change the existence of an emc. Let G∗ be
the graph obtained this way and let Z be the set of new



Author's personal copy

D. Marx, I. Razgon / Information Processing Letters 109 (2009) 1161–1166 1165

vertices. It follows that Z has size at most 2k + 1 and sep-
arates T in G∗ . Thus we can use the algorithm for aemc2

on the instance (G∗,T, Z ,k). It either returns an emc of T
in G∗ of size at most 2k (which can be modified to obtain
an emc Si of T in G by replacing each subdivided edge by
the corresponding edge of Si−1 ∪ {ei}) or returns ‘NO’, in
which case we can set Si = ‘NO’. The validity of the algo-
rithm is easy to verify by induction on i combined with
Lemma 3. �

We conclude the section with computing the runtime
of the algorithm achieving the ratio 2 approximation of
the EMC problem. Denote |V (G)| by n, |E(G)| by m and
|T| by �. The iterative compression process described in
the proof of Theorem 2 takes O (m) iterations of solving
the aemc2 problem. The algorithm for the aemc2 problem
takes P (2k + 1,k) iterations of solving the aemc1 prob-
lem, where P (2k + 1,k) is the number of partitions of a
2k + 1-element set into at most k classes. Finally, in order
to solve the aemc1 problem the graph is transformed into
a 2-cnf formula. The number of clauses of this formula is
m1 = O (�k2 +nk3 +mk) = O (nk3 +mk) (the term �k2 corre-
sponding to the number of clauses of Group 1 is absorbed
by nk3). Then the 2-asat-bfl problem is solved for the ob-
tained formula, which takes O (25kkm2

1) = O (25kk3(n2k4 +
m2)). Thus the overall complexity is O (25k P (2k + 1,k) ·
k3(n2k4 + m2)).

5. Hardness of the 2-ASAT-BFL problem

It is easy to see from the above discussion that the
fixed-parameter tractability of the 2-asat-bfl problem
would imply the fixed-parameter tractability of the emc

problem. In this section we show that the latter is very
unlikely to be derived in this way because the 2-asat-

bfl problem turns out to be W[1]-hard. To the best of
our knowledge, this is the first problem known to be both
W[1]-hard and FPA with a constant ratio.

Theorem 3. 2-asat-bfl problem is W[1]-hard even if the
blocks are disjoint.

Proof. The proof is by reduction from Multicolored

Clique, where given a graph G , an integer k, and a proper
k-coloring of the vertices of G , the task is to decide
whether there is a k-clique in G . (Proper k-coloring is a
mapping from V (G) to {1, . . . ,k} such that adjacent ver-
tices have different colors.) Multicolored Clique is known
to be W[1]-hard [11]. We can assume that every c-colored
vertex has at least one neighbor from every color class ex-
cept c: otherwise the vertex cannot be part of a k-clique
and can be safely deleted. Let nc be the number of vertices
of color c. Let vc,i (1 � i � nc) be the vertices with color c.
Let d(c, i, c′) � 1 be the number of neighbors of vc,i hav-
ing color c′ . Let us fix an ordering of these neighbors and
let n(c, i, c′, j) be the j-th neighbor of vc,i having color c′
in this ordering.

Set k′ := (k
2

)
. We construct a satisfiable 2-cnf formula

F and a set of literals L such that deletion of k′ blocks
makes F satisfiable by an assignment including L if and

only if G has a multicolored clique of size k. For every
1 � c � k and 0 � i � nc , we introduce a variable xc,i . For
every 1 � c, c′ � k, c 	= c′ , 1 � i � nc , 0 < j < d(c, i, c′), we
introduce a variable yc,i,c′, j . For ease of notation, we de-
fine yc,i,c′,0 := xc,i−1 and yc,i,c′,d(c,i,c′) := xc,i (note that the
second index of xc,i can be 0, while it is at least 1 for
yc,i,c′, j).

The clauses of F are the union of the disjoint blocks Be

for each edge e of G . Suppose that edge e connects vc,i
and vc′,i′ and n(c, i, c′, j) = vc′,i′ as well as n(c′, i′, c, j′) =
vc,i hold for some j, j′ . Block Be consists of the clauses
(yc,i,c′, j−1 → yc,i,c′, j) and (yc′,i′,c, j′−1 → yc′,i′,c, j′ ). It is
easy to see that F is satisfiable by setting all the vari-
ables to 0. The set L of literals is defined as follows:
L = {xc,0 | 1 � c � k} ∪ {¬xc,nc | 1 � c � k}.

Before introducing the formal proof, we give an intu-
itive explanation. Formula F can be considered as contain-
ing k components, one for each color. The component corre-
sponding to a color c consists of nc fragments, one for each
vertex colored in c. The fragment corresponding to ver-
tex vc,i consists of k − 1 sets of implications one for each
c′ 	= c, and it is convenient to imagine that each such set is
a sequence of implications of the form yc,i,c′,0 → yc,i,c′,1 →
·· · → yc,i,c′,dc,i,c′ . Due to the settings yc,i,c′,0 := xc,i−1 and
yc,i,c′,d(c,i,c′) := xc,i and the literals of L, F can be made
satisfiable if and only if for each component of color c we
identify a fragment corresponding to vertex vc,i and re-
move a clause from each sequence of implications of this
fragment. That is, to make the formula satisfiable, it is nec-
essary and sufficient to remove k(k − 1) clauses. Since we
want to remove only k′ = k(k − 1)/2 blocks, we have to
find out such fragments whose sequences of implications
can be partitioned into pairs so that for each pair there is a
block ‘covering’ both sequences of this pair. The blocks are
designed in such a way that two fragments can be ‘con-
nected’ by at most one block and even this can happen
only in the case when the vertices corresponding to these
fragments are adjacent. It follows that removal of k′ blocks
can make F ′ satisfiable if and only if the considered frag-
ments correspond to a set of mutually adjacent vertices,
one for each color, i.e., a multicolored clique.

Now we introduce the formal proof. Suppose that G has
a multicolored clique K of size k; let vc,ic be the vertex of
K having color c. For every 1 � c, c′ � k, c 	= c′ , there is
an integer jc,c′ such that n(c, ic, c′, jc,c′) = vc′,ic′ . Let F ′ be
the formula obtained from F by deleting the blocks corre-
sponding to the edges of K .

Consider a set L∗ of literals of variables yc,i,c′, j (for
every 1 � c, c′ � k, c 	= c′ , 1 � i � nc , 0 � j � d(c, i, c′)) cre-
ated as follows: yc,i,c′, j ∈ L∗ if i < ic (independently of the
values of c′ and j), or i = ic , provided that j < jc,c′ . Other-
wise ¬yc,i,c′, j ∈ L∗ .

Since L∗ contains literals of all variables yc,i,c′,0 and
yc,i,c′,d(c,i,c′) , it in fact contains the literals of all variables
xc,i . Let us verify that all variables xc,i are consistently as-
signed. In addition, to ensure that L ⊆ L∗ , we check that L∗
contains xc,0 and ¬xc,nc for 1 � c � k. Consider first a vari-
able xc,0. By definition its value equals the value of yc,1,c′,0
for all possible values of c′ . If ic > 1 then yc,1,c′,0 ∈ L∗ .
Otherwise, ic = 1 and in this case, as jc,c′ � 1, it follows
again that yc,1,c′,0 ∈ L∗ . Thus we have verified the va-
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lidity of assigning xc,0. Now, consider xc,nc . By definition,
xc,nc = yc,nc ,c′,d(c,nc ,c′) for all possible values of c′ . Clearly
nc � ic . If nc > ic then ¬yc,nc ,c′,d(c,nc ,c′) ∈ L∗ . Otherwise,
¬yc,nc ,c′,d(c,nc ,c′) ∈ L∗ because nc � jc,c′ , implying the valid-
ity of assigning xc,nc . Finally, consider xc,i when 0 < i < nc .
The value of xc,i is equal to the value of yc,i,c′,d(c,i,c′) and
the value of yc,i+1,c′,0 for all the values of c′ . Using the de-
scription of L∗ , it is not hard to verify the consistency of
instantiation of xc,i by considering first i < ic then i = ic
and finally i > ic . It remains to verify that each clause of
F ′ is satisfied by L∗ . Assume that a clause (yc,i,c′, j−1 →
yc,i,c′, j) is not satisfied. This is only possible if i = ic and
j − 1 < jc,c′ and j � jc,c′ , i.e., j = jc,c′ , but in that case the
clause was deleted from F ′ , a contradiction.

For the other direction of the proof, suppose that it is
possible to obtain, by the deletion of at most k′ blocks,
a formula F ′ that has a satisfying assignment L∗ such
that L ⊆ L∗ . In particular this means that xc,0 ∈ L∗ and
¬xc,nc ∈ L∗ for every 1 � c � k. Thus for every 1 � c � k,
there is a smallest 1 � ic � nc such that xc,ic−1 ∈ L∗ and
¬xc,ic ∈ L∗ . We claim that K := {vc,ic : 1 � c � k} is a clique
of size k. Let E∗ be the set of edges corresponding to the
deleted blocks. We show that for every 1 � c, c′ � k and
c 	= c′ , vc,ic is adjacent to a c′-colored vertex in G[E∗]. It
follows that G[E∗] has k vertices of degree k − 1. On the
other hand |E∗| = (k

2

)
. This is only possible if G[E∗] is a

complete graph and V (G[E∗]) = K . In other words, K is a
clique of size k in G .

Suppose that vc,ic is not adjacent to a c′-colored
vertex in G[E∗]. That is, E∗ does not contain any of
the edges {vc,ic ,n(c, ic, c′, j)} for 1 � j � d(c, ic, c′). This
means that none of the clauses (yc,ic ,c′, j−1 → yc,ic ,c′, j)

(1 � j � d(c, ic, c′)) are deleted. Since d(c, ic, c′) � 1, these
clauses ensure that if yc,ic ,c′,0 = 1, then yc,ic ,c′,d(c,ic,c′) =
1 as well. However, by the definition of ic , we have
yc,ic,c′,0 = xc,ic−1 = 1 and yc,ic ,c′,d(c,ic ,c′) = xc,ic = 0, which
gives a contradiction. �
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