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My main research area is parameterized complexity, in particular, applica-
tions of the parameterized complexity methodology to the following topics:

• algorithms for graph separation problems;

• complexity of Boolean functions;

• structural graph parameters (e.g. treewidth and cliquewidth) and their
applications to understanding well quasi-orderability of graph classes.

I also have experience in design of exponential time algorithms both in ap-
plied (AI planning and constraint solvers) and theoretical (moderate exponential
algorithms) settings.

In the following three sections I give a short overview of my results related to
the above three topics and outline some interesting (in my opinion) directions
of future research

1 Parameterized complexity of Boolean functions

Complexity of a Boolean function is the amount of memory needed to represent
the function. For example, a function of n variables requires O(2n) bits to be
represented in the form of a truth table. Other forms of representation, such as
Boolean circuits can be much more succinct for certain classes of functions.

Understanding the complexity of a particular representation for a particular
class of functions is very important from both theoretical and applied perspec-
tives. I came to this field through my interest in knowledge representation. In
this field knowledge is often represented in a propositional form. This represen-
tation is nothing else than a Boolean function. There are two quite contradictory
requirements to this Boolean function. On the one hand, the representation
should be sufficiently concise to be recorded in a computer memory. On the
other hand, this representation should allow efficient querying. There is no uni-
versally good solution. However, a few reasonable representations reconciliating
the above requirements have been proposed. It is important to study upper and
lower bounds of these representations to understand the classes of functions they
can represent and the classes they cannot.
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1.1 Lower bounds

Lower bounds for obdds The starting point of my research in this topic was
the result [8] stating a parameterized upper bound on the size of the famous
Ordered Binary Decision Diagrams (obdds), a model widely used in the areas
of verification and knowledge representation because of possibility of its efficient
querying. The disadvantage of obdds is that for many useful types of functions
their size is exponential in the number of variables. A standard way to obtain an
obdd is by transformation from a Conjunctive Normal Form (cnf). The result
[8] states that a cnf of treewidth k (of its primal graph) 1 can be transformed
into an obdd of size O(nk).

A natural open question (for a parameterized complexity researcher) is whether
or not the above upper bound can be turned into a fixed-parameter tractable one,
i.e. to the form f(k) ∗ nc where c is a fixed constant independent on k. In [14],
we show that this is impossible by demonstrating for each k, there is a class of
cnfs of treewidth at most k for which the size of equivalent obdds is Ω(nk/4).
Thus we provide a parameterized lower bound, essentially matching the upper
bound of [8].

This lower bound has one more consequence. A relatively recent devel-
opment in the area of knowledge representation is introduction of Sentential
Decision Diagrams (sdd) [7]. This model is more succinct than obdds and yet
many queries that can be efficiently answered for obdds can also be efficiently
answered for sdds. Thus the sdd has a potential to replace the obdd in ap-
plications. Using the parameterized lower bound of [14], I provided the first
non-parameterized separation between obdd and sdd [12]. That is, I demon-
strated a class of cnfs which have polynomial size representation as sdds but
do not have a polynomial size representation as obdds.

Lower bounds for non-deterministic read-once branching programs.
In terms of circuit complexity classification, obdds are quite a restrictive model
called oblivious deterministic read-once branching programs. A natural follow-
up question for the result [14] is to clarify if the non-parameterized lower bound
still holds if some of these restrictions are waived. This turned out the case
for the first two restrictions. In particular, I have shown in [13] that the nΩ(k)

lower bound holds for non-deterministic read-once branching programs (nrobp).
This parameterized lower bound has been used to obtain a non-parameterized
one, essentially matching the upper bound established in [3]. The extended
version of [13] (together with the non-parameterized lower bound) has been re-
cently accepted to the Algorithmica journal, please see [15] for the corresponding
preprint.

Further development. The result [13] shows that read-once branching
programs are incapable to efficiently represent cnfs of bounded treewidth. A
natural direction for further investigation is to try to see if the same is true for
read-twice branching programs, read-3-times and, more general, for read-c-times

1Treewidth is a well known structural graph parameter measuring closeness of the graph
to a tree. See e.g. here https://en.wikipedia.org/wiki/Treewidth for a short description
of this parameter.
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branching programs for an arbitrary but fixed constant c.
My current working hypothesis is that this is indeed true, i.e. that read-c-

times branching programs cannot efficiently represent cnfs of bounded treewidth.
In fact I have already made a progress towards verifying this hypothesis. The
corresponding preprints are [16] and [17].

Let me say a few more words about [17]. If the hypothesis above is correct,
it would imply a polynomial separation between read-c-times non-deterministic
branching programs and cnfs. In other words, it would follow that there
are Boolean functions expressible as cnf of polynomial size (in the number
of variables) that cannot be represented as polynomial size read c-times non-
deterministic branching programs. However, this latter question is still open
as well. Therefore, it looks meaningful to try first to separate cnf and read
c-times non-deterministic branching programs with the hope that the obtained
insight would help to understand the complexity of these branching programs
on cnfs of bounded treewidth. The work [17] is a progress in this direction.
It does not yet capture non-deterministic read-c-times branching programs in
their full generality. However, it achieves the desired separation for two impor-
tant subclasses of these branching programs. It also introduces a new graph
structural parameter that may be important for construction of hard cnfs of
bounded treewidth.

A rather unexpected spin-off of results [16] and [17] is that the lower bounds
for oblivious branching programs hold for semantic rather than syntactic re-
striction. A well known open problem in the area of circuit complexity is to
obtain a non-polynomial lower bound for semantic non-deterministic read-once
branching programs. Now, one of lower bounds of [17] requires one more re-
striction that the branching program is oblivious. Thus, it is very interesting to
investigate whether the structural parameter machinery developed in [17] and
earlier in [13] can be upgraded to tackle this well known open problem.

1.2 Upper bounds

An important formalism in the area of propositional knowledge representation is
a Decomposable Negation Normal Form (dnnf) [6]. A notable result regarding
dnnfs is that a cnf of treewidth at most k can be transformed to a dnnf of
size O(2kn). In terms of parameterized complexity, this means that there is a
fixed-parameter tractable transformation from cnf to a dnnf parameterized by
treewidth of the cnf.

The above fact naturally leads to the following question. In the area of
parameterized algorithms, it is customary, once a problem turns fixed-parameter
tractable (fpt) parameterized by treewidth, to check if this problem remains
fpt being parameterized by cliquewidth. 2 Thus it is natural to ask if the
complexity of transformation from cnf to dnnf remains fpt parameterized by
the cliquewidth of the input cnf rather than its treewidth.

2Another structural graph parameter https://en.wikipedia.org/wiki/Clique-width

that, unlike treewidth, is applicable to dense graphs.
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In [19], we answered the above question positively. The most interesting
part of the proposed transformation is a ‘sparcification’ algorithm transforming
any circuit of cliquewidth of k into a circuit of treewidth at most 18k computing
the same function and having size at most four times the original circuit. This
transformation essentially makes algorithms for circuits of bounded treewidth
applicable to circuits of bounded cliquewidth.

Conceptually this transformation means the following. There is a data stor-
age whose underlying structure is dense. Instead of querying this data storage
directly, it is preprocessed to a more tree like storage equivalent to the former one
subject to the specified type of queries. The above result shows that bounded
cliquewidth of the initial storage is a sufficient condition for such a transforma-
tion. It seems a very interesting research direction to consider possibility of such
transformation in a broader perspective, applied to other data storages such as
databases, Bayesian networks or ontologies, and to obtain an extensive char-
acterisation of the cases when such a transformation is possible. This research
direction can have a strong applied effect because tree-like structures are easier
to analyse and their querying is easier to parallelise (the last factor is especially
important when dealing with big data).

2 Well quasi-ordered classes of graphs

My research in this area has been focused so far on understanding structural
properties of hereditary classes of graphs that are well quasi-ordered by the
induced subgraph relation. Let us refer to these classes as wqo.

In [5] it was asked whether every wqo class has bounded cliquewidth (that is,
whether for each wqo class G there is a constant c such that the cliqeuwidth of
all the graphs of G is at most c). The beauty of this question is that it connects
two seemingly unrelated notions, namely wqo classes and classes graphs of
bounded cliqeuwidth. Very recently, we have answered this question negatively
by demonstrating a particular wqo having unbounded cliquewidth [9].

Our earlier result shows that the bounded cliquewidth property does hold if
some additional restrictions are posed on the graph classes [2]. An interesting
algorithmic spin-off of this research is a fixed-parameter linear time algorithm
for a restricted version of the famous biclique problem where long induced paths
are forbidden [1].

The result [9] is disappointing in the sense that it indicates that wqo classes
and classes of bounded cliquewidth might indeed (and not seemingly as sug-
gested above) be unrelated. However, there are still a few questions to settle
before such conclusion can be made (and my hope is that some relation will be
found). These questions are the following.

• We can consider classes of graphs whose vertices are labelled with a con-
stant number of labels and the induced subgraph relation preserves the la-
bels. It is conjectured in [5] that even two labels are enough to ensure that
well quasi orderability under this relation implies bounded cliquewidth. If
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we take the positive outcome as the working hypothesis then a reason-
able first step seems to consider an arbitrary (but constant) number of
labels and to try to establish bounded cliquewidth under this stronger
restriction.

• In the class demonstrated in [9], the cliquewidth (though unbounded) is
logarithmic in the number of vertices. It is interesting to see if, in general,
cliquewidth of graphs of wqo class is at most logarithmic. If this is the
case then restricted application of Courcelle’s theorem is possible to show
that all the problems definable by Monadic Second Order logic formulas
with alternating depth 1 are polynomially solvable for wqo classes.

3 Graph separation problems

Roughly speaking, this area concerns with finding a smallest number of vertices
or edges (sometimes subject to a particular property) whose removal break a
certain subset of paths in the input graph.

Two of my most cited works are [4] and [18] where we solved two challenging
open problems in the area of parameterized complexity. In [11] and [10], in
addition to solving open problems, we proposed new methodologies. The work
[10] is my favourite (though less cited) because of the nice treewidth reduction
theorem we managed to prove there. The idea is briefly outlined below.

Let S be a subset of vertices of a graph G. Let us call the torso of S the
graph GS obtained from G[S] (the subgraph of G induced by S) by adding edges
between pairs of vertices connected in G by a path whose intermediate vertices
lie outside S. Intuitively speaking, in GS , the vertices of S are connected ‘like’
they are in G.

Let s and t be two vertices and let S be the union of {s, t} and all minimal
sets of vertices of size at most k that separate s and t. The treewidth reduction
theorem states that the treewidth of GS is bounded by a function of k and,
moreover, this set S can be computed in time fixed-parameter w.r.t. k. The
power of the theorem is that if we need to find a minimal s − t separator of
size at most k subject to a certain property, instead of searching for it in the
original graph G, we can look for such a separator in GS . Since GS is of bounded
treewidth, many of such problems can be straightforwardly solved by the famous
Courcelle’s theorem. Thus the treewidth reduction theorem reduces a problem
instance on a graph of unbounded treewidth to an instance of the same problem
on a graph of a bounded treewidth! Moreover, this reduction is generic and
domain independent and allowed to prove fixed-parameter tractability of many
seemingly unrelated problems.
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