Chapter 10

Machine Learning in the Cloud

“Learning is any change in a system that produces a more or less
permanent change in its capacity for adapting to its environment.”

—Herbert Simon, The Sciences of the Artificial

Machine learning has become central to applications of cloud computing. While
machine learning is considered part of the field of artificial intelligence, it has roots
in statistics and mathematical optimization theory and practice. In recent years it
has grown in importance as a number of critical application breakthroughs have
taken place. These include human-quality speech recognition [144] and real-time
automatic language translation [95|, computer vision accurate and fast enough to
propel self-driving cars [74], and applications of reinforcement learning that allow
machines to master some of the most complex human games, such as Go [234].

What has enabled these breakthroughs has been a convergence of the availabil-
ity of big data plus algorithmic advances and faster computers that have made it
possible to train even deep neural networks. The same technology is now being
applied to scientific problems as diverse as predicting protein structure [180], pre-
dicting the pharmacological properties of drugs [60], and identifying new materials
with desired properties [264].

In this chapter we introduce some of the major machine learning tools that are
available in public clouds, as well as toolkits that you can install on a private cloud.
We begin with our old friend Spark and its machine learning (ML) package, and
then move to Azure ML. We progress from the core “classical” ML tools, including
logistic regression, clustering, and random forests, to take a brief look at deep
learning and deep learning toolkits. Given our emphasis on Python, the reader may

10.1. Spark Machine Learning Library (MLIib)

expect us to cover the excellent Python library scikit-learn. However, scikit-learn
is well covered elsewhere [253], and we introduced several of its ML methods in our
microservice-based science document classifier example in chapter 7. We describe
the same example, but using different technology, later in this chapter.

10.1 Spark Machine Learning Library (MLIib)

Spark MLIib [198], sometimes referred to as Spark ML, provides a set of high-level
APIs for creating ML pipelines. It implements four basic concepts.

e DataFrames are containers created from Spark RDDs to hold vectors and
other structured types in a manner that permits efficient execution [45]. Spark
DataFrames are similar to Pandas DataFrames and share some operations.
They are distributed objects that are part of the execution graph. You can
convert them to Pandas DataFrames to access them in Python.

e Transformers are operators that convert one DataFrame to another. Since
they are nodes on the execution graph, they are not evaluated until the entire
graph is executed.

e Estimators encapsulate ML and other algorithms. As we describe in the
following, you can use the fit(...) method to pass a DataFrame and
parameters to a learning algorithm to create a model. The model is now
represented as a Transformer.

e A Pipeline (usually linear, but can be a directed acyclic graph) links Trans-
formers and Estimators to specify an ML workflow. Pipelines inherit the
fit(...) method from the contained estimator. Once the estimator is
trained, the pipeline is a model and has a transform(...) method that can
be used to push new cases through the pipeline to make predictions.

Many transformers exist, for example to turn text documents into vectors of
real numbers, convert columns of a DataFrame from one form to another, or split
DataFrames into subsets. There are also various kinds of estimators, ranging from
those that transform vectors by projecting them onto principal component vectors,
to nm-gram generators that take text documents and return strings of n consecutive
words. Classification models include logistic regression, decision tree classifiers,
random forests, and naive Bayes. The family of clustering methods includes k-
means and latent Dirichlet allocation (LDA). The MLIib online documentation
provides much useful material on these and related topics [29] .

192

Chapter 10. Machine Learning in the Cloud

10.1.1 Logistic Regression

The example that follows employs a method called logistic regression [103],
which we introduce here. Suppose we have a set of feature vectors x; € R" for
¢ in [0, m]. Associated with each feature vector is a binary outcome y;. We are
interested in the conditional probability P(y = 1|z), which we approximate by a
function p(z). Because p(x) is between 0 and 1, it is not expressible as a linear
function of x, and thus we cannot use regular linear regression. Instead, we look
at the “odds” expression p(x)/(1 — p(x)) and guess that its log is linear. That is:

NECR I

where the offset by and the vector b = [b, bz, ...b,, | define a hyperplane for linear
regression. Solving this expression for p(x) we obtain:

1
T 1+ e (botba)

p(z)

We then predict y = 1 if p(z) > 0 and zero otherwise. Unfortunately, finding
the best by and b is not as easy as in the case of linear regression. However, simple
Newton-like iterations converge to good solutions if we have a sample of the feature
vectors and known outcomes.

(We note that the logistic function o(t) is defined as follows:

et 1

b+l 1+4et

o(t) =

It is used frequently in machine learning to map a real number into a probability
range [0, 1]; we use it for this purpose later in this chapter.)

10.1.2 Chicago Restaurant Example

To illustrate the use of Spark MLIlib, we apply it to an example from the Azure
HDInsight tutorial [195], namely predicting whether restaurants pass or fail health
inspections based on the free text of an inspector’s comments. We provide two
versions of this example in notebook 18: the HDInsight version and a version that
runs on any generic Spark deployment. We present the second here.

The data, from the City of Chicago Data Portal data.cityofchicago.org, are
a set of restaurant heath inspection reports. Each inspection report contains a
report number, the name of the owner of the establishment, the name of the

193

10.1. Spark Machine Learning Library (MLIib)

establishment, the address, and an outcome (“Pass,” “Fail,” or some alternative
such as “out of business” or “not available”). It also contains the (free-text) English
comments from the inspector.

We first read the data. If we are using Azure HDInsight, we can load it from
blob storage as follows. We use a simple function csvParse that takes each line in
the CSV file and parses it using Python’s csv.reader () function.

inspections = spark.sparkContext.textFile(\
'wasb:///HdiSamples/HdiSamples/FoodInspectionData/

Food_Inspectionsl.csv').map(csvParse)

The version of the program in notebook 18 uses a slightly reduced dataset. We
have eliminated the address fields and some other data that we do not use here.

inspections = spark.sparkContext.textFile(

'/path-to-reduced-data/Food_Inspectionsl.csv').map(csvParse)

We want to create a training set from a set of inspection reports that contain
outcomes, for use in fitting our logistic regression model. We first convert the RDD
containing the data, inspections, to create a DataFrame, df, with four fields:
record id, restaurant name, inspection result, and any recorded violations.

schema = StructType ([StructField ("id", IntegerType(), False),
StructField("name", StringType(), False),
StructField("results", StringType(), False),
StructField("violations", StringType(), True)l])

df = spark.createDataFrame (inspections.map (\
lambda 1: (int(1[0]), 1[2], 1([3], 1[4])) , schema)
df .registerTempTable ('CountResults')

If we want to look at the first few elements, we can apply the show() function
to return values to the Python environment.

df . show (5)

S o e - P o e - +
| id]| name | results | violations |
S oo e - S oo - +
|1978294 | KENTUCKY FRIED CH...| Pass |32. FOOD AND NON-...|
|1978279]| SOLO FOODS|Out of Business|

|1978275| SHARKS FISH & CHI...| Pass |34. FLOORS: CONST...|
11978268 | CARNITAS Y SUPERM...| Pass |33. FOOD AND NON-...|
|1978261 | WINGSTOP | Pass | I
S i P oo - +
only showing top 5 rows

194

Chapter 10. Machine Learning in the Cloud

Fortunately for the people of Chicago, it seems that the majority of the
inspections result in passing grades. We can use some DataFrame operations to
count the passing and failing grades.

print ("Passing = %d"%df[df.results == 'Pass'].count())
print("Failing = %d"%df[df.results == 'Fail'].count())
Passing = 61204
Failing = 20225

To train a logistic regression model, we need a DataFrame with a binary label
and feature vector for each record. We do not want to use records associated with
“out of business” or other special cases, so we map “Pass” and “Pass with conditions”
to 1, “Fail” to 0, and all others to -1, which we filter out.

def labelForResults(s):

if s == 'Fail':
return 0.0
elif s == 'Pass w/ Conditions' or s == 'Pass':

return 1.0
else:
return -1.0

label = UserDefinedFunction(labelForResults, DoubleType ())
labeledData = df.select (label(df.results).alias('label'), \
df .violations).where('label >= 0')

We now have a DataFrame with two columns, 1abel and violations and we
are ready to create and run the Spark MLIib pipeline that we will use to train our
logistic regression model, which we do with the following code.

1) Define pipeline components

a) Tokenize 'violations' and place result in new column 'words'
tokenizer = Tokenizer (inputCol="violations", outputCol="words")

b) Hash 'words' to create new column of 'features'

hashingTF = HashingTF (inputCol="words" , outputCol="features")

c) Create instance of logistic regression

lr = LogisticRegression(maxIter=10, regParam=0.01)

2) Construct pipeline: tokenize, hash, logistic regression
pipeline = Pipeline(stages=[tokenizer, hashingTF, 1lr])

3) Run pipeline to create model
model = pipeline.fit(labeledData)

We first (1) define our three pipeline components, which (a) tokenize each
violations entry (a text string) by reducing it to lower case and splitting it into

195

10.1. Spark Machine Learning Library (MLIib)

a vector of words; (b) convert each word vector into a vector in R™ for some n,
by applying a hash function to map each word token into a real number value
(the new vectors have length equal to the size of the vocabulary, and are stored as
sparse vectors); and (c) create an instance of logistic regression. We then (2) put
everything into a pipeline and (3) fit the model with our labeled data.

Recall that Spark implements a graph execution model. Here, the pipeline
created by the Python program is the graph; this graph is passed to the Spark
execution engine by calling the fit(...) method on the pipeline. Notice that
the tokenizer component adds a column words to our working DataFrame, and
hashingTF adds a column features; thus, the working DataFrame has columns
ID, name, results, label, violations, words, features when logistic re-
gression is run. The names are important, as logistic regression looks for columns
label, features, which it uses for training to build the model. The trainer is
iterative; we give it 10 iterations and an algorithm-dependent value of 0.01.

We can now test the model with a separate test collection as follows.

testData = spark.sparkContext.textFile(
'/data_path/Food_Inspections2.csv')\
.map (csvParse) \
.map (lambda 1: (int(1[0]), 1[2], 1[3]1, 1[41))

testDf = spark.createDataFrame(testData, schema).
where("results = 'Fail' OR results = 'Pass' OR \
results = 'Pass w/ Conditions'")

predictionsDf = model.transform(testDf)

The logistic regression model has appended several new columns to the data
frame, including one called prediction. To test our prediction success rate, we
compare the prediction column with the results column.

numSuccesses = predictionsDf.where(\
""" (prediction = 0 AND results = 'Fail') OR \
(prediction = 1 AND (results = 'Pass' OR \
results = 'Pass w/ Conditions'))""").count ()
numInspections = predictionsDf.count ()

print ("There were %d inspections and there were %d predictions"\
%(numInspections ,numSuccesses))

print ("This is a %2.2f sucess rate"\
%(float (numSuccesses) / float (numInspections) * 100))

We see the following output:

There were 30694 inspections and there were 27774 predictions
This is a 90.49\% success rate

196

Chapter 10. Machine Learning in the Cloud

Before getting too excited about this result, we examine other measures of
success, such as precision and recall, that are widely used in ML research. When
applied to our ability to predict failure, recall is the probability that we predicted
as failing a randomly selected inspection from those with failing grades. As detailed
in notebook 18, we find that our recall probability is only 67%. Our ability to
predict failure is thus well below our ability to predict passing. The reason may be
that other factors involved with failure are not reflected in the report.

10.2 Azure Machine Learning Workspace

Azure Machine Learning is a cloud portal for designing and training machine
learning cloud services. It is based on a drag-and-drop component composition
model, in which you build a solution to a machine learning problem by dragging
parts of the solution from a pallet of tools and connecting them together into a
workflow graph. You then train the solution with your data. When you are satisfied
with the results, you can ask Azure to convert your graph into a running web
service using the model you trained. In this sense Azure ML provides customized
machine learning as an on-demand service. This is another example of serverless
computation. It does not require you to deploy and manage your own VMs; the
infrastructure is deployed as you need it. If your web service needs to scale up
because of demand, Azure scales the underlying resources automatically.

To illustrate how Azure ML works, we return to an example that we first
considered in chapter 7. Our goal is to train a system to classify scientific papers,
based on their abstracts, into one of five categories: physics, math, computer
science, biology, or finance. As training data we take a relatively small sample
of abstracts from the arXiv online library arxiv.org. Each sample consists of a
triple: a classification from arXiv, the paper title, and the abstract. For example,
the following is the record for a 2015 paper in physics [83].

['Physics',

'A Fast Direct Sampling Algorithm for Equilateral Closed Polygons. (arXiv:1510.02466v1 [cond-
mat.stat-mech])',

'Sampling equilateral closed polygons is of interest in the statistical study of ring polymers. Over
the past 30 years, previous authors have proposed a variety of simple Markov chain algorithms
(but have not been able to show that they converge to the correct probability distribution) and
complicated direct samplers (which require extended-precision arithmetic to evaluate numerically

unstable polynomials). We present a simple direct sampler which is fast and numerically stable.'

]

197

10.2. Azure Machine Learning Workspace

This example also illustrates one of the challenges of the classification problem:
science has become wonderfully multidisciplinary. The topic given for this sample
paper in arXiv is “condensed matter,” a subject in physics. Of the four authors,
however, two are in mathematics institutes and two are from physics departments,
and the abstract refers to algorithms that are typically part of computer science.
A human reader might reasonably consider the abstract to be describing a topic in
mathematics or computer science. (In fact, multidisciplinary physics papers were
so numerous in our dataset that we removed them in the experiment below.)

Let us start with a solution in Azure ML based on a multiclass version of the
logistic regression algorithm. Figure 10.1 shows the graph of tasks. To understand
this workflow, start at the top, which is where the data source comes into the
picture. Here we take the data from Azure blob storage, where we have placed
a large subset of our arXiv samples in a CSV file. Clicking the TImport Data| box
opens the window that allows us to identify the URL for the input file.

_ B multiclass-logistics

|

Search experimant itams ,0

£

L S""E Saved Datacets

] |
4 jy@ Trainad Models E_), Import Data

Experiment created on 1.

+—8

training-two-madels [tra... =

(OF Feature Hashing
4 i;— Data Format Conversions % T
1L

B '.‘,_ Convert to ARFF

?EIJ Select Columins in Dataset v
Convert to C5V

I l“ Convert to Dataset _ i
Convert to 5VMLight @ Multidlass Logistic Regression +/ ‘ i?m Spiit Data v

Convert to T5W \ ,,/_//.
b d \

) E_; Data Input and Output (b
@ Train Model

Enter Data Manually ®

Expori Data

4

Import Data

Score M odel v

&

Unpack Jipped Datasets T

v
4 iﬁrrn Data Transformation Evaluate Model
4 Filter :

Apply Filter

Figure 10.1: Azure ML graph used to train a multiclass logistic regression model.

The second box down, Feature Hashing, builds a vectorizer based on the
vocabulary in the document collection. This version comes from the Vowpal
Wabbit library. Its role is to convert each document into a numerical vector
corresponding to the key words and phrases in the document collection. This

198

Chapter 10. Machine Learning in the Cloud

numeric representation is essential for the actual ML phase. To create the vector,
we tell the feature hasher to look only at the abstract text. What happens in
the output is that the vector of numeric values for the abstract text is appended
to the tuple for each document. Our tuple now has a large number of columns:
class, title, abstract, and vector[0], ..., vector[n-1], where n is the number
of features. To configure the algorithm, we select two parameters, a hashing bin
size and an n-gram length.

Before sending the example to ML training, we remove the English text of the
abstract and the title, leaving only the class and the vector for each document. We
accomplish this with a Select Columns in Dataset. Next we split the data into
two subsets: a training subset and a test subset. (We specify that Split Data
should use 75% of the data for training and the rest for testing.)

Azure ML provides a good number of the standard ML modules. Each such
module has various parameters that can be selected to tune the method. For all
the experiments described here, we just used the default parameter settings. The
Train Model component accepts as one input a binding to an ML method (recall
this is not a dataflow graph); the other input is the projected training data. The
output of the Train Model task is not data per se but a trained model that may
also be saved for later use. We can now use this trained model to classify our test
data. To this end, we use the Score Model component, which appends another
new column to our table, Scored Label, providing the classification predicted by
the trained model for each row.

To see how well we did, we use theEvaluate Model component, which computes
a confusion matrix. Each row of the matrix tells us how the documents in that
class were classified. Table 10.1 shows the confusion matrix for this experiment.
Observe, for example, that a fair number of biology papers are classified as math.
We attribute this to the fact that most biology papers in the archive are related to
quantitative methods, and thus contain a fair amount of mathematics. To access
the confusion matrix, or for that matter the output of any stage in the graph, click
on the output port (the small circle) on the corresponding box to access a menu.
Selecting visualize in that menu brings up useful information.

Table 10.1: Confusion matrix with only math, computer science, biology, and finance.

| | bio | compsci | finance | math |
bio 51.3 19.9 4.74 24.1
compsci 10.5 57.7 4.32 27.5
finance 6.45 17.2 50.4 25.8
math 6.451 16.0 5.5 72

199

10.2. Azure Machine Learning Workspace

Now that we have trained the model, we can click the [Set Up Web Service)
button (not visible, but at the bottom of the page) to turn the model into a web
service. The Azure ML portal rearranges the graph by eliminating the split-train-
test parts and leaves just the feature hashing, column selection, and the scoring
based on the trained model. Two new nodes have been added: a web service input
and a web service output. The result, with one exception, is shown in figure 10.2.
The exception is that we have added a new Select Columns node so that we can
remove the vectorized document columns from the output of the web service. We
retain the original class, the predicted class, and the probabilities computed for
the document being in a class.

E—) Import Data Web service input
@

\

5? Feature Hashing
1]

v

B : in Da
ﬁ multiclass-logistics [trained ... wH Select Columns in Dataset
@ ®
@ Score Model
®

!

E‘Eﬂ Select Columns in Dataset

Web service output

Figure 10.2: Web service graph generated by Azure ML, with an additional node to
remove the vectorized document.

You can now try additional ML classifier algorithms simply by replacing the
box Multiclass Logistic Regression with, for example, Multiclass Neural Network
or Random forest classifier. Or, you can incorporate all three methods into a
single web service that uses a majority vote (“consensus”’) method to pick the best
classification for each document. As shown in figure 10.3, the construction of this
consensus method is straightforward: we simply edit the web service graph for the
multiclass logistic regression to add the trained models for the other two methods
and then call a Python script to tie the three results together.

200

Chapter 10.

Machine Learning in the Cloud

threeway-test

Web service input
@_,\ Irmpart Dista

L
—

— |

5'% Feature Hashing
&

= .
Smm Select Columns in D ataset

g; mukiclass-logistics Erained .. e
L
S A

~

¥
@ Score Model w

E 3
/ j
If

e .
;Hﬂ'ﬁ Select Columns in Dataset ' W Seledt Columns in Detaset

. B
—
\ ~

Finished runnin

Diraft saved at 120154

e

ﬁ multiclass-ranfor ftrained m..

T — _,_-"-/-/
/\ qﬁ_q__‘.:—“':--..__ ?ﬁ mukiclass-nn [raned madel]

—~=9
N

- 4

Score Model

=
|
I

L

B .
NER Select Columnsin Dataset
] ® 4

e

—

=

~— ;H?“ add Calurmns

N

iﬁ_:- Exacute Python Scripe
)

Vieb sarvice cutput

O] ' ® nNRUNGY

——

Figure 10.3: Modified web service graph based on a consensus model, showing three
models and a Python script component, used to determine the consensus.

The Python script can simply compare the outputs from the three classifiers. If
any two agree, then it selects that classification as a first choice and the classification
that does not agree as a second choice. The results for the first choice, shown
in table 10.2, are only modestly better than in the logistic regression case, but
if we consider both the first and second choices, we reach 65% for biology, 72%
for computer science, 60% for finance, and 88% for math. Notebook 19 contains
this Python script as well as the code used to test and invoke the services and to

compute the confusion matrices.

Table 10.2: Confusion matrix for the three-way classifier.

| | bio | compsci | finance | math |
bio 50.3 20.9 0.94 27.8
compsci 4.9 62.7 1.54 30.9
finance 5.6 9.9 47.8 36.6
math 3.91 13.5 2.39 80.3

201

10.3. Amazon Machine Learning Platform

10.3 Amazon Machine Learning Platform

The Amazon platform provides an impressive array of ML services. Each is designed
to allow developers to integrate cloud ML into mobile and other applications. Three
of the four are based on the remarkable progress that has been enabled by the
deep learning techniques that we discuss in more detail in the next section.

Amazon Lex allows users to incorporate voice input into applications. This
service is an extension of Amazon’s Echo product, a small networked device with
a speaker and a microphone to which you can pose questions about the weather
and make requests to schedule events, play music, and report on the latest news.
With Lex as a service, you can build specialized tools that allow a specific voice
command to Echo to launch an Amazon lambda function to execute an application
in the cloud. For example, NASA has built a replica of the NASA Mars rover that
can be controlled by voice commands, and has integrated Echo into several other
applications around their labs [189].

Amazon Polly is the opposite of Lex: it turns text into speech. It can speak
in 27 languages with a variety of voices. Using the Speech Synthesis Markup
Language, you can carefully control pronunciation and other aspects of intonation.
Together with Lex, Polly makes a first step toward conversational computing. Polly
and Lex do not do real-time, voice-to-voice language translation the way Skype
does, but together they provide a great platform to deliver such a service.

Amazon Rekognition is at the cutting edge of deep learning applications. It
takes an image as input and returns a textual description of the items that it sees
in that image. For example, given an image of a scene with people, cars, bicycles,
and animals, Rekognition returns a list of those items, with a measure of certainty
associated with each. The service is trained with many thousands of captioned
images in a manner not unlike the way natural language translation systems are
trained: it considers a million images containing a cat, each with an associated
caption that mentions “cat,” and a model association is formed. Rekognition can
also perform detailed facial analysis and comparisons.

The Amazon Machine Learning service, like Azure ML, can be used to
create a predictive model based on training data that you provide. However,
it requires much less understanding of ML concepts than does Azure ML. The
Amazon Machine Learning dashboard presents the list of experiments, models,
and data sources from your previous Amazon Machine Learning work. From the
dashboard you can define data sources and ML models, create evaluations, and
run batch predictions.

202

Chapter 10. Machine Learning in the Cloud

Using Amazon Machine Learning is easy. For example, we used it to build a
predictive model from our collection of scientific articles in under an hour. One
reason that it is so easy to use is that the options are simple. You can build only
three types of models—regression, binary classification, or multiclass classification—
and in each case, Amazon Machine Learning provides a single model. In the case
of multiclass classification, it is multinomial logistic regression with a stochastic
gradient descent optimizer. And it works well. Using the same test and training
data as earlier, we obtained the results shown in table 10.3. Although the trained
Amazon Machine Learning classifier failed to recognize any computational finance
papers, it beat our other classifiers in the other categories. Amazon Labs has
additional excellent examples [44].

Table 10.3: Confusion matrix for the science document classifier using Amazon ML.

| | bio |(xnnpsci | finance |Inath |
bio 62.0 19.9 0.0 18.0
compsci 3.8 78.6 0.0 17.8
finance 6.8 2.5 0.0 6.7
math 3.5 11.9 0.0 84.6

Amazon Machine Learning is also fully accessible from the Amazon REST
interface. For example, you can create a ML model using Python as follows.

response = client.create_ml_model(
MLModelId='string',
MLModelName='string',
MLModelType='REGRESSION'|'BINARY'|'MULTICLASS',
Parameters={

'string': 'string'

+,
TrainingDataSourcelId='string',
Recipe='string',
RecipeUri='string'

The parameter ModelID is a required, user-supplied, unique identifier; other
parameters specify, for example, the maximum allowed size of the model, the
maximum number of passes over the data in building the model, and a flag to tell
the learners to shuffle the data. The training data source identifier is a data recipe
or URI for a recipe in S3. A recipe is a JSON-like document that describes how to
transform the datasets for input while building the model. (Consult the Amazon
Machine Learning documents for more details.) For our science document example,
we used the default recipe generated by the portal.

203

10.4. Deep Learning: A Shallow Introduction

10.4 Deep Learning: A Shallow Introduction

The use of artificial neural networks for machine learning tasks has been
common for at least 40 years. Mathematically, a neural network is a method of
approximating a function. For example, consider the function that takes an image
of a car as input and produces the name of a manufacturer as output. Or, consider
the function that takes the text of a scientific abstract and outputs the most likely
scientific discipline to which it belongs. In order to be a computational entity,
our function and its approximation need a numerical representation. For example,
suppose our function takes as input a vector of three real numbers and returns
a vector of length two. Figure 10.4 is a diagram of a neural net with one hidden
layer representing such a function.

Figure 10.4: Neural network with three inputs, one hidden layer, and two outputs.

In this schematic representation, the lines represent numerical weights connect-
ing the inputs to the n interior neurons, and the terms b are offsets. Mathematically
the function is given by the following equations.

2
a; = f(leWzlj +b;) for j=1,n
1=0

n

yj' = f’(ZaiWZZ’j + b?) for j=0,1
1=0

The functions f and f’ are called the activation functions for the neurons.
Two commonly used activation functions are the logistic function o(¢) that we

204

Chapter 10. Machine Learning in the Cloud

introduced at the beginning of this chapter and the rectified linear function:
relu(x) = max(0, x).

Another common case is the hyperbolic tangent function

—z
tanh(z) = 6:8_76_
e +e T
An advantage of o(x) and tanh(x) is that they map values in the range (—oo, 00)
to the range (0, 1), which corresponds to the idea that a neuron is either on or off
(not-fired or fired). When the function represents the probability that an input
corresponds to one of the outputs, we use a version of the logistic function that
ensures that the probabilities all sum to one.

1
= 1 + Zk;éj emk—iﬁj

This formulation is commonly used in multiclass classification, including in
several of the examples we have studied earlier.

softmax(z)

The trick to making the neural net truly approximate our desired function is
picking the right values for the weights. There is no closed form solution for finding
the best weights, but if we have a large number of labeled examples (2% y*), we
can try to minimize the cost function.

Clzy") = lly" =y (@)l

The standard approach is to use a variation of gradient descent, specifically
back propagation. We do not provide details on this algorithm here but instead
refer you to two outstanding mathematical treatments of deep learning [143, 210].

10.4.1 Deep Networks

An interesting property of neural networks is that we can stack them in layers as
illustrated in figure 10.5 on the next page. Furthermore, using the deep learning
toolkits that we discuss in the remainder of this chapter, we can construct such
networks with just a few lines of code. In this chapter, we introduce three deep
learning toolkits. We first illustrate how each can be used to define some of the
standard deep networks and then, in later sections, describe how to deploy and
apply them in the cloud.

MXNet github.com/dmlc/mxnet is the first deep learning toolkit that we con-
sider. Using MXNet, the network in figure 10.5 would look as follows.

205

10.4. Deep Learning: A Shallow Introduction

Figure 10.5: Neural network with three inputs, two hidden layers, and two outputs.

data = mx.symbol.Variable('x"')

layrl= mx.symbol.FullyConnected(data=data,name='W1',num_hidden=7)
actl = mx.symbol.Activation(data=layrl,name='relul',act_type="relu")
layr2= mx.symbol.FullyConnected(data=actl ,name='W2',num_hidden=4)
act2 = mx.symbol.Activation(data=layr2,name='relu2',act_type="relu")

layr3= mx.symbol.FullyConnected(data=act2, name='W3',num_hidden=2)
Y = mx.symbol.SoftmaxOutput(data = layr3,name='softmax')

The code creates a stack of fully connected networks and activations that
exactly describe our diagram. In the following section we return to the code needed
to train and test this network.

The term deep neural network generally refers to networks with many layers.
Several special case networks also have proved to be of great value for certain types
of input data.

10.4.2 Convolutional Neural Networks

Data with a regular spatial geometry such as images or one-dimensional streams
are often analyzed with a special class of network called a convolutional neural
network or CNN. To explain CNNs, we use our second example toolkit, Tensor-
Flow tensorflow.org, which was open sourced by Google in 2016. We consider a
classic example that appears in many tutorials and is well covered in that provided
with TensorFlow tensorflow.org/tutorials .

Suppose you have thousands of 28 x28 black and white images of handwritten
digits and you want to build a system that can identify each. Images are strings

206

Chapter 10. Machine Learning in the Cloud

of bits, but they also have a lot of local two-dimensional structure such as edges
and holes. In order to find these patterns, we examine each of the many 5x5
windows in each image individually. To do so, we train the system to build a 5x5
template array W1 and a scalar offset b that together can be used to reduce each
5x5 window to a point in a new array conv by the following formula.

2

conv, , = g T/Vi,kimagep_i,q_k +b
i k=—2

(The image is padded near the boundary points in the formula above so that
none of the indices are out of bounds.) We next modify the conv array by applying
the relu function to each x in the conv array so that it has no negative values.
The final step, maz pooling, simply computes the maximum value in each 2x2
block and assigns it to a smaller 14 xX14 array. The most interesting part of the
convolutional network is that we do not use one 5x5 W1 template but 32 of them
in parallel, producing 32 14x14 results, pooll, as illustrated in figure 10.6.

. convl

Image (28x28x32) pooll
W1 (28x28) I (14x14x32)
(5x5x32)

I P

19 e e o

Figure 10.6: Schematic of how a convolutional neural net processes an image.

When the network is fully trained, each of the 32 5x5 templates in W1 is
somehow different, and each selects for a different set of features in the original
image. One can think of the resulting stack of 32 14x14 arrays (called pooll) as a
type of transform of the original image, which works much like a Fourier transform
to separate a signal in space and time and transform it into frequency space. This
is not what is going on here; but if you are familiar with these transforms, the
analogy may be helpful.

We next apply a second convolutional layer to pooll, but this time we apply
64 sets of 5 x5 filters to each of the 32 pooll layers and sum the results to obtain
64 new 14x14 arrays. We then reduce these with max pooling to 64 7x7 arrays

207

10.4. Deep Learning: A Shallow Introduction

called pool2. From there we use a dense “all-to-all” layer and finally reduce it to
10 values, each representing the likelihood that the image corresponds to a digit 0
to 9. The TensorFlow tutorial defines two ways to build and train this network;
figure 10.7 is from the community-contributed library called layers.

input_layer = tf.reshape(features, [-1, 28, 28, 1])

convl = tf.layers.conv2d(
inputs=input_layer,
filters=32,

kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)

pooll = tf.layers.max_pooling2d (inputs=convl, \
pool_size=[2, 2], strides=2)
conv2 = tf.layers.conv2d(
inputs=pooll,
filters=64,

kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu)

pool2 = tf.layers.max_pooling2d (inputs=conv2, \
pool_size=[2, 2], strides=2)
pool2_flat = tf.reshape(pool2, [-1, 7 x 7 *x 64])

dense = tf.layers.dense(inputs=pool2_flat, \
units=1024, activation=tf.nn.relu)

logits = tf.layers.dense(inputs=dense, units=10)

Figure 10.7: TensorFlow two convolutional layer digit recognition network

As you can see, these operators explicitly describe the features of our CNNs.
The full program is in the TensorFlow examples tutorial layers directory in file
cnn_mnist.py. If you would rather see a version of the same program using lower-
level TensorFlow operators, you can find an excellent Jupyter notebook version in
the Udacity deep learning course material [3]. CNNs have many applications in
image analysis. One excellent science example is the solution to the Kaggle Galaxy
Zoo Challenge, which asked participants to predict how Galaxy Zoo users would
classify images of galaxies from the Sloan Digital Sky Survey. Dieleman [111]
describes the solution, which uses four convolutional layers and three dense layers.

208

Chapter 10. Machine Learning in the Cloud

10.4.3 Recurrent Neural Networks.

Recurrent neural networks (RNNs) are widely used in language modeling
problems, such as predicting the next word to be typed when texting or in automatic
translation systems. RNNs can learn from sequences that have repeating patterns.
For example, they can learn to “compose” text in the style of Shakespeare [168] or
even music in the style of Bach [183]. They have also been used to study forest
fire area coverage [94] and cycles of drought in California [178].

The input to the RNN is a word or signal, along with the state of the system
based on words or signals seen so far; the output is a predicted list and a new state
of the system, as shown in figure 10.8.

state
Xt

Figure 10.8: Basic RNN with input stream x and output stream h.

Many variations of the basic RNN exist. One challenge for RNNs is ensuring
that the state tensors retain enough long-term memory of the sequence so that
patterns are remembered. Several approaches have been used for this purpose.
One popular method is the Long-Short Term Memory (LSTM) version that is
defined by the following equations, where the input sequence is x, the output is h,
and the state vector is the pair [c, h].

it =o(W@ g 4 whip, 4+ wDe +p0)
fr=oWe g,y WDy, 4+ weDe_y 40
¢t = ft-ci—1+ % - taﬂh(W(wc) Tt + W(hc)ht—l + b(c))
or = o(W@) gy + W, 4 Wi, 45y
hy = oy - tanh(c;)

Olah provides an excellent explanation of how RNNs work [213]. We adapt one
of his illustrations to show in figure 10.9 on the next page how information flows in

209

10.4. Deep Learning: A Shallow Introduction

our network. Here we use the vector concatenation notation concat as follows to
compose the various W matrices and thus obtain a more compact representation
of the equations.

o(concat(z, h,c)) = o(Wlz, h,c] + b) = o(W@ gz + W h 4+ W 4 b).

h,
Cta : t > ¢ |
Iy 4
% * Oy
4 — — state
a o tanh a

v
ht-l == concat f 1‘ ’ ? > ht _J

rF 3

Figure 10.9: LSTM information flow, adapted from Olah [213] to fit equations in the text.

We use a third toolkit, the Microsoft Cognitive Toolkit (formerly known
as the Computational Network Toolkit CNTK), to illustrate the application of
RNNs. Specfically, we consider a sequence-to-sequence LSTM from the Microsoft
Cognitive Toolkit distribution that is trained with input from financial news items
such as “shorter maturities are considered a sign of rising rates because portfolio
managers can capture higher rates sooner” and “j. p. <unk> vice chairman of
grace and co. which holds an interest in this company was elected a director.”
Following training, this network can be used to generate other sentences with a
similar structure.

To illustrate what this network can do, we saved the trained W and b arrays
and two other arrays that together define its structure. We then loaded these
arrays into the Python version of the RNN shown on the next page, which we
created by transcribing the equations above.

210

Chapter 10. Machine Learning in the Cloud

def rnn(word, old_h, old_c):
Xvec = getvec (word, E)
i = Sigmoid(np.matmul (WXI, Xvec) +
np.matmul (WHI, old_h) + WCI*old_c + bI)
f = Sigmoid(np.matmul (WXF, Xvec) +
np.matmul (WHF, old_h) + WCF*old_c + bF)
¢ = f*xold_c + ix(np.tanh(np.matmul (WXC, Xvec) +
np.matmul (WHC, old_h) + bC))
o = Sigmoid(np.matmul (WX0, Xvec)+
np.matmul (WHO, old_h)+ (WCO * c)+ b0)
= o * np.tanh(c)
Extract ordered list of five best possible next words
= h.copy ()
q.shape = (1, 200)
output = np.matmul (q, W2)
outlist = getwordsfromoutput (output)
return h, c, outlist

Q =P

As you can see, this code is almost a literal translation of the equations. The
only difference is that the code has as input a text string for the input word,
while the equations take a vector encoding of the word as input. The RNN
training generated the encoding matrix F, which has the nice property that the ith
column of the matrix corresponds to the word in the ith position in the vocabulary
list. The function getvec(word, E) takes the embedding tensor F, looks up the
position of the word in the vocabulary list, and returns the column vector of E
that corresponds to that word. The output of one pass through the LSTM cell
is the vector h. This is a compact representation of the words likely to follow
the input text to this point. To convert this back into “vocabulary” space, we
multiply it by another trained vector W2. The size of our vocabulary is 10,000,
and the vector output is that length. The ith element of the output represents the
relative likelihood that the ith word is the next word to follow the input so far.
Our addition, Getwordsfromoutput, simply returns the top five candidate words,
in order of likelihood.

To see whether this LSTM is truly a recurrent network, we provide the network
with a starting word, let it suggest the next word, and repeat this process to
construct a “sentence.” In the code on the next page, we randomly pick one of the
top three suggested by the network as the next word.

211

10.5. Amazon MXNet Virtual Machine Image

c = np.zeros(shape (200, 1))

h = np.zeros(shape = (200, 1))

output = np.zeros(shape = (10000, 1))
word = 'my'

sentence= word

for in range (40):

h, ¢, outlist = rnn(word, h, c)

word = outlist[randint (0,3)]

sentence = sentence + " " +word
print (sentence+".")

Testing this code with the start word “my” produced the following output.

my new rules which would create an interest position here unless
there should prove signs of such things too quickly although the
market could be done better toward paying further volatility where
it would pay cash around again if everybody can.

Using “the” as our start word produced the following.

the company reported third-quarter results reflecting a number
compared between N barrels including pretax operating loss
from a month following fiscal month ending july earlier
compared slightly higher while six-month cds increased

sharply tuesday after an after-tax loss reflecting a strong.

This RNN is hallucinating financial news. The sentences are obviously nonsense,
but they are excellent examples of mimicry of the patterns that the network was
trained with. The sentences end rather abruptly because of the 40-word limit in
the code. If you let it go, it runs until the state vector for the sentence seems to
break down. Try this yourself. To make it easy to play with this example, we have
put the code in notebook 20 along with the 50 MB model data.

10.5 Amazon MXNet Virtual Machine Image

MXNet [92] github.com/dmlc/mxnet is an open source library for distributed
parallel machine learning. It was originally developed at Carnegie Mellon, the
University of Washington, and Stanford. MXNet can be programmed with Python,
Julia, R, Go, Matlab, or C++ and runs on many different platforms, including
clusters and GPUs. It is also now the deep learning framework of choice for
Amazon [256]. Amazon has also released the Amazon Deep Learning AMI
[13], which includes not only MXNet but also CNTK and TensorFlow, plus other

212

Chapter 10. Machine Learning in the Cloud

good toolkits that we have not discussed here, including Caffe, Theano, and Torch.
Jupyter and the Anaconda tools are there, too.

Configuring the Amazon AMI to use Jupyter is easy. Go to the Amazon
Marketplace on the EC2 portal and search for “deep learning”; you will find the
Deep Learning AMI. Then select the server type. This AMI is tuned for the
p2.16xlarge instances (64 virtual cores plus 16 NVIDIA K80 GPUs). This is an
expensive option. If you simply want to experiment, it works well with a no-GPU
eight-core option such as m4.2xlarge. When the VM comes up, log in with ssh,
and configure Jupyter for remote access as follows.

>cd . jupyter

>openssl req -x509 -nodes -days 365 -newkey rsa:1024 \
-keyout mykey.key -out mycert.pem

>ipython

[1]: from notebook.auth import passwd

[2]: passwd ()

Enter password:

Verify password:

Out [2]: 'shal:---- long string -----------

Remember your password, and copy the long shai string. Next create the file
.jupyter/jupyter_notebook_config.py, and add the following lines.

c = get_config()

c.NotebookApp.password = u'shal:----long string ----------- !
c.NotebookApp.ip = '*x'

c.NotebookApp.port = 8888

c.NotebookApp.open_browser = False

Now invoke Jupyter as follows.

jupyter notebook --certfile=. jupyter/mycert.pem \
--keyfile=. jupyter/mykey. key

Then, go to https://ipaddress :8888 in your browser, where ipaddress is the
external IP address of your virtual machine. Once you have accessed Jupyter
within your browser, visit src/mxnet/example/notebooks to run MXNet.

Many excellent MXNet tutorials are available in addition to those in the AMI
notebooks file, for example on the MXNet community site. To illustrate MXNet’s
use, we examine a particularly deep neural network trained on a dataset with 10
million images. Resnet-152 [152] is a network with 152 convolutional layers based
on a concept called deep residual learning, which solved an important problem
with training deep networks called the vanishing gradient problem. Put simply, it
states that training by gradient descent methods fails for deep networks because

213

10.5. Amazon MXNet Virtual Machine Image

as the network grows in depth, the computable gradients become numerically so
small that there is no stable descent direction. Deep residual training approaches
the problem differently by adding an identity mapping from one layer to the next
so that one solves a residual problem rather than the original. It turns out that
the residual is much easier for stochastic gradient descent to solve.

Resnets of various sizes have been built with each of the toolkits mentioned
here. Here we describe one that is part of the MXNet tutorials [41]|. (Notebook 21
provides a Jupyter version.) The network has 150 convolutional layers with a
softmax output on a fully connected layer, with 11,221 nodes representing the
11,221 image labels that it is trained to recognize. The input is a 3 x224x224 RGB
format image that is loaded into a batch normalization function and then sent to
the first convolutional layer. The example first fetches the archived data for the
model. There are three main files.

e resent-152-symbol. json, a complete description of the network as a large
json file

e resnet-152-0000.params, a binary file containing all parameters for the
trained model

e synset.txt, a text file containing the 1,121 image labels, one per line

You can then load the pretrained model data, build a model from the data, and
apply the model to a JPEG image. (The image must be converted to 3x 244 x244
RGB format: see notebook 21.)

import mxnet as mx
1) Load the pretrained model data
with open('full-synset.txt','r') as f:
synsets = [l.rstrip() for 1 in f£f]
Sym,arg_params ,aux_params=
mx .model.load_checkpoint ('full-resnet-152"',0)
2) Build a model from the data
mod = mx.mod.Module (symbol=sym, context=mx.gpu())
mod.bind (for_training=False, data_shapes=[('data', (1,3,224,224))])
mod.set_params (arg_params, aux_params)
3) Send JPEG image to network for prediction
mod . forward (Batch ([mx.nd.array (img)]))
prob = mod.get_outputs () [0].asnumpy ()
prob = np.squeeze (prob)
a = np.argsort(prob)[::-1]
for i in a[0:5]:
print ('probability=%f, class=Ys' %(prob[i], synsets[i]))

214

Chapter 10. Machine Learning in the Cloud

You will find that the accuracy of the network in recognizing images is excellent.
Below we selected four images in figure 10.10 from the Bing image pages with a
focus on biology. You can see from the results in table 10.4 that the top choice of
the network was correct for each example, although the confidence was less high
for yeast and seahorse. These results clearly illustrate the potential for automatic
image recognition in aiding scientific tasks.

Streptococcus Amoeba Seahorse

Figure 10.10: Three sample images that we have fed to the MXNet Resnet-152 network.

Table 10.4: Identification of images in figure 10.10 along with estimated probabilities.

| Yeast | Streptococcus | Amoeba | Seahorse |
p—0.26, yeast p=0.75, str.eptococcus, p=0.70, ameba, p—0.33, seahorse
streptococci, strep amoeba
p=0.21, p=0.08, staphylococcus, | p=0.15, p:'0.12, tnarine
. . . . animal, marine
microorganism staph microorganism .
creature, sea animal
p=0.05, ciliate,
p=0.21, cell p=0.06, yeast ciliated protozoan, p=0.12, benthos
ciliophoran
p=0.06, pf0.04, mic?oorganism, p=0.04, Paramecium, p—0.05, invertebrate
streptococcus, strep | micro-organism paramecia
p=0.05, eukaryote, p=0.01, p=0.03, p=0.04, pipefish,
eucaryote cytomegalovirus, CMV | photomicrograph needlefish

10.6 Google TensorFlow in the Cloud

Google’s TensorFlow is a frequently discussed and used deep learning toolkit.
If you have installed the Amazon Deep Learning AMI, then you already have
TensorFlow installed, and you can begin experimenting right away. While we have
already introduced TensorFlow when discussing convolutional neural networks, we
need to look at some core concepts before we dive more deeply.

Let us start with tensors, which are generalizations of arrays to dimensions
beyond 1 and 2. In TensorFlow, tensors are created and stored in container objects

215

10.6. Google TensorFlow in the Cloud

Table 10.5: (Fake) graduate school admission data.

| GRE | GPA Rank | Decision |
800 4.0 4 0
339 2.0 1 1
750 3.9 1 1
800 4.0 2 0

that are one of three types: variables, placeholders, and constants. To illustrate
the use of TensorFlow, we build a logistic regression model of some (fake) graduate
school admissions decisions. Our data, shown in table 10.5, consist of a GRE exam
score in the (pre-2012) range of 0 to 800; a grade point average (GPA) in the range
0.0 to 4.0; and the rank of the student’s undergraduate institution from 4 to 1
(top). The admission decision is binary.

To build the model, we first initialize TensorFlow for an interactive session and
define two variables and two placeholders, as follows.

import tensorflow as tf

import numpy as np

import csv

sess = tf.InteractiveSession ()

s}
|

= tf.placeholder (tf.float32, shape=(None,3))
= tf.placeholder(tf.float32, shape =(None,1))

o
|

Set model weights
W = tf.Variable(tf.zeros ([3, 1]))
b = tf.Variable(tf.zeros ([1]))

The placeholder tensor x represents the triple [GRE, GP A, Rank] from our
data and the placeholder y holds the corresponding Admissions Decision. W and
b are the learned variables that minimize the cost function.

1

cost="> (y—o(W-z+b))?)
=0

In this equation, W - z is the dot product, but the placeholders are of shape
(None, 3) and (None, 1), respectively. In TensorFlow, this means that they can
hold an array of size N x 3 and N x 1, respectively, for any value of N. The
minimization step in TensorFlow now takes the following form, defining a graph
with inputs x and y feeding into a cost function, which is then passed to the
optimizer to select the W and b that minimize the cost.

216

Chapter 10. Machine Learning in the Cloud

pred = tf.sigmoid (tf.matmul(x, W) + D)
cost tf.sqrt(tf.reduce_sum((y - pred)**2/batch_size))

opt = tf.train.AdamOptimizer ()
optimizer = opt.minimize(cost)

The standard way to train a system in TensorFlow (and indeed in the other
packages that we discuss here) is to run the optimizer with successive batches of
training data. To do this, we need to initialize the TensorFlow variables with the
current interactive session. We use a Python function get_batch() that pulls a
batch of values from train_data and stores them in train_label arrays.

training_epochs = 100000

batch_size = 100

display_step = 1000

init = tf.initialize_all_variables ()

sess.run(init)
Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(len(train_data)/batch_size)
Loop over all batches
for i in range(total_batch):
batch_xs,batch_ys=get_batch(batch_size ,train_data,train_label
Fit training using batch data

_,c=sess.run([optimizer,cost],
feed_dict={x:batch_xs, y:batch_ys})
Compute average loss
avg_cost += ¢ / total_batch
Display logs per epoch step
if (epoch+1) % display_step == O0:
print ("Epoch:", '%04d' % (epoch+1), "cost=", str(avg_cost))

Figure 10.11: TensorFlow code for training the simple logistic regression function.

The code segment in figure 10.11 illustrates how data are passed to the compu-
tation graph for evaluation with the sess.run() function via a Python dictionary,
which binds the data to the specific TensorFlow placeholders. Notebook 23 provides
additional details, including analysis of the results. You will see that training on
the fake admissions dataset led to a model in which the decision to admit is based
solely on the student graduating from the top school. In this case the training
rapidly converged, since this rule is easy to “learn.” The score was 99.9% accurate.
If we base the admission decision on the equally inappropriate policy of granting

217

10.7. Microsoft Cognitive Toolkit

admission only to those students who either scored an 800 on the GRE or came
from the top school, the learning does not converge as fast and the best we could
achieve was 83% accuracy.

A good exercise for you to try would be to convert this model to a neural
network with one or more hidden layers. See whether you can improve the result!

10.7 Microsoft Cognitive Toolkit

We introduced the Microsoft Cognitive Toolkit in section 10.4.3 on page 209,
when discussing recurrent neural networks. The CNTK team has made this software
available for download in a variety of formats so that deep learning examples can
be run on Azure as clusters of Docker containers, in the following configurations:

e CNTK-CPU-InfiniBand-IntelMPI for execution across multiple InfiniBand
RDMA VMs

e CNTK-CPU-OpenMPI for multi-instance VMs

e CNTK-GPU-OpenMPI for multiple GPU-equipped servers such as the NC
class, which have 24 cores and 4 K80 NVIDIA GPUs

These deployments each use the Azure Batch Shipyard Docker model, part of
Azure Batch [6]. (Shipyard also provides scripts to provision Dockerized clusters
for MXNet and TensorFlow with similar configurations.)

You also can deploy CNTK on your Windows 10 PC or in a VM running in
any cloud. We provide detailed deployment instructions in notebook 22, along
with an example that we describe below. The style of computing is similar to
Spark, TensorFlow, and others that we have looked at. We use Python to build a
flow graph of computations that we invoke with data using an eval operation. To
illustrate the style, we create three tensors to hold the input values to a graph and
then tie those tensors to the matrix-multiply operator and vector addition.

import numpy as np

import cmntk

X = cntk.input_variable((1,2))
cntk.input_variable ((2,3))
cntk.input_variable ((1,3))
cntk.times (X,M)+B

M
B
Y

X is a 1x2-dimensional tensor, that is, a vector of length 2; M is a 2x3 matrix;
and B is a vector of length 3. The expression Y=X*M+B yields a vector of length 3.

218

Chapter 10. Machine Learning in the Cloud

However, no computation has taken place at this point: we have only constructed
a graph of the computation. To execute the graph, we input values for X, B, and
M, and then apply the eval operator on Y, as follows. We use Numpy arrays to
initialize the tensors and, in a manner identical to TensorFlow, supply a dictionary
of bindings to the eval operator as follows.

x = [[np.asarray ([[40,50]1]) 1]
m [[np.asarray ([[1, 2, 31, [4, 5, 6]11) 1]
b [[np.asarray ([1., 1., 1.]1)1]]

print(Y.eval ({X:x, M: m, B: bl}))

array ([[[[241., 331., 421.11]1], dtype=float32)

CNTK also supports several other tensor container types, such as Constant, for
a scalar, vector, or other multidimensional tensor with values that do not change,
and ParameterTensor, for a tensor variable whose value is to be modified during
network training.

Many more tensor operators exist, and we cannot discuss them all here. How-
ever, one important class is the set of operators that can be used to build multilevel
neural networks. Called the layers library, they form a critical part of CNTK. One
of the most basic is the Dense(dim) layer, which creates a fully connected layer of
output dimension dim. Many other standard layer types exist, including Convolu-
tional, MaxPooling, AveragePooling, and LSTM. Layers can also be stacked with
a simple operator called sequential. We show two examples taken directly from
the CNTK documentation [27]. The first is a standard five-level image recognition
network based on convolutional layers.

with default_options (activation=relu):
conv_net = Sequential ([

3 layers of convolution and dimension reduction by pooling
Convolution ((5,5),32,pad=True) ,MaxPooling ((3,3),strides=(2,2)),
Convolution ((5,5),32, pad=True),MaxPooling ((3,3),strides=(2,2)),
Convolution ((5,5) ,64,pad=True) ,MaxPooling ((3,3),strides=(2,2)),
2 dense layers for classification
Dense (64) ,
Dense (10, activation=None)

The second example, on the next page, is a recurrent LSTM network that takes
words embedded in a vector of size 150, passes them to the LSTM, and produces
output through a dense network of dimension labelDim.

219

10.8. Summary

model = Sequential ([

Embedding (150) , # Embed into a 150-dimensional vector
Recurrence (LSTM(300)), # Forward LSTM
Dense(labelDim) # Word-wise classification

D

You use word embeddings when your inputs are sparse vectors of size equal
to the word vocabulary (i.e., if item ¢ in the vector is 1, then the word is the
ith element of the vocabulary), in which case the embedding matrix has size
vocabulary-size by number of inputs. For example, if there are 10,000 words in the
vocabulary and you have 150 inputs, then the matrix is 10,000 rows of length 150,
and the ith word in the vocabulary corresponds to the ith row. The embedding
matrix may be passed as a parameter or learned as part of training. We illustrate
its use with a detailed example later in this chapter.

The Sequential operator used in the same code can be thought of as a
concatenation of the layers in the given sequence. The Recurrence operator is
used to wrap the correct LSTM output back to the input for the next input to
the network. For details, we refer you to the tutorials provided by CNTK. One
example of particular interest concerns reinforced learning, a technique that
allows networks to use feedback from dynamical systems, such as games, in order
to learn how to control them. We reference a more detailed discussion online [134].

Azure also provides a large collection of pretrained machine learning services
similar to those provided by the Amazon Machine Learning platform: the Cortana
cognitive services. Specifically, these include web service APIs for speech and
language understanding; text analysis; language translation; face recognition and
attitude analysis; and search over Microsoft’s academic research database and
graph. Figure 10.12 shows an example of their use.

10.8 Summary

We have introduced a variety of cloud and open source machine learning tools.
We began with a simple logistic regression demonstration that used the machine
learning tools in Spark running in an Azure HDInsight cluster. We next turned
to the Azure Machine Learning workspace Azure ML, a portal-based tool that
provides a drop-and-drag way to compose, train, and test a machine learning model
and then convert it automatically into a web service. Amazon also provides a
portal-based tool, Amazon Machine Learning, that allows you to build and train a
predictive model and deploy it as a service. In addition, both Azure and Amazon

220

Chapter 10. Machine Learning in the Cloud

provide pre-trained models for image and text analysis, in the Cortana services
and the Amazon ML platform, respectively.

We devoted the remainder of this chapter to looking at deep learning and
the TensorFlow, CNTK, and MXNet toolkits. The capabilities of these tools can
sometimes seem almost miraculous, but as Oren Etzioni [118] observes, “Deep
learning isn’t a dangerous magic genie. It’s just math.” We presented a modest
introduction to the topic and described two of the most commonly used networks:
convolutional and recurrent. We described the use of the Amazon virtual machine
image (AMI) for machine learning, which includes MXNet, Amazon’s preferred deep
learning toolkit, as well as deployments of all the other deep learning frameworks.
We illustrated MXNet with the Resnet-152 image recognition network first designed
by Microsoft Research. Resnet-152 consists of 152 layers, and we demonstrated how
it can be used to help classify biological samples. This type of image recognition
has been used successfully in scientific studies ranging from protein structure to
galaxy classification [180, 60, 264, 111].

We also used the Amazon ML AMI to demonstrate TensorFlow, Google’s open

[
{

"faceRectangle": {
"left": 45,
"top": 48,
"width": 62,
"height": 62

1,

"scores": {

"anger": 0.0000115756638,
"contempt": 0.00005204394,
"disgust": 0.0000272641719,
"fear": 9.037577e-8,
"happiness": 0.998033762,
"neutral": 0.00184232311,
"sadness": 0.0000301841555,
"surprise": 0.00000277762956

Figure 10.12: Cortana face recognition and attitude analysis web service. When applied to
an image of a person on a sailboat, it returns the JSON document on the right. Cortana
determines that there is one extremely (99.8%!) happy face in the picture.

221

10.9. Resources

source contribution to the deep learning world. We illustrated how one defines a
convolution neural network in TensorFlow as part of our discussion of that topic,
and we provided a complete example of using TensorFlow for logistic regression.
Microsoft’s cognitive tool kit (CNTK) was the third toolkit that we presented. We
illustrated some of its basic features, including its use for deep learning. CNTK
also provides an excellent environment for Jupyter, as well as many good tutorials.

We have provided in this chapter only a small introduction to the subject
of machine learning. In addition to the deep learning toolkits mentioned here,
Theano [47] and Caffe [161] are widely used. Keras keras.io is another interesting
Python library that runs on top of Theano and TensorFlow. We also have not
discussed the work done by IBM with their impressive Watson services—or systems
such as Torch torch.ch.

Deep learning has had a profound impact on the technical directions of each of
the major cloud vendors. The role of deep neural networks in science is still small,
but we expect it to grow.

Another topic that we have not addressed in this chapter is the performance
of ML toolkits for various tasks. In chapter 7 we discussed the various ways by
which a computation can be scaled to solve bigger problems. One approach is
the SPMD model of communicating sequential processes by using the Message
Passing Standard (MPI) model (see section 7.2 on page 97). Another is the graph
execution dataflow model (see chapter 9), used in Spark, Flink, and the deep
learning toolkits described here.

Clearly we can write ML algorithms using either MPI or Spark. We should
therefore be concerned about understanding the relative performance and pro-
grammability of the two approaches. Kamburugamuve et al. [166] address this
topic and demonstrate that MPI implementations of two standard ML algorithms
perform much better than the versions in Spark and Flink. Often the differences
were factors of orders of magnitude in execution time. They also acknowledge
that the MPI versions were harder to program than the Spark versions. The same
team has released a library of MPI tools called SPIDAL, designed to perform data
analytics on HPC clusters [116].

10.9 Resources

The classic Data Mining: Concepts and Techniques [148], recently updated, provides
a strong introduction to data mining and knowledge discovery. Deep Learning [143|
is an exceptional treatment of that technology.

222

Chapter 10. Machine Learning in the Cloud

For those interested in learning more of the basics of machine learning with
Python and Jupyter, two good books are Python Machine Learning [224] and
Introduction to Machine Learning with Python: A Guide for Data Scientists [207].
All the examples in this chapter, with the exception of k-means, involve supervised
learning. These books treat the subject of unsupervised learning in more depth.

On the topic of deep learning, each of the three toolkits covered in this chapter—
CNTK, TensorFlow, and MXNet—provides extensive tutorials in their standard
distributions, when downloaded and installed.

We also mention the six notebooks introduced in this chapter.

e Notebook 18 demonstrates the use of Spark machine learning for logistic
regression.

e Notebook 19 can be used to send data to an AzureML web service.

e Notebook 20 demonstrates how to load and use the RNN model originally
built with CNTK.

e Notebook 21 shows how to load and use the MXNet Resnet-152 model to
classify images.

e Notebook 22 discusses the installation and use of CNTK.

e Notebook 23 illustrates simple logistic regression using TensorFlow.

223

