
 Chapter 10

    Machine Learning in the Cloud

            “Learning is any change in a system that produces a more or less
         permanent change in its capacity for adapting to its environment.”

      —Herb ert Simon, The Sciences of the Artificial

          Machine learning has b ecome central to applications of cloud computing. While
             machine learning is considered part of the field of artificial intelligence, it has ro ots

           in statistics and mathematical optimization theory and practice. In recent years it
           has grown in imp ortance as a numb er of critical appl icati on breakthroughs have

       taken place. These include human-quality sp eech recognition [ 144   ] and real-time
   automatic language translation [95        ], computer vision accurate and fast enough to

   prop el self-driving cars [ 74        ], and applications of rei nforcement learning tha t allow
             machines to master some of the mos t com plex human games, such as Go [234].

           What has enabled these breakthroughs has b een a convergence of th e availabil-
             ity of big data plus algorithmic advances and faster computers that have made it

            p ossible to train even deep neural networks. The same technology is now b eing
          applied to scientific prob lem s as diverse as predicting protein structure [ 180  ], pre-

      dicting the pharmacological prop erties of drugs [60     ], and identifying new materials
   with desired prop erties [264].

             In this chapter we intro duce some of the ma jor machine learning to ols that are
               available in public clouds, as well as to olkits that you can install on a private cloud.

             We b egin with our old friend Spark and its machine learning (ML) package, and
             then move to Azure ML. We progress from the core “classical” ML to ols, including

            logistic regression, clustering, and random forests, to take a brief lo ok at deep
            learning and deep learning to olkits. Given our emphasis on P ython, the reader may
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          exp ect u s to cover the excellent Python library scikit-learn . However, scikit-learn

    is well covered elsewhere [ 253           ], and we intro duced several of its ML metho ds in our
         microservice-based science do cument classifier example in chapter 7. We describ e

          the same example, but using di erent technology, later in this chapter.ff

     10.1 Spark Machine Learning Library (MLlib)

  Spark MLlib [198            ], sometimes referred to as Spark ML, provides a set of high-level
         APIs for creating ML pip elines. It implements four basic concepts.

 • DataFrames          are containers created from Spark RDDs to hold vectors and
          other structured typ es in a manner that p ermits e cient execution [ffi 45  ]. Spark

         DataFrames are similar to Pandas DataFrames and share some op erations.
            They are distributed ob jects that are part of the execution graph. You can

         convert them to Pandas DataFrames to acces s them in Python.

 • Tr a ns f o rm e r s         are op erators that convert one DataFrame to another. Since
             they are no des on the execution graph, they are not evaluated until the entire

  graph is executed.

 • Estimators          encapsulate ML and other algorithms. As we describ e in the
    following, you can use the fit(...)      metho d to pass a D ataFrame and

            parameters to a learning algorithm to create a mo del. The mo del is now
   represented as a Trans former.

• A Pip eline           (usually linear, bu t can b e a directed acyclic graph) l inks Trans-
          formers and Estim ators to sp ecify an ML workflow. Pip elines inherit the

fit(...)         metho d from the contained estimator. Once the estimator is
        trained, the pip eli ne is a mo del and has a transform(...)   metho d that can

           b e used to push new cases through the pip eline to make predictions.

           Many transformers exist, for example to turn text do cuments into vectors of
             real numbers, convert columns of a DataFrame from one form to another, or split

           DataFrames into subsets. There are also various kinds of estimators, ranging from
          those that transform vectors by pro jecting them onto principal comp onent vectors,

to n          -gram generators that take text do cuments and return strings of n consecutive
        words. Classification mo dels inclu de logistic regression, decision tree classifiers,

          random forests, and naive Bayes. The family of clustering metho ds includes k -
         means and latent Dirichlet allo cation (LDA). The MLlib online do cumentation

          provides much useful material on these and related topics [29] .

192



      Chapter 10. Machine Learning in the Cloud

  10.1.1 Logistic Regression

       The example that follows employs a metho d called  logistic regression [ 103],
           which we intro duce here. Suppose we have a set of feature vectors xi  2 Rn for

i  in [ 0, m          ]. Asso ciated with each feature vector is a binary outcome yi. We are
    interested in the cond itio nal probability P (y = 1 |x      ), which we approximate by a

function p(x  ). Becaus e p ( x             ) is b etween 0 and 1, it is not expressible as a linear
 function of x            , and thus we cannot use regular linear regression. Instead, we lo ok

               at the “o dds” expression and guess that its log is linear. That is:p x / p x( ) ( 1  ( ) )

l n

✓
p x( )

  1 ( ) p x

◆
 = b0    + b · x,

  where the o setff b0   and the vector b = [ b1 , b2 , . . .bn      ] define a hyp erplane for linear
       regression. Solving this expression for p x( ) we ob tai n :

p x( ) =
1

1 + e(b0+ )b x·

  We then predict y = 1 if p( x ) >      0 and zero otherwise. Unfortunately, finding
 the b est b 0 and b             is not as easy as in the case of linear regression. However, s imp le

             Newton-like iterations converge to go o d solutions if we have a sample of the feature
   vectors and known outcomes.

          (We note that the logistic function ( )t is defined a s fol lows:

(t) =
et

et + 1
=

1

1 + et

              It is used frequently in machine learning to map a real numb er into a probability
            range [ 0 , 1]; we use it for this purp ose la ter in this chapter.)

   10.1.2 Chicago Restaurant Example

               To illustrate the use of Spark MLlib, we apply it to an example from the Azure
  HDInsight tutorial [ 195         ], na mely predicting whether restaurants pass or fail health

            insp ections based on the free text of an insp ector’s comments. We provide two
             versions of this example in noteb o ok 18: the HDInsight version and a version that

          runs on any generic Spark deployment. We present the second here.

        The data, from the City of Chicago Data Portal data.cityofchicago.org , a re
           a set of restaurant heath insp ection rep orts. Each insp ection rep ort contains a

             rep ort numb er, the name of the owner of the establishment, the name of the
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          establishment, the address, and an outcome (“Pass,” “Fail,” or some alternative
             such as “out of business” or “not available”). It also contain s the (free-text) English

   comments from the insp ector.

               We first read the data. If we are using Azure HDInsight, we can load it from
        blob storage as follows. We use a simple function csvParse     that takes each line in

         the CSV file and parses it using Python’s function.csv.reader()

   i n s p e c t i o n s = s p a r k . s p a r k C o n t e x t . t e x t F i l e ( \

 ' w a s b  : / / /  H d i S a m p l e s  / H d i S a m p l e s  / F o o d I n s p e c t i o n D a t a  /

F o o d _ I n s p e c t i o n s 1 . c s v ' ) .  m a p ( c s v P a r s e )

             The version of the program in noteb o ok 18 uses a slightly reduced dataset. We
              have eliminated the address fields and some other data that we do not use here.

  i n s p e c t i o n s = s p a r k . s p a r k C o n t e x t . t e x t F i l e (

 ' / p a t h - t o - r e d u c e d - d a t a / F o o d _ I n s p e c t i o n s 1 . c s v ' ) .  m a p ( c s v P a r s e )

    We want to create a  training set        from a set of insp ection rep orts that contain
             outcomes, for use in fitting our logistic regression mo del. We first convert the RDD

  containing the data, inspections     , to create a DataFrame, df    , with four fields:
         record id, restaurant name, insp ection result, and any recorded violations.

    s c h e m a = S t r u c t T y p e  ( [  S t r u c t F i e l d  ( " i d " , I n t e g e r T y p e  ( ) , F a l s e ) ,

  S t r u c t F i e l d ( " n a m e " , S t r i n g T y p e ( ) , F a l s e ) ,

  S t r u c t F i e l d ( " r e s u l t s " , S t r i n g T y p e ( ) , F a l s e ) ,

  S t r u c t F i e l d ( " v i o l a t i o n s " , S t r i n g T y p e  ( ) , T r u e ) ] )

  d f = s p a r k  . c r e a t  e D a t a  F r a m e (  i n s p e c t i o n s  .  ( \m a p  

       l a m b d a l : ( i n t ( l [ 0 ] ) , l [ 2 ] , l [ 3 ] , l [ 4 ] ) ) , s c h e m a )

 d f  .  r e  g i s t e r  T e m p T a  b l e  (  ' C o u n t R e s u l t s ' )

             If we want to lo ok at the first few elements, we can apply the show() function
      to return values to the Python environment.

d f  .  s h o w ( 5 )

+ - - - - - - - + - - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - +

 | i d  | n a m e | r e s u l t s | v i o l a t i o n s |

+ - - - - - - - + - - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - +

       | 1 9 7 8 2 9 4 |  K E N T U C K Y F R I E D C H . . . | P a s s  | 3 2 . F O O D A N D N O N - . . . |

     | 1 9 7 8 2 7 9 | S O L O F O O D S | O u t o f B u s i n e s s  | |

      | 1 9 7 8 2 7 5 |  S H A R K S F I S H & C H I . . . | P a s s  | 3 4 . F L O O R S : C O N S T  . . . |

       | 1 9 7 8 2 6 8 |  C A R N I T A S Y S U P E R M . . . | P a s s  | 3 3 . F O O D A N D N O N - . . . |

   | 1 9 7 8 2 6 1 | W I N G S T O P | P a s s | |

+ - - - - - - - + - - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - +

    o n l y s h o w i n g t o p 5 r o w s
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            Fortunately for the p eople o f Chicago, it seems that the ma jority of the
           insp ections result in passing grades. We can use some DataFrame op erations to

     count the passing and failing grades.

     p r i n t ( " P a s s i n g = % d " % d f [ d f . r e s u l t s = = ' P a s s  ' ] . c o u n t ( ) )

     p r i n t ( " F a i l i n g = % d " % d f [ d f . r e s u l t s = = ' F a i l  ' ] . c o u n t ( ) )

  P a s s i n g = 6 1 2 0 4

  F a i l i n g = 2 0 2 2 5

             To train a logi stic regression mo del, we need a DataFrame with a bin ary lab el
              and feature vector for each record. We do not want to use records asso ciated with

              “out of business” or other sp ecial cases, so we map “Pass” and “Pass with conditions”
             to 1, “Fail” to 0, and all others to -1, whi ch we filter out.

 d e f l a b e l F o r R e s u l t s ( s ) :

  i f s = = ' F a i l  ' :

 r e t u r n 0 . 0

       e l i f s = = ' P a s s w / C o n d i t i o n s  ' o r s = = ' P a s s  ' :

 r e t u r n 1 . 0

e l s e :

 r e t u r n - 1 . 0

    l a b e l = U s e r D e f i n e d F u n c t i o n  ( l a b e l F o r R e s u l t s , D o u b l e T y p e  ( ) )

   l a b e l e d D a t a = d f . s e l e c t ( l a b e l ( d f . r e s u l t s  ) . a l i a s ( ' l a b e l ' ) , \

   d f  .  v i o l a t i o n s ) . w h e r e  (  ' l a b e l > = 0 ' )

       We now have a DataFrame with two columns, label and violations  and we
                are ready to create and run the Spark MLlib pip eline that we will use to train our

         logistic regression mo del, which we do with the following co de.

    # 1 ) D e f i n e p i p e l i n e c o m p o n e n t s

            # a ) T o k e n i z e ' v i o l a t i o n s ' a n d p l a c e r e s u l t c o l u m ni n n e w ' w o r d s  '

   t o k e n i z e r = T o k e n i z e r  ( i n p u t C o l = "  v i o l a t i o n s " , o u t p u t C o l = " w o r d s " )

           # b ) H a s h ' w o r d s  ' t o o fc r e a t e c o l u m nn e w ' f e a t u r e s  '

    h a s h i n g T F = H a s h i n g T F  ( i n p u t C o l = " w o r d s " , o u t p u t C o l = " f e a t u r e s " )

      # c ) C r e a t e i n s t a n c e l o g i s t i co f r e g r e s s i o n

   l r = L o g  i s t i c R  e g r e s s  i o n  (  m a x I t e r = 1 0  , r e g P a r a m = 0 . 0 1 )

         # : , ,2 ) C o n s t r u c t p i p e l i n e t o k e n i z e h a s h l o g i s t i c r e g r e s s i o n

      p i p e l i n e = P i p e l i n e ( s t a g e s  = [ t o k e n i z e r , h a s h i n g T F , l r ] )

      # 3 ) t oR u n p i p e l i n e c r e a t e m o d e l

  m o d e l = p i p e l i n e . f i t ( l a b e l e d D a t a  )

           We first (1) define our three pip eline comp onents, which (a) tokenize each
violations              entry (a text string) by reducing it to lower case and splitting it into
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            a vector of words; (b) convert each word vector into a vector in Rn  for some n,
              by applying a hash function to map each word token into a real numb er value

               (the new vectors have length equal to the size of the vo cabulary, and are stored as
             sparse vectors); and (c) create an instance of l ogi stic regression. We then (2) put

            everything into a pip eline and (3) fit the mo del with our lab eled data.

          Recall that Spark implements a graph execution mo del. Here, the pip eline
              created by the Python program is the graph; this graph is passed to the Spark

    execution engine by calling the fit(...)      metho d on the pip eline. Notice that
the tokenizer    comp onent adds a column words     to our working DataFrame, and
hashingTF   adds a column features       ; thus, the working DataFrame has columns

      ID, name, results, label, violations, words, features   when logistic re-
            gression is run. The names a re imp ortant, as logistic regression lo oks for columns

 label, features             , which it uses for training to build the mo del. The trainer is
           iterative; we give it 10 iterations and an algorithm-dep endent value of .0.01

            We can now test the mo del with a separate tes t collection as follows.

  t e s t D a t a = s p a r k . s p a r k C o n t e x t . t e x t F i l e (

' / d a t a _ p a t h / F o o d _ I n s p e c t i o n s 2 . c s v ' ) \

  . m a p  ( c s v P a r s e ) \

       . (m a p  l a m b d a l : ( ( l [ 0 ] ) , l [ 2 ] , l [ 3 ] , l [ 4 ] ) )i n t

   t e s t D f = s p a r k .  c r e a t e D a t a F r a m e (  t e s t D a t a  , s c h e m a  ) .

         w h e r e ( " r e s u l t s = ' F a i l  P a s s' O R r e s u l t s = ' ' O R \

     r e s u l t s = ' P a s s w / C o n d i t i o n s  ' " )

  p r e d i c t i o n s D f = m o d e l . t r a n s f o r m ( t e s t D f )

           The logistic regression mo del has app ended several new columns to the data
   frame, including one called prediction        . To test our prediction success rate, we

       compare the column with the column.prediction results

  n u m S u c c e s s e s = p r e d i c t i o n s D f . w h e r e ( \

          " " " ( = 0 = ) \p r e d i c t i o n A N D r e s u l t s ' F a i l  ' O R

           ( = 1 ( = \p r e d i c t i o n A N D r e s u l t s ' P a s s  ' O R

      r e s u l t s = w /' P a s s C o n d i t i o n s ' ) ) " " "  ) .  c o u n t ( )

  n u m I n s p e c t i o n s = p r e d i c t i o n s D f . c o u n t ( )

        p r i n t ( " T h e r e w e r e % d i n s p e c t i o n s a n d t h e r e w e r e % d p r e d i c t i o n s " \

  % (  n u m I n s p e c t i o n s ,  n u m  S u c c e s s e s ) )

     p r i n t ( " T h i s i s a % 2 . 2 f s u c e s s r a t e " \

    % (  f l o a t  ( n u m S u c c e s s e s ) / ( n u m I n s p e c t i o n s ) * 1 0 0 ) )f l o a t  

    We see the following output:

        T h e r e w e r e 3 0 6 9 4 i n s p e c t i o n s a n d t h e r e w e r e 2 7 7 7 4 p r e d i c t i o n s

     T h i s i s a 9 0 . 4 9 \ % s u c c e s s r a t e
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           Before getting to o excited ab out this result, we examine other measures of
  success, such as precision and recall         , that are widely used in ML research. When

             applied to our ability to predi ct failure, recall is the proba bil ity that we predicted
            as failing a randomly s elected insp ection from those with failing grades. As detailed

              in noteb o ok 18, we find that our recall probability is only 67%. Our ability to
              predict failure is thus well b elow our ability to predict passing. The reason may b e

           that other factors involved with failure are not reflected in the rep ort.

    10.2 Azure Machine Learning Workspace

  Azure Machine Learning         is a cloud p ortal for designing and trai ning machine
          learning cloud services. It is based on a drag-and-drop comp onent com p osition

             mo del, in which you build a solution to a machine learning problem by dragging
              parts of the solution from a pallet of to ols and connecting them together into a

             workflow graph . You then train the solution with your data. When you are satisfied
              with the results, you can ask Azure to convert your graph into a running web

            service using the mo del you trained. In this sense Azure ML provides customized
           machine learning as an on-demand service. This is another example of s erverless

             computation. It do es not require you to deploy and manage your own VMs; the
              infrastructure is deployed as you need it. If your web service needs to scale up

        b ecause of demand, Azure scales the underlying resources automatically.

             To illustrate how Azure ML works, we return to an example that we first
              considered in chapter 7. Our goal is to train a system to classify scientific pap ers,

           based on their abstracts, into one of five categories: physics, math, computer
            science, biol ogy, or finance. As training data we take a relatively small sample

      of abstracts from the arXi v online library arxiv.org      . Each sample con sis ts of a
            triple: a classification from arXiv, the pap er title, and the abstract. For example,

           the following is the record for a 201 5 pap er in physics [83].

 [ ,'Physics'

'           A Fast Direct Sampling Algorithm for Equilateral Closed Polygons. (arXiv:1510.02466v1 [cond-

mat.stat-mech])',

'               Sampling equilateral closed p olygons is of interest in the statistical study of ring p olymers. Over

              the past 30 years, previous authors have proposed a variety of simple Markov chain algorithms

               (but have not b een able to show that they converge to the correct probability distribution) and

         complicated direct samplers (which require extended-precision arithmetic to evaluate numerically

             unstable p olynomials). We present a simple direct sampler which is fast and numerically stable.'

]
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           This example also illustrates one of the challenges of the classification problem:
          science has b ecome wonderfully multidisciplinary. The topic given for this sample

             pap er in arXiv is “condensed matter,” a sub ject in physics. Of the four authors,
           however, two are in mathematics institutes and two are from physics departments,

            and the abstract refers to algorithms that are typically part of computer science.
             A human reader mig ht reasonably consider the abstract to b e describ in g a topic in

         mathematics or computer science. (In fact, multidisciplinary physics pap ers were
            so numerous in our dataset that we removed them in the exp eriment b elow.)

               Let us start with a solution in Azure ML based on a multiclass version of the
           logistic regression algo rithm. Figure 10.1 shows the graph of tasks. To understand

              this workflow, start at th e top, which is where the data source comes into the
             picture. Here we take the data from Azure blob storage, where we have placed

            a l arge subs et of our arXiv samples in a CSV file. Clicking the  Import Data b ox
             op ens the window that allows us to identify the URL for the input file.

            Figure 10.1: Azure ML graph us ed to train a multiclass logistic regression mo del.

   The second b ox down,  Feature Hashing       , builds a vectorizer based on the
          vo cabulary in the do cument collection. This version comes from the Vowpal

            Wabbit library. Its role is to convert each do cument into a numerical vector
           corresp onding to the key words and phrases in the do cument collection. This
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            numeric representation is essential for the actual ML phase. To create the vector,
              we tell the feature hasher to lo ok only at the abstract text. What happ ens in

              the o utpu t is that the vector of numeric values for the abstract text is app ended
              to the tuple for each do cument. Our tuple now has a large number of columns:

   class, title, abstract, an d   vector[0], ..., vector[n-1]  , where n   is the numb er
            of features. To configure the algorithm, we select two parameters, a hashing bin

    size and an -gram length.n

             Before sending the example to ML training, we remove the English text of the
              abstract an d the title, leaving only the class and the vector for each do cument. We

   accomplish this with a    Select Columns in Dataset       . Next we split the data into
           two subsets: a training subset and a test subset. (We sp ecify that  Split Data

            should use 75% of the data for training and the rest for testing.)

            Azure ML provides a go o d number of the standard ML mo dules. Each such
             mo dule has various parameters that can b e selected to tune the metho d. For all

           the exp eriments describ ed here, we just used the default parameter settings. The
 Train Model            comp onent accepts as on e input a binding to an ML metho d (recall

              this is not a dataflow graph); the other in pu t is the pro jected training data. The
                output of the Train Mo del task is not data p er se but a trained mo del that may

                also b e saved for later use. We can now use this trained mo del to classify our test
      data. To this end, we use the  Score Model    comp onent, which app ends another

           new column to our table, Scored Lab el, providing the classi fication predicted by
     the trained mo del for each row.

        To see how well we did, we use the  Evaluate Model   comp onent, which computes
              a confusion matrix. Each row of the matrix tells us how the do cuments in that

           class were classified. Table 10.1 shows the confusion matrix for thi s exp eriment.
             Observe, for example, tha t a fair numb er of biology pap ers are classified as math.

               We attrib ute this to the fact that most biology pap ers in the archive are related to
           quantitative metho ds, and thus contain a fair amount of mathematics. To access

               the confusion matrix, or for that matter the output of any stage in the g raph, click
              on the outpu t p ort (the small circle) on the corresp onding b ox to access a menu.

        Selecting in that menu brings up u seful information.visualize

           Table 10.1: Confusion matrix with only math, computer science, biology, and finance.

   bio financecompsci math

    bio 51.3 19.9 4.74 24.1

    compsci 10.5 57.7 4.32 27.5
    finance 6.45 17.2 50.4 25.8

    math 6.45l 16.0 5.5 72
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          Now that we have trained the mo del, we can click the    Set Up Web Service

                button (not visible, but at the b ottom of the page) to turn the mo del i nto a web
           service. The Azure ML p ortal rearranges the graph by eliminating the split-train-

            test parts and leaves just the feature hashing, column selection, and the scoring
              based on the trained mo del. Two new no des have b een added: a web service input

              and a web service output. The resu lt, with o ne exception, is shown in figure 10 .2.
        The exception is that we have added a new  Select Columns     no de so that we can

            remove the vectorized do cument columns from the output of the web service. We
           retain the origin al clas s, the predicted class, and the probabilities computed for

     the do cument b eing in a class.

             Figure 10.2: Web service graph generated by Azure ML, with an additional no de to
   remove the vectorized do cument.

           You can now try additional ML classi fier algorithms simply by replaci ng the
         b ox Multiclass Logistic Regression Multiclass Neural Networkwith, for example,

            or Random forest classifier . Or, you can incorp orate all three metho ds into a
             single web service that uses a ma jority vote (“consensus”) metho d to pick the b est

            classification for each do cument. As shown in figure 10.3, the construction of this
            consensus metho d is straightforward: we si mp ly edit the web service graph for the

            multiclass logistic regression to add the trained mo dels for the other two metho ds
           and then call a Python script to tie the three results together.
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            Figure 10.3: Mo dified web service graph based on a consensus mo del, showing three
          mo dels and a Python script comp onent, used to determine the consensus.

            The Python script can simply compare the outputs from the three classifiers. If
              any two agree, then it selects that classification as a first choice and the classification

              that do es not agree as a second choice. The results for the first choice, shown
             in table 10.2, are only mo destly b etter than in the logistic regression case, but

              if we consider b oth the first and second choices, we reach 65% for biology, 72%
            for computer science, 60% for finance, and 88% for math. N oteb o ok 19 contains

                this Python script as well as the co de used to test and invoke the services and to
   compute the confusion matrices.

       Table 10.2: Confusion matrix for the three-way classifier.

   bio financecompsci math

    bio 50.3 20.9 0.94 27.8
    compsci 4.9 62.7 1.54 30.9

    finance 5.6 9.9 47.8 36.6
    math 3.91 13.5 2.39 80.3
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    10.3 Amazon Machine Learning Platform

            The Amazon platform provides an impressive array of ML services. Each is designed
            to allow develop ers to integrate cloud ML into mobile and other applications. Three

              of the four are based on the remarkable progress that has b een enabled by the
            deep learning techniques that we discuss in more detail in the next section.

 Amazon Lex         allows users to incorp orate voice input into applications. This
            service is an extension of Amazon’s Echo pro duct, a small networked device with

             a sp eaker and a micropho ne to which you can p ose questions ab out the weather
             and make requests to schedule events, play music, and rep ort on the latest news.

              With Lex as a service, you can build sp ecialized to ols that allow a sp ecific voice
            command to Echo to launch an Amazon lambd a function to execu te an application

               in the cloud. For exampl e, NASA has bui lt a replica of the NASA Mars rover that
            can b e controlled by voice commands, and has integrated Echo into several other

    applications around their labs [189].

 Amazon Polly             is the opp osite of Lex: it turns text into sp eech. It can sp eak
            in 27 languages wi th a variety of voices. Using the Speech Synthesis Markup

          Language, you can carefully control pronunciation and other asp ects of intonation.
           Together with Lex, Polly makes a first step toward conversational computing. Polly

           and Lex do not do real-time, voice-to-voice language translation the way Skyp e
            do es, but together they provide a great platform to deliver such a service.

 Amazon Rekognition          is at the cutting edge of deep learning applications. It
               takes an image as input and returns a textual description of the items that it sees

              in that image. For example, given an i mage of a scene with p eople, cars, bicycles,
             and animals, Rekognition returns a list of those items, with a m easu re of certainty

           asso ciated with each. The service is trained with many thousands of captioned
            images in a manner not unlike the way natural language translation systems are

            trained: it considers a million im ages contain ing a cat, each with an asso ciated
           caption that mentions “cat,” and a mo del asso ciation is formed. Rekognition can

      also p erform detailed facial analysis and comparisons.

The   Amazon Machine Learning        service, like Azure ML, can b e used to
           create a predictive mo d el based on training data that you provide. However,

            it requires much less understanding of ML concepts than do es Azure ML. The
         Amazon Machine Learning dashboard presents the list of exp eriments, m o dels,

           and data sources from your previous Amazon Machine Learning work. From the
           dashb oard you can define data sources and ML mo dels, create evaluations, and

  run batch predictions.
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             Using Amazon Machine Learning is easy. For example, we used it to build a
            predictive mo del from our collection of scientific articles in under an hour. One

                 reason that it is so easy to use is that the options are si mp le. You can build only
        three types of mo dels—regression , binary classification, or multiclass classification—

             and in each case, A mazo n Machine Learning provides a single mo del. In the case
          of multiclass classification, it is multinomial logistic regression with a sto chastic

            gradient descent optimizer. And it works well. Usin g the same test and training
             data as earlier, we obtained the results shown in table 10.3. Although the trained

         Amazon Machine Learning classifier failed to recognize any computational finance
            pap ers, it b eat our other classifiers in the other categories. Amazon Labs has

   additional excellent examples [44].

           Table 10.3: Confusion matrix for the science do cument classifier using Amazon ML.

   bio financecompsci math

    bio 62.0 19.9 0.0 18.0
    compsci 3.8 78.6 0.0 17.8

    finance 6.8 2.5 0.0 6.7
    math 3.5 11.9 0.0 84.6

          Amazon Machine Learning is also fully accessible from the Amazon REST
            interface. Fo r example, you can create a ML mo del using Python as fo llows.

  r e s p o n s e = c l i e n t . c r e a t e _ m l _ m o d e l (

 M L M o d e l I d = ' s t r i n g  ' ,

 M L M o d e l N a m e = ' s t r i n g  ' ,

     M L M o d e l T y p e = ' R E G R E S S I O N  M U L T I C L A S S  ' '| B I N A R Y  ' '| ' ,

P a r a m e t e r s  = {

   ' ' ' 's t r i n g  : s t r i n g  

} ,

 T r a i n i n g D a t a S o u r c e I d = ' s t r i n g  ' ,

 R e c i p e = s t r i n g  ' ' ,

 R e c i p e U r i = ' s t r i n g  '

)

 The parameter ModelID       is a required, user-suppli ed, unique identifier; other
           parameters sp ecify, for example, the maximum allowed size of the mo del, the

               maximum numb er of passes over the data in building the mo del, an d a flag to tell
              the learners to shu e the data. The training data source identifier is a data recip effl

                or URI for a recip e in S3. A recip e is a JSON-like do cument that describ es how to
           transform the datasets for input while building the mo del. (Consult the Amazon

          Machine Learning do cuments for more details.) For our science do cument example,
        we used the default recip e generated by the p ortal.
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     10.4 Deep Learning: A Shal low Intro duction

  The use of   artificial neural networks      for machine learning tasks has b een
             common for at least 40 years. Mathematically, a neural network is a metho d of

           approximating a function. For example, consider the function that takes an image
               of a car as input and pro duces the name of a manufacturer as output. Or, consider

              the fu nctio n that takes the text of a scientific abstract and outputs the most likely
            scientific discipline to which it b elongs. In order to b e a computational entity,

          our function and its approximation need a numerical representation. For example,
             supp ose our function takes as input a vector of three real numb ers and returns

                a vector of length two. Figu re 10.4 is a diagram of a neural net with one hid den
    layer representing such a function.

            Figure 10.4: Neural network with three inputs, one hidden layer, and two outputs.

         In this schematic representation, the lines represent numerical weights connect-
    ing the inputs to the n     interior neurons, and the terms b   are o sets. Mathematicallyff

       the function is given by the following equations.

aj  = (f
2X

i=0

xiW 1
i,j  + bj    ) f o r j = 1 , n

y0
j  = f 0(

nX

i=0

aiW 2
i,j  + b2

j     ) f o r j = 0 , 1

 The functions f and f 0   are called the  activation functions   for the neurons.
        Two commonly used activation functions are the logistic function ( t   ) that we
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           intro duced at the b eginning of this chapter and the rectified linear function:

  relu( ) = max(0x , x).

       Another common case is the hyp erb olic tangent function

tanh(x) =
ex   ex

ex  + ex

  An advantage of ( x  ) and tanh ( x          ) is that they map values in the range (   1 , 1 )
   to the range ( 0 ,              1), which corresp onds to the idea that a neuron is either on or off

           (not-fired or fired). When the function represents the probability that an input
              corresp onds to one of the outputs, we use a version of the logi stic functio n that

       ensures that the probabilities all sum to one.

softmax( )x j =
1

1 +
P

k j6= exkxj

         This formulation is commonly used in multiclass classification, inclu ding in
       several of the examples we have studied earlier.

            The trick to making the neural net truly approximate our desired functio n is
              picking the right values for the weights. There is no closed form solution for finding

             the b est weights, but if we have a large numb er of lab eled examples (xi, y i), we
      can try to minimize the cost function.

C x( i, y i) =
X

| | y i   y0(xi)| |

           The standard approach is to use a variation of gradient d escent, sp ecifically
 back propagation            . We do not provide details on this algorithm here but instead

          refer you to two outstanding mathematical treatments of deep learning [ 143, 210 ].

  10.4.1 Deep Networks

              An interesting prop erty of neural networks is that we can stack them in layers as
            illustrated in figure 10.5 on the next page. Furthermore, using the deep learning

             to olkits that we discuss in the remainder of this chapter, we can construct such
              networks with just a few lines of co de. In this chapter, we intro duce three deep

              learning to olkits. We first illustrate how each can b e used to define some of the
            standard deep networks and then, in later sections, describ e how to deploy and

    apply them in the cloud.

MXNet github.com/dmlc/mxnet         is the first deep learning to olkit that we con-
           sider. Using MXNet, the network in figure 10.5 would lo ok as follows.
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            Figure 10.5: Neural network with three inputs, two hidden layers, and two outputs.

   d a t a = m x .  s y m b o l .  V a r i a b l e  ( ' 'x )

   l a y r 1 = m x .  s y m b o l .  F u l l y C o n n e c t e d ( d a t a = d a t a , n a m e = ' W 1  ' , n u m _ h i d d e n = 7 )

    a c t 1 = m x .  s y m b o l .  A c t i v a t i o n (  d a t a = l a y r 1 ,  n a m e = ' r e l u 1  ' , a c t _ t y p e = " r e l u " )

   l a y r 2 = m x .  s y m b o l .  F u l l y C o n n e c t e d ( d a t a = a c t 1 , n a m e = ' W 2  ' , n u m _ h i d d e n = 4 )

    a c t 2 = m x .  s y m b o l .  A c t i v a t i o n (  d a t a = l a y r 2 ,  n a m e = ' r e l u 2  ' , a c t _ t y p e = " r e l u " )

    l a y r 3 = m x .  s y m b o l .  F u l l y C o n n e c t e d ( d a t a = a c t 2 , n a m e = ' W 3  ' , n u m _ h i d d e n = 2 )

 Y = m x . s y m b o l . S o f t m a x O u t p u t ( d a t a = l a y r 3 , n a m e = ' 's o f t m a x  )

           The code creates a stack of fully connected networks and activations that
             exactly describ e our diagram. In the following section we return to the co de needed

     to train and test this network.

 The term   deep neural network       generally refers to networks with many layers.
              Several sp ecial case networks also have proved to b e of great value for certain typ es

  of input data.

   10.4.2 Convolutional Neural Networks

           Data with a regular spatia l geometry such as images or one-dimensional streams
          are often analyzed with a sp ecial class of network called a  convolutional neural

network           or CNN. To expla in CNNs, we use our second example to olkit, Te ns o r -

 Flow tensorflow.org            , which was op en sourced by Go ogle in 2016. We consider a
             classic example that app ears in many tutorials and is well covered in that provided

   with TensorFlow .tensorflow.org/tutorials

     Supp ose you have thousands of 28⇥       28 black and white images of handwritten
              digits and you want to b ui ld a system that can identify each. Images are strings
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              of bits, but they also have a lot of lo cal two-dimensional structure such as edges
              and holes. In order to find these patterns, we examine each of the many 5⇥ 5

               windows in each image individu all y. To do so, we train the system to build a 5⇥ 5
 template array W     1 and a scalar o setff b        that together can b e used to reduce each

             5 5 window to a p oint in a new array by the following formula.⇥ conv

convp,q =

2X

i,k= 2

Wi,kimagep ki,q  + b

             (The imag e is padded near the b oundary p oints in the formula ab ove so that
           none of the indices are out of b ounds.) We next mo dify the conv   array by applying

the relu   function to each x  in the conv        array so that it has no negative values.
            The final step, max pooling, simply computes the maximum value in each 2⇥ 2

       blo ck and assigns it to a smaller 14 ⇥        14 array. The most interesting part of the
         convolution al network is that we do not use one 5⇥ 5 W      1 template but 32 of them

           in parallel, pro ducing 32 14 14 results, , as illustrated in figure 10.6.⇥ pool1

           Figure 10.6: Schematic of how a convolutional neural net pro cesses an image.

          When the network is fully trained, each of the 32 5⇥   5 templates in W  1 is
             somehow di erent, and each selects for a di erent set of features in the originalff ff

          image. One can think of the resulting stack of 32 14 ⇥   14 arrays (called pool1) as a
             typ e of transform of the original image, which works much like a Fourier transform

              to separate a signal in space an d time and transform it into frequency space. This
               is not what is going on here; but if you are familia r with these transforms, the

   analogy may b e helpful.

       We next apply a second convolutional layer to pool1 , but this t ime we ap ply
   64 sets of 5 ⇥       5 filters to each of the 32 pool1       layers and sum the results to ob tain

  64 new 14 ⇥            14 arrays. We then reduce these with max p o oling to 64 7 ⇥ 7 arr ays
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called pool2              . From there we use a dense “all-to-all” layer and finally reduce it to
             10 values, each representing the likeliho o d that the image corresp onds to a digit 0

             to 9. The TensorFlow tutorial defines two ways to build and train this network;
        figure 10.7 is from the community-contributed library called .layers

       i n p u t _ l a y e r = t f . r e s h a p e ( f e a t u r e s , [ - 1 , 2 8 , 2 8 , 1 ] )

  c o n v 1 = t f .  l a y e r s .  c o n v 2 d (

 i n p u t s =  i n p u t _ l a y e r ,

f i l t e r s = 3 2 ,

 k e r n e l _ s i z e = [ 5 , 5 ] ,

p a d d i n g = " s a m e " ,

a c t i v a t i o n = t f . n n . r e l u )

    p o o l 1 = t f .  l a y e r s .  m a x _ p o o l i n g 2 d  ( i n p u t s = c o n v 1 , \

  p o o l _ s i z e  = [ 2 , 2 ] , s t r i d e s  = 2 )

  c o n v 2 = t f .  l a y e r s .  c o n v 2 d (

 i n p u t s = p o o l 1 ,

f i l t e r s = 6 4 ,

 k e r n e l _ s i z e = [ 5 , 5 ] ,

p a d d i n g = " s a m e " ,

a c t i v a t i o n = t f . n n . r e l u )

    p o o l 2 = t f .  l a y e r s .  m a x _ p o o l i n g 2 d  ( i n p u t s = c o n v 2 , \

  p o o l _ s i z e  = [ 2 , 2 ] , s t r i d e s  = 2 )

        p o o l 2 _ f l a t = t f . r e s h a p e ( p o o l 2  , [ - 1 , 7 * 7 * 6 4 ] )

    d e n s e = t f .  l a y e r s .  d e n s e ( i n p u t s  = p o o l 2 _ f l a t , \

 u n i t s  = 1 0 2 4  , a c t i v a t i o n  = t f . n n .  r e l u  )

   l o g i t s = t f . l a y e r s  . d e n s e ( i n p u t s  = d e n s e  , u n i t s  = 1 0 )

        Figure 10.7: TensorFlow two convolutional layer digit recognition n etwork

            As you can see, these op erators explicitly describ e the features of our CNNs.
            The full program is in the TensorFlow examples tutorial layers directory in file

cnn_mnist.py              . If you would rather see a version of the same program using lower-
           level TensorFlow op erators, you can find an excellent Jupyter noteb o ok version in

      the Udacity deep learning course m aterial [3      ]. CNNs have many applications in
            image analysis. One excellent science example is the solution to the Kaggle Galaxy

           Zo o Challenge, which asked participants to predict h ow Galaxy Zo o users would
           classify images of galaxies from the Sloan Digital Sky Survey. Dieleman [ 111 ]

           describ es the solution, wh ich uses four convolutional layers and three dense layers.
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   10.4.3 Recurrent Neural Networks.

  Recurrent neural networks       (RNNs) are widel y used in language mo deling
              problems, such as predicting the next word to b e typ ed when texting or in automatic

          translation systems. RNNs can learn from sequences that have rep eating patterns.
             For example, they can learn to “comp ose” text in the style of Shakespeare [ 168] o r

       even music in the style of Bach [ 183         ]. They have also b een used to study forest
          fire area coverage [94] and cycles of drought in California [178].

                The input to the RNN is a word or signal, along with the state of the system
                 based on words or signals seen so far; the output is a predicted list and a new state

       of the system, as shown in figure 1 0.8.

           Figure 10.8: Basic RNN with input stream .x and output stream h

            Many variations of the basic RNN exist. One challenge for RNNs is ensuring
            that the state tensors retain enough long-term memory of the sequence so that

          patterns are remembered. Several approaches have b een used for this purp ose.
           One p opular metho d is the Long-Short Term Memory (LSTM) version that is

         defined by the foll owing equations, where the input sequence is x, t h e o u tp u t i s h,
        and the state vector is the pair .[ ]c , h

it  = ( W ( )xi xt  + W ( )hi ht1  + W ( )ci ct1  + b ( )i )

ft  = ( W ( )xf xt  + W ( )hf ht1  + W ( )cf ct1  + b( )f )

ct  = ft  · ct1  + it  · tanh(W ( )xc xt  + W ( )hc ht1  + b ( )c )

ot  = ( W ( )xo xt  + W ( )ho ht1  + W ( )co ct  + b( )o )

ht  = ot  · tanh(ct)

         Olah provides an excellent explanation of how RNNs work [ 213    ]. We adapt one
               of his illustrations to show in figure 10.9 on the next page how information flows in
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        our network. Here we use the vector concatenation notation concat   as follows to
  comp ose the various W        matrices and thus obtain a more compact representation

  of the equations.

         ( (concat x, h, c) ) = ( [W x, h, c] + b) = (W ( )x   x W+ ( )h   h W+ ( )c   c b .+ )

        Figure 10.9: LSTM information flow, adapted from Olah [213 ] to fit e qua tio ns in t he te xt.

     We us e a thir d to o lkit , the   Microsoft Cognitive To olkit  (formerly known
    as the Computational Network To olkit CNTK      ), to illustrate the application of

         RNNs. Sp ecfically, we consider a sequence-to-sequence LSTM from the Microsoft
           Cognitive To olkit distribution that is trained with inpu t from financial news items

            such as “shorter maturities are considered a sign of risi ng rates b ecause p ortfolio
            managers can capture higher rates so oner” and “j. p. <unk> vice chairman of

             grace and co. which holds an interest in this company was elected a director.”
            Following training, this network can b e used to generate other sentences with a

 similar structure.

          To illustrate what this n etwork can do, we saved the trained W and b arrays
            and two other arrays that together define its structure. We then loaded these

              arrays into the Python version of the RNN shown on the next page, which we
     created by transcribing the equations ab ove.
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     d e f r n n  ( w o r d , o l d _ h , o l d _ c  ) :

   X v e c = g e t v e c  ( w o r d  , E )

i = S i g m o i d ( n p . m a t m u l ( W X I , X v e c ) +

      n p  .  m a t m u l  (  W H I , o l d _ h  ) + W C I  *  o l d _ c + b I  )

f = S i g m o i d ( n p . m a t m u l ( W X F , X v e c ) +

      n p  .  m a t m u l  (  W H F , o l d _ h  ) + W C F  *  o l d _ c + b F  )

c = f * o l d _ c + i * ( n p . t a n h ( n p . m a t m u l ( W X C , X v e c ) +

    n p  .  m a t m u l  (  W H C , o l d _ h  ) + b C  ) )

o = S i g m o i d ( n p . m a t m u l ( W X O , X v e c ) +

      n p  .  m a t m u l  (  W H O , o l d _ h  ) + (  W C O * c  ) + b O  )

h = o * n p . t a n h ( c )

         # E x t r a c t o r d e r e d l i s t f i v e b e s t n e x to f p o s s i b l e w o r d s

q = h . c o p y ( )

   q . s h a p e = ( 1 , 2 0 0 )

   o u t p u t = n p . m a t m u l  ( q , W 2 )

  o u t l i s t = g e t w o r d s f r o m o u t p u t ( o u t p u t )

   r e t u r n h , c , o u t l i s t

              As you can see, this co de is almost a literal transl ation of the equations. The
               only di erence is that the co de ha s as input a text string for the input word,ff

             while the equations take a vector enco ding of the word as input. The RNN
    training generated the enco ding m atrix E        , which has the nice prop erty that the ith

         column o f the matrix corresp onds to the word in the i     th p osition in the vocabulary
  list. The function  getvec(word, E)    takes the emb edding tensor E , lo o ks up th e

             p osition of the word in the vocabulary list, and returns the column vector of E
             that corresp onds to that word. The output of one pass through the LSTM cell

  is the vector h            . This is a compact representation o f the words likely to follow
             the input text to this p oint. To convert this back into “vocabulary” space, we

             multiply it by another trained vector . The size of our vo cabulary is 10,000,W2
       and the vector output is that length. The i       th el ement of the output represents the

   relative likeliho o d that the i            th word is the next word to follow the input so far.
 Our addition, Getwordsfromoutput        , simply returns the top five candidate words,

   in order of likeliho o d.

             To see whether this LSTM is truly a recurrent network, we provide the network
              with a starting word, let it sugges t the next word, and rep eat this pro cess to

               construct a “sentence.” In the co de on the next page, we randomly pick one of the
         top three suggested by the network as the next word.
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c = n p . z e r o s ( s h a p e = ( 2 0 0 , 1 ) )

h = n p . z e r o s ( s h a p e = ( 2 0 0 , 1 ) )

     o u t p u t = n p . z e r o s (  s h a p e = ( 1 0 0 0 0  , 1 ) )

  w o r d = ' m y  '

 s e n t e n c e = w o r d

   f o r _ i n r a n g e  ( 4 0 ) :

      h , c , o u t l i s t = r n n ( w o r d , h , c )

  w o r d = o u t l i s t [  r a n d i n t  ( 0  , 3 ) ]

      s e n t e n c e = s e n t e n c e + " " + w o r d

p r i n t ( s e n t e n c e + " . " )

           Testing this co de with the start word “my” produced the following output.

          m y n e w r u l e s w h i c h w o u l d c r e a t e a n i n t e r e s t p o s i t i o n h e r e u n l e s s

          t h e r e s h o u l d p r o v e s i g n s o f s u c h t h i n g s t o o q u i c k l y a l t h o u g h t h e

         m a r k e t c o u l d b e d o n e b e t t e r t o w a r d p a y i n g f u r t h e r v o l a t i l i t y w h e r e

        i t w o u l d p a y c a s h a r o u n d a g a i n i f e v e r y b o d y c a n  .

        Using “the” as our start word pro duced the following.

       t h e c o m p a n y r e p o r t e d t h i r d -  q u a r t e r r e s u l t s r e f l e c t i n g a n u m b e r

       c o m p a r e d b e t w e e n N b a r r e l s i n c l u d i n g p r e t a x o p e r a t i n g l o s s

        f r o m a m o n t h f o l l o w i n g f i s c a l m o n t h e n d i n g j u l y e a r l i e r

      c o m p a r e d s l i g h t l y h i g h e r w h i l e s i x  - m o n t h c d s i n c r e a s e d

        s h a r p l y t u e s d a y a f t e r a n a f t e r  - t a x l o s s r e f l e c t i n g a s t r o n g .

          This RNN is hallucinating financial news. The sentences are obviously nonsense,
             but they are excellent examples of mimicry of the patterns that the network was

            trained with. The sentences end rather abru ptly b ecause of the 40-word limit in
                 the co de. If you let it go, it runs until the state vector for the sentence seems to

               break down. Try this yourself. To make it easy to play with th is example, we have
            put the co de in noteb o ok 20 along with the 50 MB mo del data.

     10.5 Amazon MXNet Virtual Machine Image

 MXNet [92 ] github.com/dmlc/mxnet       is an op en source library for distributed
          parallel machine learning. It was originally develop ed at Carnegie Mellon, the

          University of Washington, and Stanford. MXNet can b e programmed with Python,
            Julia, R, Go, Matlab, or C++ and runs on many di erent platforms, includingff

             clusters and GPUs. It is also now the deep learning framework of choice for
 Amazon [256      ]. Amazon has al so released the    Amazon Deep Learning AMI

[ 13             ], which includes not only MXNet but also CNTK and TensorFlow, plus other
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            go o d to olkits that we have not discussed here, including Ca e, Theano, and Torch.ff
       Jupyter and the Anaconda to ols are there, to o.

            Configuring the Amazon AMI to use Jupyter is easy. Go to the Amazon
             Marketplace on the EC2 p ortal and search for “deep learning”; you will find the

             Deep Learnin g AMI. Then select the server typ e. This AMI is tuned for the
p2.16xlarge            instances (64 virtual cores plus 16 NV IDIA K80 GPUs). This is an

             exp ensive option. If you simply want to exp eriment, it works well with a no-GPU
   eight-core option such as m4.2xlarge         . When the VM comes up, log in with ssh,

       and configure Jupyter for remote access as foll ows.

 > c d . j u p y t e r

        > o p e n s s l r e q - x 5 0 9 - n o d e s - d a y s 3 6 5 - n e w k e y r s a : 1 0 2 4 \

   - k e y o u t m y k e y . k e y - o u t m y c e r t . p e m

> i p y t h o n

    [ 1 ] : f r o m n o t e b o o k . a u t h i m p o r t p a s s w d

 [ 2 ] : p a s s w d  ( )

 E n t e r p a s s w o r d  :

 V e r i f y p a s s w o r d :

     O u t  [ 2 ] : ' s h a 1 : - - - - l o n g s t r i n g - - - - - - - - - - - '

      Rememb er your password, and copy the long sha1     string. Next create the file
     .jupyter/jupyter_notebook_config.py, and add the following lines.

c = g e t _ c o n f i g ( )

    c . N o t e b o o k A p p . p a s s w o r d = u ' s h a 1  : - - - - l o n g s t r i n g - - - - - - - - - - - '

   c . N o t e b o o k A p p . i p = ' '*

  c . N o t e b o o k A p p . p o r t = 8 8 8 8

  c . N o t e b o o k A p p . o p e n _ b r o w s e r = F a l s e

    Now invoke Jupyter as follows.

   j u p y t e r n o t e b o o k - - c e r t f i l e  = .  j u p y t e r / m y c e r t . p e m \

- - k e y f i l e  = .  j u p y t e r  / m y k e y .  k e y

  Then, go to  https:// :8888ipaddress       in your browser, where ipaddress is the
           external IP address of your virtual machine. Once you have accessed Jupyter

       within your browser, visit to run MXNet.src/mxnet/example/notebooks

            Many excellent MXNet tutorials are available in addition to those in the AMI
           noteb o oks file, for example on the MXNet community site. To illustrate MXNet’s

             use, we examine a particularly deep neural network trained on a dataset with 10
   million images. Resnet-152 [152         ] is a network with 152 co nvolutional layers based

           on a concept called deep residual learning, which solved an imp ortant problem
           with training deep networks called the vanishing gradient problem. Put simply, it

           states that trainin g by gradient descent metho ds fails for deep networks b ecause
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           as the network grows in depth, the computable gradients b ecome numerically so
           small that there is no stable descent direction. Deep residual trainin g approaches

             the problem di erently by adding an identity mappi ng from on e layer to the nextff
              so that one solves a residual problem rather than the original. It turns out that

          the residual is much easier for sto chastic gradient descent to solve.

            Resnets of various sizes have b een built with each of the to olkits mentioned
            here. Here we describ e one that is part of the MXNet tutorials [ 41   ]. (Noteb o ok 21

           provides a Jupyter version.) The network has 150 convolutional layers with a
           softmax output on a fully connected layer, with 11,221 no des representing the

             11,221 image lab els that it is trained to recognize. The input is a 3 ⇥224⇥  224 RGB
             format image that is loaded into a batch normali zation function and then sent to

            the first convolutional layer. The example first fetches the archived data for the
     mo del. There are three main files.

 • resent-152-symbol.json          , a complete description of the network as a large
 json file

 • resnet-152-0000.params         , a binary file containing all parameters for th e
 trained mo del

            • synset.txt, a text file containing the 1,121 image lab els, one p er line

              You can then load the pretrained mo del data, build a mo del from the data, and
             apply the mo del to a JPEG image. (The image must b e converted to 3⇥ 244 ⇥244

    RGB format: see noteb o ok 21.)

   i m p o r t m x n e t a s m x

      # 1 ) L o a d d a t at h e p r e t r a i n e d m o d e l

    w i t h o p e n  ( , r' f u l l -  s y n s e t  .  t x t  ' ' ' ) a s f :

      s y n s e t s = [ l . r s t r i p ( ) f o r l i n f ]

 s y m ,  a r g  _ p a r a m s ,  a u x _ p a  r a m  s  =

   m x  .  m o d e l  . l o a d  _ c h e c  k p o i n t (  f u l l -  r e s n e t - 1 5 2' ' , 0 )

       # a2 ) B u i l d m o d e l f r o m d a t at h e

   m o d = m x . m o d  . M o d u l e  ( s y m b o l  = s y m  , c o n t e x t  = m x .  g p u  ( ) )

 m o d .  b i n d  (  f o r _ t r a i n i n g  = F a l s e , d a t a _ s h a p e s = [ (  ' d a t a  ' , ( 1 , 3 , 2 2 4 , 2 2 4 ) ) ] )

  m o d .  s e t _ p a r a m s  (  a r g _ p a r a m s , a u x _ p a r a m s  )

        # 3 ) t oS e n d J P E G i m a g e n e t w o r k f o r p r e d i c t i o n

m o d .  f o r w a r d  ( B a t c h  ( [  m x . n d .  a r r a y  ( i m g  ) ] ) )

  p r o b = m o d .  g e t _ o u t p u t s ( ) [ 0 ] . a s n u m p y  ( )

  p r o b = n p .  s q u e e z e  ( p r o b )

a = n p . a r g s o r t ( p r o b ) [ : : - 1 ]

   f o r i i n a [ 0 : 5 ] :

     p r i n t ( ' p r o b a b i l i t y = % f , c l a s s = % s ' % (  p r o b  [ i  ] , s y n s e t s  [ i  ] ) )
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             You will find that the accu racy of the network in recognizing images is excellent.
              Below we selected four images in figure 10.10 from the Bing image pages with a

                fo cus on biology. You can see from the results in table 10.4 that the top choi ce of
            the network was correct for each example, although the confidence was less high

           for yeast and seahorse. These results clearly illustrate the p otential for automatic
     image recognition in aiding scientific tasks.

             Figure 10.10: Three sample images that we have fed to the MXNet Resnet-152 network.

           Table 10.4: Identification of images in figure 10.10 along with estimated probabilities.

    Yeast Strepto co ccus SeahorseAmo eba

 p=0.26, yeast
 p=0.75, strepto co ccus,

 strepto cocci, strep
 p=0.70, ameba,

amo eba
 p=0.33, seahorse

p=0.21,
micro organism

 p=0.08, staphylo co ccus,
staph

p=0.15,
micro organism

 p=0.12, marine
 animal, marine

  creature, sea animal

   p=0.21, cell p=0.06, yeast
 p=0.05, ciliate,

 ciliated protozoan,
ciliophoran

 p=0.12, b enthos

p=0.06,
 strepto coccus, strep

 p=0.04, micro organism,
micro-organism

 p=0.04, paramecium,
paramecia

 p=0.05, invertebrate

 p=0.05, eukaryote,
eucaryote

p=0.01,
 cytomegalovirus, CMV

p=0.03,
photomicrograph

 p=0.04, pip efish,
needlefish

     10.6 Go ogle TensorFlow in the Cloud

Go ogle’s TensorFlow         is a frequently discussed and used deep learn ing to olkit.
            If you have installed the Amazon Deep Learning AMI, then you already have

           TensorFlow installed, and you can b egin exp erimenting right away. W hil e we have
        already intro duced TensorFlow when discussing convolutional neural networks, we

           need to lo ok at some core concepts b efore we dive more deeply.

           Let us start with tensors, which are generalizations of arrays to dimensions
             b eyond 1 and 2. In TensorFlow, tensors a re created an d stored in container ob jects
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       Table 10.5: (Fake) gra dua te scho o l ad mi ssi on da ta.

   GRE GPA Rank Decision

   800 4.0 4 0

   339 2.0 1 1

   750 3.9 1 1
   800 4.0 2 0

           that are one of three typ es: variab les, placeholders, and constants. To illustrate
             the use of TensorFlow, we build a logistic regression mo del of som e (fake) graduate

             scho ol admissions decisions. Our data, shown in table 10.5, con sis t of a GRE exam
                score in the (pre-2012) range of 0 to 800; a grade p oint average (GPA) in the range

              0.0 to 4.0; and the rank of the student’s undergraduate in stitu tion from 4 to 1
     (top). The admission decision is binary.

            To build the mo del, we first initialize TensorFlow for an interactive session and
       define two variables and two placehold ers, as follows.

   i m p o r t t e n s o r f l o w a s t f

   i m p o r t n u m p y a s n p

 i m p o r t c s v

  s e s s = t f .  I n t e r a c t i v e S e s s i o n  ( )

x = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , s h a p e = ( N o n e , 3 ) )

y = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , s h a p e = ( N o n e , 1 ) )

   # S e t m o d e l w e i g h t s

W = t f . V a r i a b l e ( t f . z e r o s ( [ 3 , 1 ] ) )

b = t f . V a r i a b l e ( t f . z e r o s ( [ 1 ] ) )

  The placeholder tensor x    represents the triple [    GRE , GP A, Rank   ] from our
   data and the placeholder y     holds the corresp onding Admissi ons Decision. W and

         b are the learned variables that minimize the cost function.

 c o s t =

1X

i=0

      ( ( +y   W x· b) ) 2 )

  In this equation,   W x·          is the dot pro duct, but the placeholders are of shap e
 (None, 3) and (None,1)         , resp ectively. In Tenso rFlow, this means that they can

    hold an array of size N x 3 and N       x 1, resp ectively, for any value of N  . The
           minimization step in TensorFlow now takes the following form, defining a graph

 with inputs x and y           feeding into a cost function, which is then passed to the
          optimizer to select the that minimize the cost.W and b
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     p r e d = t f .  s i g m o i d  ( t f .  m a t m u l ( x , W ) + b )

    c o s t = t f .  s q r t ( t f .  r e d u c e _ s u m  ( ( y - p r e d  ) * * 2 /  b a t c h _ s i z e  ) )

  o p t = t f .  t r a i n  .  A d a m O p t i m i z e r  ( )

  o p t i m i z e r = o p t . m i n i m i z e ( c o s t )

             The standard way to train a system in TensorFlow (and indeed in the other
             packages that we discuss here) is to run the optimizer with successive b atches of

             training data. To do this, we need to initialize the TensorFlow variables with the
       current interactive session. We use a Python function get_batch()   that pulls a

          batch of values from and stores them intrain_data train_label arrays.

  t r a i n i n g _ e p o c h s = 1 0 0 0 0 0

  b a t c h _ s i z e = 1 0 0

  d i s p l a y _ s t e p = 1 0 0 0

  i n i t = t f .  i n i t i a l i z e _ a l l _ v a r i a b l e s  ( )

s e s s .  r u n ( i n i t  )

  # T r a i n i n g c y c l e

   f o r e p o c h i n r a n g e  ( t r a i n i n g _ e p o c h s ) :

  a v g _ c o s t = 0 .

   t o t a l _ b a t c h = i n t ( l e n ( t r a i n _ d a t a ) / b a t c h _ s i z e )

    # L o o p o v e r a l l b a t c h e s

   f o r i i n r a n g e ( t o t a l _ b a t c h ) :

   b a t c h _ x s ,  b a t c h _ y s  = g e t _ b a t c h  ( b a t c h _ s i z e , t r a i n _ d a t a , t r a i n _ l a b e l  )

     # F i t t r a i n i n g u s i n g b a t c h d a t a

_ , c = s e s s . r u n ( [ o p t i m i z e r , c o s t ] ,

 f e e d _ d i c t  = { x : b a t c h _ x s  , y : b a t c h _ y s } )

   # C o m p u t e a v e r a g e l o s s

    a v g _ c o s t + = c / t o t a l _ b a t c h

     # D i s p l a y l o g s s t e pp e r e p o c h

     i f ( e p o c h + 1 ) % d i s p l a y _ s t e p = = 0 :

   p r i n t ( " E p o c h : " , ' % 0 4  d ' % ( e p o c h + 1 ) , " c o s t = " , s t r  ( a v g _ c o s t ) )

          Figure 10.11: TensorFlow co de for training the simple logistic regression function.

             The co de segment in figure 10.11 illustrates how data are passed to the compu-
     tation graph for evaluation with the sess.run()     function via a Python dictionary,

           which binds the data to the sp ecific TensorFlow placeholders. Noteb o o k 23 provides
            additional details, including analysis of the resu lts. You will see that training on

               the fake admissions dataset led to a mo del in which the decision to admit is based
             solely on the student graduating from the top scho ol. In this case the trainin g

             rapidly converged, since this rule is easy to “learn.” The score was 99.9% accurate.
            If we base the admission decision on the equally inappropriate p olicy of granting
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              admission only to those students who either scored an 800 on the GRE or came
               from the top school, the learn ing do es n ot converge as fast and the b est we could

   achieve was 83% accuracy.

               A go o d exercise for you to try would b e to convert this mo del to a neural
             network with one or more hidden layers. See whether you can improve the result!

   10.7 Microsoft Cognitive To olkit

  We intro duced the   Microsoft Cognitive To ol kit      in section 10.4.3 on page 209,
           when discussing recurrent neural networks. The CNTK team has made this software

             availab le for download in a variety of formats so that deep learning examples can
            b e run on Azure as clusters of Do cker containers, in the following configurations :

•      CNTK-CPU-InfiniBand-IntelMPI for execution across multiple InfiniBand
 RDMA VMs

    • CNTK-CPU-Op enMPI for multi-instance VMs

•         CNTK-GPU-Op enMPI for multiple GPU-equipp ed servers such as the NC
         class, which have 24 cores and 4 K80 NVIDIA GPUs

           These deployments each use the Azure Ba tch Shipyard Do cker m o del, part of
  Azure Batch [6         ]. (Shipyard also provides scripts to provision Do ckerized clusters

      for MXNet and TensorFlow with similar configurations.)

               You also can deploy CNTK on your Windows 10 PC or in a VM running in
          any cloud. We provide detailed deployment instructions in noteb o ok 22, along

             with an example that we describ e b elow. The style of computing is simil ar to
              Spark, TensorFlow, and others that we have lo oked at. We use Python to build a

          flow graph of computations that we invoke with data using an eval  op eration. To
               illustrate the style, we create three tensors to hold the input values to a graph and

          then tie those tensors to the matrix-multiply op erator and vector addition.

   i m p o r t n u m p y a s n p

 i m p o r t c n t k

X = c n t k . i n p u t _ v a r i a b l e ( ( 1 , 2 ) )

M = c n t k . i n p u t _ v a r i a b l e ( ( 2 , 3 ) )

B = c n t k . i n p u t _ v a r i a b l e ( ( 1 , 3 ) )

Y = c n t k . t i m e s ( X , M ) + B

X   is a 1⇥         2-dimensional tensor, that is, a vector of length 2; M   is a 2⇥3 m a t r i x ;
and B        is a vector of length 3. The expression Y=X*M+B      yields a vector of length 3.
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            However, no computation has taken place at this p oint: we have only constructed
            a graph of the computation. To execute the graph, we input values for X, B , and

M     , and then apply the eval  op erator on Y        , as follows. We use Numpy arrays to
            initialize the tensors and, in a manner identical to TensorFlow, supply a dictionary

       of bindings to the eval op erator as follows.

x = [ [ n p . a s a r r a y ( [ [ 4 0 , 5 0 ] ] ) ] ]

m = [ [ n p . a s a r r a y ( [ [ 1 , 2 , 3 ] , [ 4 , 5 , 6 ] ] ) ] ]

b = [ [ n p . a s a r r a y ( [ 1 . , 1 . , 1 . ] ) ] ]

    p r i n t ( Y . e v a l  ( {  X : x  , M : m  , B : b  } ) )

  - - - - - o u t p u t - - - - - - - - - - - - -

    a r r a y  ( [ [ [ [ 2 4 1 .  , 3 3 1 .  , 4 2 1 . ] ] ] ]  , d t y p e = f l o a t 3 2  )

         CNTK also supp orts several other tensor container typ es, such as Constant  , for
            a scalar, vector, or other multidimensional tensor with values that do not change,

and ParameterTensor            , for a tensor variab le whose value is to b e mo dified during
 network training.

            Many more tensor op erators exis t, and we cannot discuss them all h ere. How-
               ever, one imp ortant class is the set of op erators that ca n b e used to build multilevel

             neural networks. Called the layers library, they form a cri tical part of CNTK. One
     of the most basic is the Dense(dim)        layer, which creates a fully connected layer of

 output dimension dim         . Many other standard layer types exist, including Co nvolu-
          tional, MaxPo oling, AveragePo oli ng, and LSTM. Layers can also b e stacked with

   a simple op erator called sequential        . We show two examples taken directly from
   the CNTK do cumentation [ 27         ]. The first is a standard five-level image recognition

    network based on convolutional layers.

 w i t h d e f a u l t _ o p t i o n s  ( a c t i v a t i o n  = r e l u  ) :

   c o n v _ n e t = S e q u e n t i a l ( [

         # 3 l a y e r s o f b yc o n v o l u t i o n a n d d i m e n s i o n r e d u c t i o n p o o l i n g

C o n v o l u t i o n  ( ( 5 , 5 ) , 3 2 ,  p a d = T r u e ) , M a x P o o l i n g  ( ( 3 , 3 ) ,  s t r i d e s  = ( 2 , 2 ) ) ,

C o n v o l u t i o n  ( ( 5 , 5 ) , 3 2 ,  p a d = T r u e ) , M a x P o o l i n g  ( ( 3 , 3 ) ,  s t r i d e s  = ( 2 , 2 ) ) ,

C o n v o l u t i o n  ( ( 5 , 5 ) , 6 4 ,  p a d = T r u e ) , M a x P o o l i n g  ( ( 3 , 3 ) ,  s t r i d e s  = ( 2 , 2 ) ) ,

     # 2 d e n s e l a y e r s f o r c l a s s i f i c a t i o n

D e n s e  ( 6 4 ) ,

 D e n s e  ( 1 0 , a c t i v a t i o n =  N o n e  )

] )

             The second example, on the next page, is a recurrent LSTM network that takes
wo rd s emb edded             in a vector of size 15 0, passes them to the LSTM, and pro duces

       output through a dense network of dimension .labelDim
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   m o d e l = S e q u e n t i a l ( [

      E m b e d d i n g  ( 1 5 0 )  , # aE m b e d i n t o 1 5 0  - d i m e n s i o n a l v e c t o r

   R e c u r r e n c e ( L S T M  ( 3 0 0 ) )  , # F o r w a r d L S T M

     D e n s e (  l a b e l D i m ) # -W o r d w i s e c l a s s i f i c a t i o n

] )

            You use word embeddings when your inputs are sparse vectors of size equal
      to the word vo cabulary (i.e., if item i          in the vector is 1, then the word is the

i             th element of the vo cabulary), in which case the emb edding matrix has size
             vo cabulary-size by number of inputs. For example, if there are 10,000 words in the

              vo cabulary and you have 150 inputs, then the matrix is 10,000 rows of length 150,
 and the i        th word in the vocabulary corresp onds to the i    th row. The embedding

              matrix may b e passed as a parameter or learned as part of training. We illustrate
         its use with a detailed example later in this chapter.

The Sequential            op erator used i n the same co de can b e thought of as a
        concatenation of the layers in the given sequence. The Recurrence  op erator is

               used to wrap the correct LSTM output back to the input for the next input to
             the network. For details, we refer you to the tutorials provided by CNTK. One

    example of particular interest concerns  reinforced learning    , a technique that
            allows networks to use feedback from dynamical systems, such as games, in order

             to learn how to control them. We reference a more d etailed discussion onl ine [134 ].

          Azure als o provides a large collection of pretrained machine learning services
          similar to those provided by the Amazon Machine Learning platform: the Cortana

 cognitive services          . Sp ecifically, these include web service AP Is for sp eech and
        language understanding; text analysis; language translation; face recognition a nd

         attitude analysis; and search over Microsoft’s academic research database and
        graph. Figure 10.12 shows an example of their use.

 10.8 Summary

            We have intro duced a variety of cloud and op en source machine learning to ols.
           We b egan with a simple logistic regression demonstration that used the machine

            learning to ols in Spark running in an Azure HDInsight cluster. We next turned
           to the Azure Machine Learning workspace Azure ML, a p ortal-based tool that

            provides a drop-and-drag way to comp ose, train, and test a machine learning mo del
            and then convert it automatically into a web service. Amazon also provides a

            p ortal-based to ol, Amazon Machine Learning, that allows you to build and train a
             predictive mo del and deploy it a s a service. In addi tion , b oth Azure and Amazon
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           provide pre-trained mo dels for image and text analysis, in the Co rtana services
     and the Amazon ML platform, resp ectively.

            We devoted the remainder of this chapter to lo oking at deep learning and
           the TensorFlow, CNTK, and MXNet to olkits. The capabilities of these to ols can

        sometimes seem almost miraculous, but as Oren Etzioni [ 118   ] observes, “Deep
            learning isn’t a d angerou s magic genie. It’s just math.” We presented a mo dest

            intro duction to the topic and describ ed two of the most commonly used networks:
           convolutional and recurrent. We describ ed the use of the Amazon virtual machine

          image (AMI) for machine learning, which includes MXNet, Amazon’s preferred deep
            learning to olkit, as well as deployments of all the other deep learning frameworks.

          We illustrated MXNet with the Resnet-152 image recognition network first designed
           by Microsoft Research. Resnet-152 consists of 152 layers, and we demonstrated how

             it ca n b e used to help classify biological sam pl es. This type of image recognition
           has b een used successfully in scientific studies ranging from protein structure to

     galaxy classification [180, 60, 264, 111].

           We also used the Amazon ML AMI to demonstrate TensorFlow, Go ogle’s op en

[

{

 " f a c e R e c t a n g l e " : {

 " l e f t " : 4 5 ,

 " t o p " : 4 8 ,

 " w i d t h " : 6 2 ,

 " h e i g h t " : 6 2

} ,

 " s c o r e s " : {

 " a n g e r " : 0 . 0 0 0 0 1 1 5 7 5 6 6 3 8 ,

 " c o n t e m p t " : 0 . 0 0 0 0 5 2 0 4 3 9 4 ,

 " d i s g u s t " : 0 . 0 0 0 0 2 7 2 6 4 1 7 1 9 ,

 " f e a r " : 9 . 0 3 7 5 7 7 e - 8 ,

 " h a p p i n e s s " : 0 . 9 9 8 0 3 3 7 6 2 ,

 " n e u t r a l " : 0 . 0 0 1 8 4 2 3 2 3 1 1 ,

 " s a d n e s s " : 0 . 0 0 0 0 3 0 1 8 4 1 5 5 5 ,

 " s u r p r i s e " : 0 . 0 0 0 0 0 2 7 7 7 6 2 9 5 6

}

}

]

            Figure 10.12: Cortana face recognition and attitude analysis web service. When applied to
                an image of a p erson on a sailb oat, it returns the JSON do cument on the right. Cortana

           determines that there is one extremely (99.8%!) happy face in the picture.
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            source contribution to the deep learning world. We illu strated how one defines a
            convolution neural network in TensorFlow as part of our discussion of that topic,

           and we provided a complete example of using TensorFlow for logistic regression.
            Microsoft’s cognitive to ol kit (CNTK) was the third to olkit that we p resented. We

            illustrated some of its basic features, including its use for deep learning. CNTK
            also provides an excellent environment for Jupyter, as well a s many go o d tutorials.

            We have provided in this chapter only a small introduction to the sub ject
           of machine learning. In addition to the deep learning to olkits mentioned here,

 Theano [47    ] and Ca e [ff 161     ] are widely used. Keras keras.io   is another interesting
             Python library that runs on top of Theano and TensorFlow. We also have not

           discussed the work done by IBM with their impressive Watson services—or systems
    such as Torch torch.ch .

             Deep learning has had a profound impact on the technical d irection s of each of
              the ma jor cloud vendors. The role of deep neural networks in science is still small,

     but we exp ect it to grow.

            Another topic that we have not addressed in this chapter i s the p erformance
              of ML to olkits for various tasks. In chapter 7 we discussed the various ways by

            which a computation can b e scaled to solve bigger problems. One approach is
          the SPMD mo del of communicating sequential pro cesses by using the Message

             Passing Standard (MPI) mo del (see section 7.2 on page 97). Another is the graph
            execution dataflow model (see chapter 9), used in Spark, Flink, and the deep

   learning to olkits describ ed here.

            Clearly we can write ML algorithms using either MPI or Spark. We should
         therefore b e concerned ab out understanding the relative p erformance and pro-

        grammability of the two approaches. Kamburugamuve et al. [166   ] address this
          topic and demonstrate that MPI implementations of two standard ML algorithms

            p erform much b etter than the versions in Spark and Flink. Often the di erencesff
           were factors of orders of magnitude in execution time. They also acknowledge

             that the MPI versions were harder to program than the Spark versions. The sam e
             team has released a library of MPI to ols called SPIDAL, designed to p erform data

    analytics on HPC clusters [116].

 10.9 Resources

       The cla ssi c Data Mining: Concepts and Techniques [148    ], recently up dated, provides
           a strong intro duction to data mining and knowledge discovery. Deep Learning [143 ]

      is an exceptional treatment of that technology.
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            For those interested in learning more of the basics of machine learning with
          Python and Jupyter, two go o d b o oks are Python Machine Learning [224 ] an d

           Introduction to Machine Learning with Python: A Guide for Data Scientists [ 207 ].
         All the examples in this chapter, with the exception of k   -means, involve sup ervised

           learning. These b o oks treat the sub ject of unsup ervised learning in more depth.

              On the topic of deep learning, each of the three to olkits covered in this chapter—
        CNTK, TensorFlow, and MXNet—provides extensive tutorials in their standard

    distributions, when downloaded and installed.

         We also mention the six noteb o oks introduced in this chapter.

•           Noteb o ok 18 demonstrates the use of Spark machine learning for logistic
regression.

             • Noteb o ok 19 can b e used to send data to an AzureML web service.

•            Noteb o ok 20 demonstrates how to load and use the RNN mo del originally
  built with CNTK.

•             Noteb o ok 21 shows how to load and use the MXNet Resnet-152 mo del to
 classify images.

         • Noteb o ok 22 discusses the installation and use of CNTK.

        • Noteb o ok 23 illustrates simple logistic regression using TensorFlow.
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