
A

Analyzing Runtime and Size Complexity of Integer Programs

Marc Brockschmidt, Microsoft Research

Fabian Emmes, RWTH Aachen University

Stephan Falke, Karlsruhe Institute of Technology

Carsten Fuhs, Birkbeck, University of London

Jürgen Giesl, RWTH Aachen University

We present a modular approach to automatic complexity analysis of integer programs. Based on a novel

alternation between finding symbolic time bounds for program parts and using these to infer bounds on the

absolute values of program variables, we can restrict each analysis step to a small part of the program while
maintaining a high level of precision. The bounds computed by our method are polynomial or exponential

expressions that depend on the absolute values of input parameters.

We show how to extend our approach to arbitrary cost measures, allowing to use our technique to
find upper bounds for other expended resources, such as network requests or memory consumption. Our

contributions are implemented in the open source tool KoAT, and extensive experiments show the performance

and power of our implementation in comparison with other tools.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification; D.2.4

[Software Engineering]: Metrics; F.2.1 [Theory of Computation]: Analysis of Algorithms and Problem

Complexity; F.3.1 [Theory of Computation]: Logics and Meanings of Programs

General Terms: Theory, Verification

Additional Key Words and Phrases: Runtime Complexity, Automated Complexity Analysis, Integer Programs

ACM Reference Format:
ACM Trans. Program. Lang. Syst. V, N, Article A (January YYYY), 48 pages.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

There exist numerous methods to prove termination of imperative programs, e.g., [Podelski
and Rybalchenko 2004; Bradley et al. 2005; Cook et al. 2006; Albert et al. 2008; Alias et al.
2010; Harris et al. 2010; Spoto et al. 2010; Falke et al. 2011; Tsitovich et al. 2011; Bagnara
et al. 2012; Brockschmidt et al. 2012; Ben-Amram and Genaim 2013; Brockschmidt et al.
2013; Cook et al. 2013; Larraz et al. 2013; Heizmann et al. 2014]. In many cases, however,
termination is not sufficient, but the program should also terminate in reasonable (e.g.,
(pseudo-)polynomial) time. To prove bounds on a program’s runtime complexity, it is often
crucial to also derive (possibly non-linear) bounds on the size of program variables, which
may be modified repeatedly in loops.

Supported by the DFG grant GI 274/6-1, the Air Force Research Laboratory (AFRL), the “Concept for the
Future” of Karlsruhe Institute of Technology within the framework of the German Excellence Initiative, and
the EPSRC.
Authors’ addresses: M. Brockschmidt: Microsoft Research, Cambridge, UK, F. Emmes: LuFG Informatik 2,
RWTH Aachen University, Germany, S. Falke: (Current address) aicas GmbH, Karlsruhe, Germany, C. Fuhs:
Dept. of Computer Science and Information Systems, Birkbeck, University of London, UK, J. Giesl: LuFG
Informatik 2, RWTH Aachen University, Germany
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0164-0925/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

while i > 0 do
i := i− 1

done
while x > 0 do
x := x− 1

done

while i > 0 do
i := i− 1
x := x + i

done
while x > 0 do
x := x− 1

done

Fig. 1. Two similar programs with different runtime

Our approach to find such bounds builds upon the well-known observation that polynomial
ranking functions for termination proofs also provide a runtime complexity bound [Alias
et al. 2010; Albert et al. 2011a; Albert et al. 2012; Avanzini and Moser 2013; Noschinski
et al. 2013]. However, this only holds for proofs using a single polynomial ranking function.
Larger programs are usually handled by a disjunctive [Lee et al. 2001; Cook et al. 2006;
Tsitovich et al. 2011; Heizmann et al. 2014] or lexicographic [Bradley et al. 2005; Giesl et al.
2006; Fuhs et al. 2009; Alias et al. 2010; Harris et al. 2010; Falke et al. 2011; Brockschmidt
et al. 2013; Cook et al. 2013; Larraz et al. 2013] combination of polynomial functions (we
also refer to these components as “polynomial ranking functions”). Deriving a complexity
bound in such cases is much harder.

Example 1.1. Both programs in Fig. 1 can be proven terminating using the lexicographic
ranking function 〈i, x〉. However, the program without the instruction “x := x + i” has
linear runtime, while the program on the right has quadratic runtime. The crucial difference
between the two programs is in the size of x after the first loop.

To handle such effects, we introduce a novel modular approach which alternates between
finding runtime bounds and finding size bounds. In contrast to standard invariants, our size
bounds express a relation to the size of the variables at the program start, where we measure
the size of integers m ∈ Z by their absolute values |m| ∈ N. Our method derives runtime
bounds for isolated parts of the program and uses these to deduce (often non-linear) size
bounds for program variables at certain locations. Further runtime bounds can then be
inferred using size bounds for variables that were modified in preceding parts of the program.
By splitting the analysis in this way, we only need to consider small program parts in each
step, and the process is repeated until all loops and variables have been handled.

As an example, for the second program in Fig. 1, our method proves that the first loop is
executed linearly often using the ranking function i. Then, it deduces that i is bounded by
the size |i0| of its initial value i0 in all iterations of this loop. Combining these bounds, it
infers that x is incremented by a value bounded by |i0| at most |i0| times in the first loop,
i.e., x is bounded by the sum of its initial size |x0| and |i0|2. Finally, our method detects that
the second loop is executed x times, and combines this with our bound |x0|+ |i0|2 on x’s
value when entering the second loop. In this way, we can infer the bound |i0|+ |x0|+ |i0|2
for the program’s runtime.1 This novel combination of runtime and size bounds allows us
to handle loops whose runtime depends on variables like x that were modified in earlier
loops (where the values of these variables can also be modified in a non-linear way). Thus,
our approach succeeds on many programs that are beyond the reach of previous techniques
based on the use of ranking functions.

Sect. 2 introduces the basic notions for our approach. Then Sect. 3 and Sect. 4 present
our techniques to compute runtime and size bounds, respectively. In Sect. 5, we extend
our approach to handle possibly recursive procedure calls. Finally, we show in Sect. 6 how

1Since each step of our method over-approximates the runtime or size of a variable, we actually obtain the
bound 2 + |i0|+ max{|i0|, |x0|}+ |i0|2, cf. Sect. 4.2.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

Input: List x
`0: List y := null
`1: while x 6= null do

y := new List(x.val, y)
x := x.next

done
List z := y

`2: while z 6= null do
List u := z.next

`3: while u 6= null do
z.val := z.val+u.val
u := u.next

done
z := z.next

done

Input: int x
`0: int y := 0
`1: while x > 0 do

y := y + 1
x := x− 1

done
int z := y

`2: while z > 0 do
int u := z− 1

`3: while u > 0 do
skip
u := u− 1

done
z := z− 1

done

`0

`1

`2

`3

t0: y := 0

t1: if(x > 0)
y := y+ 1
x := x− 1

t2: if(x ≤ 0)
z := y

t3: if(z > 0)
u := z− 1

t4: if(u > 0)
if(z > 0)
u := u− 1

t5: if(u ≤ 0)
if(z > 0)
z := z− 1

Fig. 2. List processing program, its integer abstraction, and a graph representation of the integer abstraction

a generalization to arbitrary cost measures can be used to obtain a modular analysis of
procedures. Such cost measures can also express resource usage such as network requests. In
Sect. 7, we compare our technique to related work and show its effectiveness in an extensive
experimental evaluation. We conclude in Sect. 8, discussing limitations, possible further
extensions, and applications of our method. All proofs are given in App. A.

A preliminary version of parts of this paper was published earlier [Brockschmidt et al.
2014]. It is extended substantially in the present paper:

— We present new techniques to automatically synthesize bounds for programs with an
exponential growth of data sizes in Sect. 4.

— We extend our approach to programs with recursion in Sect. 5 and show how to also infer
exponential runtime bounds for such programs.

— We generalize our technique to analyze complexity w.r.t. arbitrary cost measures in
Sect. 6.1.

— We extend the modularity of our analysis such that program parts (e.g., library procedures)
can be handled completely independently in Sect. 6.2.

— We integrated these new contributions in our prototype implementation KoAT and present
an extensive evaluation, comparing it to recently developed competing tools in Sect. 7.3.
KoAT is now also available as free software, allowing to easily experiment with extensions
to our framework.

— We give detailed proofs for all theorems in App. A.

2. PRELIMINARIES

We regard sequential imperative integer programs with (potentially non-linear) arithmetic
and unbounded non-determinism.

Example 2.1. In Fig. 2, a list processing program is shown on the left. For an input list
x, the loop at location `1 creates a list y by reversing the elements of x. The loop at location
`2 iterates over the list y and increases each element by the sum of its successors. So if y
was [5, 1, 3], it will be [5 + 1 + 3, 1 + 3, 3] after the second loop.

In the middle of Fig. 2, an integer abstraction of our list program is shown. Here, list
variables are replaced by integers that correspond to the length of the replaced list. Such
integer abstractions can be obtained automatically using tools such as COSTA [Albert et al.
2008], Julia [Spoto et al. 2010], Thor [Magill et al. 2010], or AProVE [Giesl et al. 2014].

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

We fix a (finite) set of program variables V = {v1, . . . , vn} and represent integer programs
as directed graphs. Nodes are program locations L and edges are program transitions T .
The set L contains a canonical start location `0. W.l.o.g., we assume that no transition leads
back to `0. All transitions originating in `0 are called initial transitions. The transitions are
labeled by formulas over the variables V and primed post-variables V ′ = {v′1, . . . , v′n} which
represent the values of the variables after the transition. In the graph on the right of Fig. 2,
we represented these formulas by sequences of instructions. For instance, t3 is labeled by
the formula z > 0 ∧ u′ = z− 1 ∧ x′ = x ∧ y′ = y ∧ z′ = z. In our example, we used standard
invariant-generation techniques (based on the Octagon domain [Miné 2006]) to propagate
simple integer invariants, adding the condition z > 0 to the transitions t4 and t5.

Definition 2.2 (Programs). A transition is a tuple (`, τ, `′) where `, `′ ∈ L are locations
and τ is a quantifier-free formula relating the (pre-)variables V and the post-variables V ′.
A program is a set of transitions T . A configuration (`,v) consists of a location ` ∈ L and
a valuation v : V → Z. We write (`,v)→t (`′,v′) for an evaluation step with a transition
t = (`, τ, `′) iff the valuations v, v′ satisfy the formula τ of t. As usual, we say that v, v′

satisfy a quantifier-free formula τ over the variables V ∪V ′ iff τ becomes true when every
v ∈ V is instantiated by the number v(v) and every v′ ∈ V ′ is instantiated by v′(v). We
drop the index t in “→t” when that information is not important and write (`,v)→k (`′,v′)
if (`′,v′) is reached from (`,v) in k evaluation steps.

For the program of Ex. 2.1, we have (`1,v1) →t2 (`2,v2) for any valuations v1 and
v2 where v1(x) = v2(x) ≤ 0, v1(y) = v2(y) = v2(z), and v1(u) = v2(u). Note that in
our representation, every location can potentially be a “final” one (if none of its outgoing
transitions is applicable for the current valuation).

Let T always denote the analyzed program. Our goal is to find bounds on the runtime and
the sizes of program variables, where these bounds are expressed as functions in the sizes of
the input variables v1, . . . , vn. For our example, our approach will detect that its runtime is
bounded by 3+4 · |x|+ |x|2 (i.e., it is quadratic in |x|). We measure the size of variable values
v(vi) by their absolute values |v(vi)|. For a valuation v and a vector m = (m1, . . . ,mn) ∈ Nn,
let v ≤m abbreviate |v(v1)| ≤ m1 ∧ . . . ∧ |v(vn)| ≤ mn. We define the runtime complexity
of a program T by a function rc that maps sizes m of program variables to the maximal
number of evaluation steps that are possible from an initial configuration (`0,v) with v ≤m.

Definition 2.3 (Runtime Complexity). The runtime complexity rc : Nn → N ∪ {ω} of a
program T is defined as rc(m) = sup{k ∈ N | ∃v0, `,v .v0 ≤m ∧ (`0,v0)→k (`,v)}.

Here, rc(m) = ω means non-termination or arbitrarily long runtime. Programs with arbi-
trarily long runtime can result from non-deterministic value assignment, e.g., i := nondet();
while i > 0 do i := i− 1 done.

To analyze complexity in a modular way, we construct a runtime approximation R such
that for any t ∈ T , R(t) over-approximates the number of times that t can be used in an
evaluation. As we generate new bounds by composing previously found bounds, we only use
weakly monotonic functions R(t), i.e., where mi ≥ m′i implies (R(t))(m1, . . . ,mi, . . . ,mn) ≥
(R(t))(m1, . . . ,m

′
i, . . . ,mn)). We define the set of upper bounds UB as the weakly monotonic

functions from Nn → N and ω. Here, “ω” denotes the constant function which maps all
arguments m ∈ Nn to ω. We have ω > n for all n ∈ N. In our implementation, we use a
subset UB′ (UB that is particularly suitable for the automated synthesis of bounds. We
also allow an application of functions from UB′ to integers instead of naturals by taking
their absolute value. More precisely, UB′ is the smallest set for which the following holds:

— |v| ∈ UB′ for v ∈ V (variables)
— ω ∈ UB′ (unbounded function)
—
∑

1≤i≤k
(
ai ·

∏
1≤j≤mi fi,j

)
+ ak+1 ∈ UB′ for k, ai,mi ∈ N, fi,j ∈ UB′ (polynomials)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

— max{f1, . . . , fk} ∈ UB′, min{f1, . . . , fk} ∈ UB′ for f1, . . . , fk ∈ UB′ (maximum and
minimum)

— kf ∈ UB′ for k ∈ N, f ∈ UB′ (exponentials)

Thus, UB′ is closed under addition, multiplication, maximum, minimum, and exponentiation
(using natural numbers as bases). These closure properties will be used when combining
bound approximations in the remainder of the paper.

We now formally define our notion of runtime approximations. Here, we use →∗ ◦ →t

to denote the relation describing arbitrary many evaluation steps followed by a step with
transition t.

Definition 2.4 (Runtime Approximation). A function R : T → UB is a runtime approxi-
mation iff (R(t))(m) ≥ sup{k ∈ N | ∃v0, `,v .v0 ≤m ∧ (`0,v0) (→∗ ◦→t)

k (`,v)} holds for
all transitions t ∈ T and all m ∈ Nn. We then say that R(t) is a runtime bound for the
transition t. The initial runtime approximation R0 is defined as R0(t) = 1 for all initial
transitions t and R0(t) = ω otherwise. Here, “1” denotes the constant function which maps
all arguments m ∈ Nn to 1.

We can combine the approximations for individual transitions represented by R(t) to
obtain a bound for the runtime complexity rc of the whole program T . Here for f, g ∈ UB,
the comparison, addition, multiplication, maximum, and the minimum are defined point-
wise. So f ≥ g holds iff f(m) ≥ g(m) for all m ∈ Nn and f + g is the function with
(f + g)(m) = f(m) + g(m), where ω + n = ω for all n ∈ N ∪ {ω}.

Remark 2.5 (Approximating rc). Let R be a runtime approximation for T . Then∑
t∈T R(t) ≥ rc.

The overall bound
∑
t∈T R(t) = 3 + 4 · |x|+ |x|2 for the program in Ex. 2.1 was obtained

in this way.
For size complexity, we analyze how large the value of a program variable can become.

Analogous to R, we use a size approximation S, where S(t, v′) is a bound on the size of the
variable v after a certain transition t was used in an evaluation. For any transition t ∈ T
and v ∈ V , we call |t, v′| a result variable. Later, we will build a result variable graph (RVG),
whose nodes are result variables and whose edges represent the flow of data in our program.

Definition 2.6 (Result Variables and Size Approximation). Let RV = {|t, v′| | t ∈ T , v ∈
V} be the set of result variables. A function S : RV → UB is a size approximation iff
(S(t, v′))(m) ≥ sup{|v(v)| | ∃v0, `,v .v0 ≤ m ∧ (`0,v0) (→∗ ◦ →t) (`,v)} holds for all
|t, v′| ∈ RV and all m ∈ Nn. We then say that S(t, v′) is a size bound for the result variable
|t, v′|. The initial size approximation S0 is defined as S0(t, v′) = ω for all |t, v′| ∈ RV. A
pair (R,S) is a complexity approximation if R is a runtime approximation and S is a size
approximation.

Our method performs an iterative refinement of runtime and size approximations. The
general overall procedure is displayed in Fig. 3.2 It starts with the initial approximations

(R,S) := (R0,S0)
while there are t, v with R(t) = ω or S(t, v′) = ω do
T ′ := {t ∈ T | R(t) = ω}
R := TimeBounds(R,S, T ′)
for all SCCs C of the RVG in topological order do
S := SizeBounds(R,S, C)

done
done

Fig. 3. Alternating complexity analysis procedure

R0,S0 and then loops until time bounds
for all transitions and size bounds for all
result variables have been found. In each
iteration, it first calls the sub-procedure
TimeBounds (cf. Sect. 3) to improve the
runtime bounds for those transitions T ′
for which we have no bound yet. Then, the
procedure SizeBounds (cf. Sect. 4) is used

2A refined version of this procedure will be presented in Fig. 12 of Sect. 7.2.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

to obtain new size bounds, using the time bounds computed so far. It processes strongly
connected components (SCCs) of the result variable graph, corresponding to sets of variables
which influence each other.3 In the next iteration of the main outer loop, TimeBounds can
then use the newly obtained size bounds. In this way, the procedures for inferring runtime and
size complexity alternate, allowing them to make use of each other’s results. The procedure
is aborted when in one iteration of the outer loop no new bounds could be found.

3. COMPUTING RUNTIME BOUNDS

To find runtime bounds automatically, we use polynomial ranking functions (PRFs). Such
ranking functions are widely used in termination analysis and many techniques are available
to generate PRFs automatically [Podelski and Rybalchenko 2004; Bradley et al. 2005; Fuhs
et al. 2007; Fuhs et al. 2009; Alias et al. 2010; Falke et al. 2011; Bagnara et al. 2012;
Ben-Amram and Genaim 2013; Leike and Heizmann 2014]. While most of these techniques
only generate linear PRFs, the theorems of this section hold for general polynomial ranking
functions as well. In our analysis framework, we repeatedly search for PRFs for different
parts of the program, and the resulting combined complexity proof is analogous to the use
of lexicographic combinations of ranking functions in termination analysis.

In Sect. 3.1 we recapitulate the basic approach to use PRFs for the generation of time
bounds. In Sect. 3.2, we improve it to a novel modular approach which infers time bounds
by combining PRFs with information about variable sizes and runtime bounds found earlier.

3.1. Runtime Bounds from Polynomial Ranking Functions

A PRF Pol : L → Z[v1, . . . , vn] assigns an integer polynomial Pol(`) over the program
variables to each location `. Then configurations (`,v) are measured as the value of the
polynomial Pol(`) for the numbers v(v1), . . . ,v(vn). To obtain time bounds, we search for
PRFs where no transition increases the measure of configurations, and at least one transition
decreases it. To rule out that this decrease continues forever, we also require that the measure
has a lower bound. As mentioned before Def. 2.2, here the formula τ of a transition (`, τ, `′)
may have been extended by suitable program invariants.

Definition 3.1 (PRF). We call Pol : L → Z[v1, . . . , vn] a polynomial ranking function
(PRF) for T iff there is a non-empty T � ⊆ T such that the following holds:

• for all (`, τ, `′) ∈ T , we have τ ⇒ (Pol(`))(v1, . . . , vn) ≥ (Pol(`′))(v′1, . . . , v
′
n)

• for all (`, τ, `′) ∈ T �, we have τ ⇒ (Pol(`))(v1, . . . , vn) > (Pol(`′))(v′1, . . . , v
′
n)

and τ ⇒ (Pol(`))(v1, . . . , vn) ≥ 1

The constraints on a PRF Pol are the same as the constraints of Bradley et al. [2005]
needed for finding ranking functions for termination proofs. Hence, this allows to re-use
existing PRF synthesis techniques and tools. They imply that the transitions in T � can only
be used a limited number of times, as each application of a transition from T � decreases
the measure, and no transition increases it. Hence, if the program is called with input
m1, . . . ,mn, no transition t ∈ T � can be used more often than (Pol(`0))(m1, . . . ,mn) times.
Consequently, Pol(`0) is a runtime bound for the transitions in T �. Note that no such bound
is obtained for the remaining transitions in T .

Example 3.2. To find bounds for the program in Ex. 2.1, we use Pol1 with Pol1(`) = x
for all ` ∈ L, i.e., we measure configurations by the value of x. No transition increases
this measure and t1 decreases it. The condition x > 0 ensures that the measure is positive
whenever t1 is used, i.e., T � = {t1}. Hence Pol1(`0) (i.e., the value x at the beginning of
the program) is a bound on the number of times t1 can be used.

3The result variable graph will be introduced in Sect. 4. As we will discuss in Sect. 4, proceeding in topological
order avoids unnecessary computation steps.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

Such PRFs lead to a basic technique for inferring time bounds. As mentioned in Sect. 2,
to obtain a modular approach, we only allow weakly monotonic functions as complexity
bounds. For any polynomial p ∈ Z[v1, . . . , vn], let [p] result from p by replacing all coefficients
and variables with their absolute value (e.g., for Pol1(`0) = x we have [Pol1(`0)] = |x| and
if p = 2 · v1 − 3 · v2 then [p] = 2 · |v1| + 3 · |v2|). As [p](m1, . . . ,mn) ≥ p(m1, . . . ,mn)
holds for all m1, . . . ,mn ∈ Z, this is a sound approximation, and [p] is weakly monotonic.
In our example, the initial runtime approximation R0 can now be refined to R1, with
R1(t1) = [Pol1(`0)] = |x| and R1(t) = R0(t) for all other transitions t. Thus, this provides a
first basic method for the improvement of runtime approximations.

Theorem 3.3 (Complexities from PRFs). Let R be a runtime approximation and
Pol be a PRF for T . Let R′(t) = [Pol(`0)] for all t ∈ T � and R′(t) = R(t) for all other
t ∈ T . Then, R′ is also a runtime approximation.

To ensure that R′(t) is at most as large as the previous bound R(t) in Thm. 3.3, one
could also define R′(t) = min{[Pol(`0)],R(t)}. A similar improvement is possible for all
other techniques in the paper that refine the approximations R or S.

3.2. Modular Runtime Bounds from PRFs and Size Bounds

Using Thm. 3.3 repeatedly to infer complexity bounds for all transitions in a program
only succeeds for simple algorithms. In particular, it often fails for programs with non-
linear runtime. Although corresponding SAT- and SMT-encodings exist [Fuhs et al. 2007],
generating a suitable PRF Pol of a non-linear degree is a complex synthesis problem (and
undecidable in general). This is aggravated by the need to consider all of T at once, which
is required to check that no transition of T increases Pol ’s measure.

Therefore, we now present a new modular technique that only considers isolated program
parts T ′ ⊆ T in each PRF synthesis step. The bounds obtained from these “local” PRFs
are then lifted to a bound expressed in the input values. To this end, we combine them with
bounds on the size of the variables when entering the program part T ′ and with a bound
on the number of times that T ′ can be reached in evaluations of the full program T . This
allows us to use existing efficient procedures for the automated generation of (often linear)
PRFs for the analysis of programs with possibly non-linear runtime.

Example 3.4. We continue Ex. 3.2 and consider the subset T ′1 = {t1, . . . , t5} ⊆ T .
Using the constant PRF Pol2 with Pol2(`1) = 1 and Pol2(`2) = Pol2(`3) = 0, we see that
t1, t3, t4, t5 do not increase the measure of configurations and that t2 decreases it. Hence, in
executions that are restricted to T ′1 and that start in `1, t2 is used at most [Pol2(`1)] = 1
times. To obtain a global result, we consider how often T ′1 is reached in a full program run.
As T ′1 is only reached by the transition t0, we multiply its runtime approximation R1(t0) = 1
with the local bound [Pol2(`1)] = 1 obtained for the sub-program T ′1. Thus, we refine R1 to
R2(t2) = R1(t0) · [Pol2(`1)] = 1 · 1 = 1 and we set R2(t) = R1(t) for all other t.4

In general, to estimate how often a sub-program T ′ is reached in an evaluation, we consider
the transitions t̃ ∈ T \ T ′ that lead to the “entry location” ` of a transition from T ′. We
multiply the runtime bound of such transitions t̃ (expressed in terms of the input variables)
with the bound [Pol(`)] for runs starting in `. This combination is an over-approximation

4The choice of T ′
1 = {t1, . . . , t5} does not quite match our procedure in Fig. 3, where we would only generate

a PRF for those transitions T ′ = {t ∈ T | R1(t) = ω} for which we have no bound yet. So instead of T ′
1 we

would use T ′′
1 = {t2, . . . , t5}. However, this would result in a worse upper bound, because T ′′

1 is reached by
both transitions t0 and t1. Thus, we would obtainR2(t2) = R1(t0)·[Pol2(`1)]+R1(t1)·[Pol2(`1)] = 1+|x|. To
obtain better bounds, our implementation uses an improved heuristic to choose T ′ in the procedure of Fig. 3:
After generating a PRF Pol for the transitions T ′ without bounds, T ′ is extended by all further transitions
(`, τ, `′) ∈ T \ T ′ where Pol is weakly decreasing, i.e., where τ ⇒ (Pol(`))(v1, . . . , vn) ≥ (Pol(`′))(v′1, . . . , v

′
n)

holds. Thus, our implementation would extend T ′′
1 to T ′

1 = T ′′
1 ∪{t1}.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

of the overall runtime, as the runtime of individual runs may differ greatly. We present an
improved treatment of this problem in Sect. 6.2. More generally, capturing such effects is
treated in amortized complexity analysis (see, e.g., [Hoffmann et al. 2012; Sinn et al. 2014]).
In our example, t0 is the only transition leading to T ′1 = {t1, . . . , t5} and thus, the runtime
bound R1(t0) = 1 is multiplied with [Pol2(`1)].

Example 3.5. We continue Ex. 3.4 and consider the transitions T ′2 = {t3, t4, t5} for
which we have found no bound yet. Then Pol3(`2) = Pol3(`3) = z is a PRF for T ′2 with
(T ′2)� = {t5}. So restricted to the sub-program T ′2, t5 is used at most [Pol3(`2)] = |z| times.
Here, z refers to the value when entering T ′2 (i.e., after transition t2).

To translate this bound into an expression in the input values of the whole program T ,
we substitute the variable z by its maximal size after using the transition t2, i.e., by the
size bound S(t2, z

′). As the runtime of the loop at `2 depends on the size of z, our approach
alternates between computing runtime and size bounds. Our method to compute size bounds
will determine that the size of z after the transition t2 is at most |x|, cf. Sect. 4. Hence, we
replace the variable z in [Pol3(`2)] = |z| by S(t2, z

′) = |x|. To compute a global bound, we
also have to examine how often T ′2 can be executed in a full program run. As T ′2 is only
reached by t2, we obtain R3(t5) = R2(t2) · |x| = 1 · |x| = |x|. For all other transitions t, we
again have R3(t) = R2(t).

In general, the polynomials [Pol(`)] for the entry locations ` of T ′ only provide a bound
in terms of the variable values at location `. To find bounds expressed in the variable values
at the start location `0, we use our size approximation S and replace all variables in [Pol(`)]
by our approximation for their sizes at location `. For this, we define the application of
polynomials to functions. Let p ∈ N[v1, . . . , vn] and f1, . . . , fn ∈ UB. Then p(f1, . . . , fn) is the
function with (p(f1, . . . , fn))(m) = p(f1(m), . . . , fn(m)) for all m ∈ Nn. Weak monotonicity
of p, f1, . . . , fn also implies weak monotonicity of p(f1, . . . , fn), i.e., p(f1, . . . , fn) ∈ UB.

In Ex. 3.5, we applied the polynomial [Pol3(`2)] for the location `2 of T ′2 to the size bounds
S(t2, v

′) for the variables x, y, z, u (i.e., to their sizes before entering T ′2). As [Pol3(`2)] = |z|
and S(t2, z

′) = |x|, we obtained [Pol3(`2)](S(t2, x
′),S(t2, y

′),S(t2, z
′),S(t2, u

′)) = |x|.
Our technique is formalized as the procedure TimeBounds in Thm. 3.6. It takes the

current complexity approximation (R,S) and a sub-program T ′, and computes a PRF for
T ′. Based on this, R is refined to the approximation R′. In the following theorem, for
any location `, let T ` contain all transitions (˜̀, τ̃ , `) ∈ T \ T ′ leading to `. Moreover, let
L′ = {` | T ` 6= ∅ ∧ ∃`′. (`, τ, `′) ∈ T ′} contain all entry locations of T ′.

Theorem 3.6 (TimeBounds). Let (R,S) be a complexity approximation, let T ′ ⊆ T
such that T ′ contains no initial transitions, and let Pol be a PRF for T ′. Let R′(t) =∑

`∈L′, t̃∈T ` R(t̃) · [Pol(`)](S(t̃, v′1), . . . ,S(t̃, v′n)) for t ∈ T ′� and R′(t) = R(t) for all t ∈
T \ T ′�. Then, TimeBounds(R,S, T ′) = R′ is also a runtime approximation.

Here one can see why we require complexity bounds to be weakly monotonic. The reason
is that S(t̃, v′) over-approximates the size of v at some location `. Hence, to ensure that
[Pol(`)](S(t̃, v′1), . . . ,S(t̃, v′n)) correctly over-approximates how often transitions of T ′� can
be applied in parts of evaluations that only use transitions from T ′, [Pol(`)] must be weakly
monotonic.

Example 3.7. We use Thm. 3.6 to obtain bounds for the transitions not handled in
Ex. 3.5. For T ′3 = {t3, t4}, we use Pol4(`2) = 1, Pol4(`3) = 0, and hence (T ′3)� = {t3}. The
transitions t2 and t5 lead to T ′3, and thus, we obtain R4(t3) = R3(t2) ·1 +R3(t5) ·1 = 1 + |x|
and R4(t) = R3(t) for all other transitions t.

For T ′4 = {t4}, we use Pol5(`3) = u with (T ′4)� = T ′4. The part T ′4 is only entered by the
transition t3. To get a global bound, we substitute u in [Pol5(`3)] = |u| by S(t3, u

′) (in Sect. 4,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

we will determine S(t3, u
′) = |x|). Thus, R5(t4) = R4(t3) ·S(t3, u

′) = (1+ |x|) · |x| = |x|+ |x|2
andR5(t) = R4(t) for all other t ∈ T . So while the runtime of T ′4 on its own is linear, the loop
at location `3 is reached a linear number of times, i.e., its transition t4 is used quadratically
often. Thus, the overall program runtime is bounded by

∑
t∈T R5(t) = 3 + 4 · |x|+ |x|2.

4. COMPUTING SIZE BOUNDS

The procedure TimeBounds improves the runtime approximation R, but up to now the size
approximation S was only used as an input. To infer bounds on the size of variables, we
proceed in three steps. First, we find local size bounds that approximate the effect of a single
transition on the sizes of variables. Then, we construct a result variable graph that makes
the flow of data between variables explicit. Finally, we analyze each strongly connected
component (SCC) of this graph independently. Here, we combine our runtime approximation
R with the local size bounds to estimate how often transitions modify a variable value.

To describe how the size of a post-variable v′ is related to the pre-variables of a transition
t, we use local size bounds Sl(t, v′).5 Thus, S(t, v′) is a bound on the size of v after using t
expressed in the sizes of the program inputs, and Sl(t, v′) is a bound expressed in the sizes
of the pre-variables of t. In most cases, such local size bounds can be inferred directly from
the formula of the transition (e.g., if it contains sub-formulas such as x′ = x + 1). For the
remaining cases, we use SMT solving to find bounds from certain classes of templates (cf.
Sect. 4.2).

Definition 4.1 (Local Size Approximation). We call Sl : RV → UB a local size approx-
imation iff (Sl(t, v′))(m) ≥ sup{|v′(v)| | ∃`,v, `′,v′ .v ≤ m ∧ (`,v) →t (`′,v′)} for all
|t, v′| ∈ RV and all m ∈ Nn.

Example 4.2. For the program of Ex. 2.1, we have Sl(t1, y′) = |y| + 1, as t1 increases
y by 1. Similarly, |t1, x′| is bounded by |x| as t1 is only executed if x is positive and thus
decreasing x by 1 does not increase its absolute value.

To track how variables influence each other, we construct a result variable graph (RVG)
whose nodes are the result variables. The RVG has an edge from a result variable |t̃, ṽ′| to
|t, v′| if the transition t̃ can be used immediately before t and if ṽ occurs in the local size
bound Sl(t, v′). Such an edge means that the size of ṽ′ in the post-location of the transition
t̃ may influence the size of v′ in t’s post-location.

To state which variables may influence a function f ∈ UB, we define its active variables
as actV(f) = {vi ∈ V | ∃m1, . . . ,mn,m

′
i ∈ N .f(m1, . . . ,mi, . . . ,mn) 6= f(m1, . . . ,m

′
i, . . . ,

mn) }. To compute actV(f) for the upper bounds f ∈ UB′ in our implementation, we simply
take all variables occurring in f .

Let pre(t) denote the transitions that may precede t in evaluations, i.e., pre(t) = {t̃ ∈ T |
∃v0, `,v .(`0,v0)→∗ ◦ →t̃ ◦ →t (`,v)}. While pre(t) is undecidable in general, there exist
several techniques to compute over-approximations, cf. [Fuhs et al. 2009; Falke et al. 2011].

Definition 4.3 (RVG). Let Sl be a local size approximation. An RVG has T ’s result
variables as nodes and the edges {(|t̃, ṽ′|, |t, v′|) | t̃ ∈ pre(t), ṽ ∈ actV(Sl(t, v′))}.

Example 4.4. The RVG for the program from Ex. 2.1 is shown in Fig. 4. Here, we display
local size bounds in the RVG to the left of the result variables, separated by “≥” (e.g.,
“|x| ≥ |t1, x′|” means Sl(t1, x′) = |x|). As we have Sl(t2, z′) = |y| for the transition t2, which
sets z := y, we conclude actV(Sl(t2, z′)) = {y}. The program graph implies pre(t2) = {t0, t1},
and thus, the RVG contains edges from |t0, y′| to |t2, z′| and from |t1, y′| to |t2, z′|.

5So the subscript “l” in Sl stands for local size bounds and should not be confused with locations “`”.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

|x|≥|t0, x′| 0≥|t0, y′| |z|≥|t0, z′| |u|≥|t0, u′|

|x|≥|t1, x′| |y|+1≥|t1, y′| |z|≥|t1, z′| |u|≥|t1, u′|

|x|≥|t2, x′| |y|≥|t2, y′| |y|≥|t2, z′| |u|≥|t2, u′|

|x|≥|t3, x′| |y|≥|t3, y′| |z|≥|t3, z′| |z|≥|t3, u′|

|x|≥|t4, x′| |y|≥|t4, y′| |z|≥|t4, z′| |u|≥|t4, u′|

|x|≥|t5, x′| |y|≥|t5, y′| |z|≥|t5, z′| |u|≥|t5, u′|

Fig. 4. Result variable graph for the program from Ex. 2.1

SCCs of the RVG represent sets of result variables that may influence each other. To lift
the local approximation Sl to a global one, we consider each SCC on its own. We treat the
SCCs in topological order, reflecting the data flow. In this way when computing size bounds
for an SCC, we already have the size bounds available for those result variables that the
current SCC depends on. As usual, an SCC is a maximal subgraph with a path from each
node to every other node. An SCC is trivial if it consists of a single node without an edge
to itself. In Sect. 4.1, we show how to deduce global bounds for trivial SCCs and in Sect.
4.2, we handle non-trivial SCCs where transitions are applied repeatedly.

4.1. Size Bounds for Trivial SCCs of the RVG

Sl(t, v′) approximates the size of v′ after the transition t w.r.t. t’s pre-variables, but our
goal is to obtain a global bound S(t, v′) that approximates v′ w.r.t. the initial values of the
variables at the program start. For trivial SCCs that consist of a result variable α = |t, v′|
with an initial transition t, the local bound Sl(α) is also the global bound S(α), as the start
location `0 has no incoming transitions.

Next, we consider trivial SCCs α = |t, v′| with incoming edges from other SCCs. Here,
Sl(α) (m) is an upper bound on the size of v′ after using the transition t in a configuration
where the sizes of the variables are at most m. To obtain a global bound, we replace m by
upper bounds on t’s input variables. The edges leading to α come from result variables |t̃, v′i|
where t̃ ∈ pre(t) and thus, a bound for the result variable α = |t, v′| is the maximum of all
applications of Sl(α) to S(t̃, v′1), . . . ,S(t̃, v′n), for all t̃ ∈ pre(t).

Example 4.5. Consider the RVG of Ex. 4.4 in Fig. 4, for which we want to find size
bounds. For the trivial SCC {|t0, y′|}, we have 0 ≥ |t0, y′|, and thus we set S(t0, y

′) = 0.
Similarly, we obtain S(t0, x

′) = |x|. Finally, consider the local size bound |y| ≥ |t2, z′|. To
express this bound in terms of the input variables, we consider the predecessors |t0, y′|
and |t1, y′| of |t2, z′|. So Sl(t2, z′) must be applied to S(t0, y

′) and S(t1, y
′). If SCCs are

handled in topological order, one already knows that S(t0, y
′) = 0 and S(t1, y

′) = |x|. Hence,
S(t2, z

′) = max{0, |x|} = |x|.

Thm. 4.6 presents the resulting procedure SizeBounds. Based on the current approximation
(R,S), it improves the global size bound for the result variable in a trivial SCC of the RVG.
Non-trivial SCCs will be handled in Thm. 4.15.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

Theorem 4.6 (SizeBounds for Trivial SCCs). Let (R,S) be a complexity approxi-
mation, let Sl be a local size approximation, and let {α} ⊆ RV be a trivial SCC of the RVG.
We define S ′(α′) = S(α′) for α′ 6= α and

• S ′(α) = Sl(α), if α = |t, v′| for some initial transition t
• S ′(α) = max{ Sl(α) (S(t̃, v′1), . . . ,S(t̃, v′n)) | t̃ ∈ pre(t)}, otherwise.

Then SizeBounds(R,S, {α}) = S ′ is also a size approximation.

4.2. Size Bounds for Non-Trivial SCCs of the RVG

Finally, we show how to improve the size bounds for result variables in non-trivial SCCs of
the RVG. Such an SCC C corresponds to the information flow in a loop and hence, each of
its local changes can be applied several times. To approximate the overall effect of these
repeated changes for a transition t of C, we combine the time bound R(t) with the local
size bounds Sl(t, v′). Then, to approximate the effect of the whole SCC C, we combine the
bounds obtained for all transitions t of C. To simplify this approximation, we classify result
variables α into three sets

.
=, u, and ×̇, depending on their local size bound Sl(α):

• α ∈ .
= (α is an “equality”) if the result variable is not larger than any of its pre-

variables or a constant, i.e., iff there is a number cα ∈ N with max{cα,m1, . . . ,mn} ≥
(Sl(α))(m1, . . . ,mn) for all m1, . . . ,mn ∈ N.
• α ∈ u (α “adds a constant”) if the result variable increases over the pre-variables by a con-

stant, i.e., iff there is a number dα ∈ N with dα+max{m1, . . . ,mn} ≥ (Sl(α))(m1, . . . ,mn)
for all m1, . . . ,mn ∈ N.

• α ∈ ×̇ (α is a “scaled sum”) if the result variable is not larger than the sum of the
pre-variables and a constant multiplied by a scaling factor, i.e., iff there are numbers
sα, eα ∈ N with sα ≥ 1 and sα · (eα +

∑
i∈{1,...,n}mi) ≥ (Sl(α))(m1, . . . ,mn) for all

m1, . . . ,mn ∈ N.

Example 4.7. We continue Ex. 4.5, and obtain {|t3, z′|, |t4, z′|, |t5, z′|} ⊆
.
= since

Sl(t3, z′) = Sl(t4, z′) = Sl(t5, z′) = |z|. Similarly, we have |t1, y′| ∈ u as Sl(t1, y′) = |y|+ 1.
A result variable with a local size bound like |x|+ |y| or 2 · |x| would belong to the class ×̇.

Note that local size bounds from ×̇ can lead to an exponential global size bound. For example,
if a change bounded by 2 · |x| is applied |y| times to x, the resulting value is bounded only by
the exponential function 2|y| · |x|. For each result variable α, we use a series of SMT queries
in order to try to find a local size bound Sl(α) belonging to one of our three classes above.6

Similar to pre(t) for a transition t, let pre(α) for a result variable α be those α̃ ∈ RV with
an edge from α̃ to α in the RVG. To deduce a bound on the size of the result variables in an
SCC C, we first consider the size of values entering C. Hence, we require that the resulting
size bound S(β) for β ∈ C should be at least as large as the sizes S(α̃) of the inputs α̃, i.e.,
of those result variables α̃ outside the SCC C that have an edge to some α ∈ C. Moreover,
if the SCC C contains result variables α = |t, v′| ∈ .

=, then the transition t either does
not increase the size at all, or increases it to the constant cα. Hence, the bound S(β) for
the result variables β in C should also be at least max{cα | α ∈

.
= ∩ C}. As in Def. 2.4, a

constant like “cα” denotes the constant function mapping all values from Nn to cα.

Example 4.8. The only predecessor of the SCC C = {|t3, z′|, |t4, z′|, |t5, z′|} in the RVG
of Fig. 4 is |t2, z′| with S(t2, z

′) = |x|. For each α ∈ C, the corresponding constant cα is 0.
Thus, for all β ∈ C we obtain S(β) = max{|x|, 0} = |x|.

6More precisely, our implementation uses an SMT solver to check whether a result variable (i.e., a term with
the variables v1, . . . , vn) is bounded by max{c, v1, . . . , vn}, by d+max{v1, . . . , vn}, or by s·(e+

∑
i∈{1,...,n} vi)

for large fixed numbers c, d, e, s. Afterwards, the set of variables v1, . . . , vn in the bound is reduced (i.e., one
checks whether the bound still works without vi) and the numbers c, d, e, s are reduced by binary search.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

`0

`1

`2

t0

t1: if(i > 0)
i := i− 1
x := x+ 1

t2: x := x+ 2
y := x

|i|≥|t0, i′| |x|≥|t0, x′| |y|≥|t0, y′|

|i|≥|t1, i′| |x|+1≥|t1, x′| |y|≥|t1, y′|

|i|≥|t2, i′| |x|+2≥|t2, x′| |x|+2≥|t2, y′|

Fig. 5. Graph and RVG for the program of Ex. 4.10

To handle result variables α ∈ (u \ .=) ∩ C that add a constant dα, we consider how
often this addition is performed. Thus, while TimeBounds from Thm. 3.6 uses the size
approximation S to improve the runtime approximation R, SizeBounds uses R to improve S.
For each transition t ∈ T , let Ct = C ∩ {|t, v′| | v ∈ V} be all result variables from C that
use the transition t. Since R(t) is a bound on the number of times that t is executed, the
repeated traversal of t increases the overall size by at most R(t) ·max{dα | α ∈ (u\ .=)∩Ct}.

Example 4.9. Consider the result variable α = |t1, y′| in the RVG of Fig. 4. Its local size
bound is Sl(t1, y′) = |y|+ 1, i.e., each traversal of t1 increases y by dα = 1. As before, we
use the size bounds on the predecessors of the SCC {α} as a basis. The input value when
entering this (non-trivial) SCC is S(t0, y

′) = 0. Since t1 is executed at most R(t1) = |x|
times, we obtain the global bound S(α) = S(t0, y

′) +R(α) · dα = 0 + |x| · 1 = |x|.

If the SCC C uses several different transitions from (u\ .=), then the effects resulting from
these transitions have to be added, i.e., the repeated traversal of these transitions increases
the overall size by at most

∑
t∈T (R(t) ·max{dα | α ∈ (u \ .=) ∩ Ct}). Note that we use the

same size bound for all result variables of an SCC, since the transitions in an SCC may
influence all its result variables. So for an SCC C where all result variables are in the classes
.
= or u, we obtain the following new size bound for all result variables of C:(

max({S(α̃) | there is an α ∈ C with α̃ ∈ pre(α) \ C} ∪ {cα | α ∈
.
= ∩ C})

+
∑
t∈T (R(t) ·max{dα | α ∈ (u \ .=) ∩ Ct})

)
Example 4.10. As an example for a program with several transitions that add constants,

consider the program in Fig. 5. We are interested in determining a bound for the SCC
C = {|t1, x′|, |t2, x′|}, and assume that R(t1) = R(t2) = |i| has already been inferred. Using
Thm. 4.6, we obtain S(t0, x

′) = |x|. Then, we can derive:

S(t1, x
′) = S(t2, x

′) =
(

max{S(t0, x
′)}+

∑
t∈T

(R(t) ·max{dα | α ∈ (u \ .=) ∩ Ct})
)

=
(

max{|x|}+ (R(t1) ·max{1}) + (R(t2) ·max{2})
)

=
(
|x|+ (|i| · 1) + (|i| · 2)

)
= |x|+ 3 · |i|

This bound is also used for the variable y that is modified in the same loop of the program.
The reason is that for the trivial SCC {|t2, y′|} of the RVG, by Thm. 4.6 we have S(t2, y

′) =
Sl(t2, y′) (S(t1, i

′),S(t1, x
′),S(t1, y

′)). As Sl(t2, y′) = |x|+ 2 and S(t1, x
′) = |x|+ 3 · |i|, we

get S(t2, y
′) = |x|+ 3 · |i|+ 2.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

`0

`1

`2

t0
t1: if(i > 0)

i := i− 1
x := x+ i

t2: if(i ≤ 0)

t3: if(x > 0)
x := x− 1

|i|≥|t0, i′| |x|≥|t0, x′|

|i|≥|t1, i′| |x|+|i|≥|t1, x′|

|i|≥|t2, i′| |x|≥|t2, x′|

|i|≥|t3, i′| |x|≥|t3, x′|

Fig. 6. Graph and RVG for the second program of Fig. 1

Finally, we discuss how to handle result variables α ∈ ×̇ \u that sum and scale up several
program variables. For any such α in a non-trivial SCC C of the RVG, let Vα = {ṽ | |t̃, ṽ′| ∈
pre(α) ∩C} be the set of those program variables ṽ for which there is a result variable |t̃, ṽ′|
in C with an edge to α. For non-trivial SCCs C, we always have Vα 6= ∅. We first consider
the case where the scaling factor is sα = 1 and where |Vα| = 1 holds, i.e., where no two
result variables |t̂, v̂′|, |t̃, ṽ′| in α’s SCC C with v̂ 6= ṽ have edges to α. However, there may
be incoming edges from arbitrary result variables outside the SCC. Then, α may sum up
several program variables, but only one of them comes from α’s own SCC C in the RVG.

For each variable v, let fαv be an upper bound on the size of those result variables |t̃, v′| /∈ C
that have edges to α, i.e., fαv = max{S(t̃, v′) | |t̃, v′| ∈ pre(α) \ C}. The execution of α’s
transition t then means that the value of the variable in Vα can be increased by adding fαv (for
all v ∈ actV(Sl(α))\Vα) plus the constant eα. Again, this can be repeated at mostR(t) times.
The overall size is bounded by addingR(t)·max{eα+

∑
v∈actV(Sl(α))\Vα f

α
v | α ∈ (×̇\u)∩Ct}.

Example 4.11. Consider the second program of Fig. 1 from Ex. 1.1 again. Its program
graph and RVG are depicted in Fig. 6. Our method detects the runtime bounds R(t0) = 1,
R(t1) = |i|, and R(t2) = 1. To obtain size bounds, we first infer the global size bounds
S(t, i′) = |i| for all t ∈ T and S(t0, x

′) = |x|. Next we regard the result variable α = |t1, x′|
with the local bound Sl(α) = |x|+ |i|. Thus, we have α ∈ ×̇ \u.

As α = |t1, x′| is a predecessor of itself and its SCC contains no other result variables,
we have Vα = {x}. Of course, α also has predecessors of the form |t̃, i′| outside the SCC.
We have actV(Sl(α)) = actV(|x| + |i|) = {i, x}, and fαi = max{S(t0, i

′),S(t1, i
′)} =

|i|. When entering α’s SCC, the input is bounded by the preceding transitions, i.e., by
max{S(t0, i

′),S(t1, i
′),S(t0, x

′)} = max{|i|, |x|}. By traversing α’s transition t1 repeatedly
(at most R(t1) = |i| times), this value may be increased by adding R(t1) · (eα + fαi) =
|i| · (0 + |i|) = |i|2. Hence, we obtain S(α) = max{|i|, |x|}+ |i|2. Consequently, we also get
S(t2, x

′) = S(t3, x
′) = max{|i|, |x|}+ |i|2.

From the inferred size bounds we can now derive a runtime bound for the last transition
t3. When we call TimeBounds on T ′ = {t3}, it finds the PRF Pol(`2) = x, implying that T ′’s
runtime is linear. When program execution reaches T ′, the size of x is bounded by S(t2, x

′).
So R(t3) = R(t2) · [Pol(`2)](S(t2, i

′),S(t2, x
′)) = 1 · S(t2, x

′) = max{|i|, |x|}+ |i|2. Thus, a
bound on the overall runtime is

∑
t∈T R(t) = 2 + |i|+ max{|i|, |x|}+ |i|2, i.e., it is linear

in |x| and quadratic in |i|.

While the global size bound for the result variable |t1, x′| ∈ ×̇ \u in the above example is
only quadratic, in general the resulting global size bounds for result variables α from the
class ×̇ can be exponential. This is the case when the scaling factor sα is greater than 1 or
when |Vα| > 1.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

`0

`1

`2

t0

t1: if(i > 0)
i := i− 1
x := x+ y
y := x

t2: x := x+ y
y := 2 · x

|i|≥|t0, i′| |x|≥|t0, x′| |y|≥|t0, y′|

|i|≥|t1, i′| |x|+|y|≥|t1, x′| |x|+|y|≥|t1, y′|

|i|≥|t2, i′| |x|+|y|≥|t2, x′| 2 · (|x|+|y|)≥|t2, y′|

Fig. 7. Graph and RVG for the program of Ex. 4.14

Example 4.12. To illustrate that, consider the following loop.

while z > 0 do x := x + y; y := x; z := z − 1; done

Here, we have a transition t1 = (`1, τ1, `1) where τ1 is the formula z > 0 ∧ x′ = x + y ∧ y′ =
x′ ∧ z′ = z − 1. For αx = |t1, x′| and αy = |t1, y′| we obtain Sl(αx) = Sl(αy) = |x| + |y|.
Thus, αx and αy together form an SCC C where Vαx

= Vαy
= {x, y}. In other words, in

each iteration of the loop, the value of x and y is not increased by a fixed value as before
(that is not modified itself in the loop), but the value of x and y is doubled in each loop
iteration. The reason is that here we have |Vαx

| = |Vαy
| = 2.

In general, each execution of a transition t may multiply the value of a result variable
from (×̇ \ u) ∩ Ct by max{|Vα| | α ∈ (×̇ \ u) ∩ Ct}. Since this multiplication may be
performed R(t) times, the repeated traversal of t increases the overall size by at most
(max{|Vα| | α ∈ (×̇ \u) ∩ Ct})R(t).

If the SCC C uses several different transitions (×̇\u), then the effects resulting from these
transitions have to be multiplied. Thus, the overall increase is bounded by a multiplication
with the following exponential factor.

s×̇ =
∏

t∈T
(max{|Vα| | α ∈ (×̇ \u) ∩ Ct})R(t)

In Ex. 4.12, (×̇ \ u) ∩ Ct is empty for all transitions t except t1. As |Vαx
| = |Vαy

| = 2

and R(t1) = |z|, we have s×̇ = 2|z| which results in the global size bounds S(αx) = S(αy) =

2|z| ·max{|x|, |y|}.

Example 4.13. In Ex. 4.12, the exponential growth of the size was due to |Vαx
| = |Vαy

| >
1. A similar effect is obtained if one has scaling factors sα > 1. To demonstrate this, consider
the following modification of the above loop.

while z > 0 do x := 2 · x; z := z− 1; done

Now the resulting transition t1 has the formula z > 0 ∧ x′ = 2 · x ∧ z′ = z − 1 and for
αx = |t1, x′| we obtain Sl(αx) = 2 · |x|. In each iteration of the loop, the value of x is
multiplied by the scaling factor sαx

= 2.

To capture this, we revise the definition of s×̇ as follows.

s×̇ =
∏

t∈T

(
max{sα | α ∈ (×̇ \u) ∩ Ct} · max{|Vα| | α ∈ (×̇ \u) ∩ Ct}

)R(t)

Then the overall increase is again bounded by a multiplication with an exponential factor.
Similar to Ex. 4.12, in Ex. 4.13 we have s×̇ = (sαx

· |Vαx
|)R(t1) = (2 · 1)|z| = 2|z| which results

in the global size bound S(αx) = 2|z| · |x|.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

Example 4.14. As an example for a program with several transitions that corre-
spond to scaled sums, consider the program in Fig. 7. Its RVG has an SCC C =
{|t1, x′|, |t2, x′|, |t1, y′|, |t2, y′|} where all results variable are in ×̇ \ u. We can easily de-
rive S(t0, x

′) = |x|, S(t0, y
′) = |y| with Thm. 4.6, and deduce R(t1) = R(t2) = |i|. We

observe that s|t2,y′| = 2, and that the scaling factor is 1 for all other result variables.
Moreover, we have |Vα| = 2 for all α ∈ C. For our SCC, we then compute s×̇ as follows:

s×̇ =
(

max{s|t1,x′|, s|t1,y′|} ·max{|V|t1,x′||, |V|t1,y′||}
)R(t1)

·
(

max{s|t2,x′|, s|t2,y′|} ·max{|V|t2,x′||, |V|t2,y′||}
)R(t2)

=
(

max{1, 1} ·max{2, 2}
)|i|
·
(

max{1, 2} ·max{2, 2}
)|i|

= 2|i| · 4|i| = 8|i|

Intuitively, this means that the inputs to the SCC C can grow at most by a factor of 8|i|.
As no constants are added in the SCC, we can then compute the size bound on all result
variables of C as s×̇ ·max{S(t0, x

′),S(t0, y
′)} = 8|i| ·max{|x|, |y|}.

Thm. 4.15 extends the procedure SizeBounds from Thm. 4.6 to non-trivial SCCs. Note
that if an SCC contains a result variable β whose local size bound does not belong to any
of our three classes, then we are not able to derive any global size bounds (i.e., then Thm.
4.15 cannot improve the current size approximation S). This is the case when β /∈ ×̇ (since
.
= ⊆ u ⊆ ×̇).

Theorem 4.15 (SizeBounds for Non-Trivial SCCs). Let (R,S) be a complexity ap-
proximation, Sl a local size approximation, and C ⊆ RV a non-trivial SCC of the RVG. If
there is a β ∈ C with β /∈ ×̇, then we set S ′ = S. Otherwise, for all β /∈ C let S ′(β) = S(β).
For all β ∈ C, we set S ′(β) =

s×̇ ·
(

max({S(α̃) | there is an α ∈ C with α̃ ∈ pre(α) \ C} ∪ {cα | α ∈
.
= ∩ C})

+
∑
t∈T (R(t) ·max{dα | α ∈ (u \ .=) ∩ Ct})

+
∑
t∈T (R(t) ·max{eα +

∑
v∈actV(Sl(α))\Vα f

α
v | α ∈ (×̇ \u) ∩ Ct})

)
.

Then SizeBounds(R,S, C) = S ′ is also a size approximation.

Taking a different perspective, one can see our contributions on the inference of size
bounds as a technique for computing potentially non-linear invariants. Our technique also
takes runtime complexity analysis results into account, and its automation requires only
relatively benign linear constraint solving in most cases.

5. HANDLING RECURSION

Our representation of programs as sets of simple transitions is restricted to programs without
procedure calls. Of course, as long as there is no recursion (or only tail recursion), procedure
calls can easily be “inlined”. However, in Sect. 5.1 we present an extension of our approach
to handle arbitrary (possibly non-tail recursive) procedure calls. Based on this, we show
in Sect. 5.2 how to adapt PRFs in order to infer exponential runtime bounds for recursive
programs.

5.1. Complexity Analysis for Recursive Programs

Example 5.1. As an example, regard the following program where the recursive procedure
fac(x) computes x! and facSum(x) computes x! + (x− 1)! + . . .+ 0!.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

int facSum(int x)
`0: r := 0
`1: while x ≥ 0 do
`2: r := r + fac(x)︸ ︷︷ ︸

`3
x := x− 1

done
`4: return r

int fac(int x)
`5: r := 1
`6: if x > 0 then
`7: r := x · fac(x− 1)︸ ︷︷ ︸

`8
fi

`9: return r

We extend the notion of transitions to the form (`, τ,P), where P is a non-empty multiset
of locations. If P is a singleton set {`′}, we write (`, τ, `′) instead of (`, τ, {`′}). By using
transitions with several target locations, we can express function calls, since one target
location represents the evaluation of the called function, whereas the other target location
represents the context which is executed when returning from the function call. Thus,
the program from Ex. 5.1 can be represented by the following transitions. Note that our
transitions are an over-approximation of the original program since we do not take the
results of procedure calls into account (i.e., the value of the variable r′ is arbitrary in the
transitions t3 and t8).

t0 = (`0, x
′ = x ∧ r′ = 0, `1)

t1 = (`1, x ≥ 0 ∧ x′ = x ∧ r′ = r, {`2, `3})
t2 = (`1, x < 0 ∧ x′ = x ∧ r′ = r, `4)
t3 = (`2, x ≥ 0 ∧ x′ = x− 1, `1)
t4 = (`3, x

′ = x, `5)
t5 = (`5, x

′ = x ∧ r′ = 1, `6)
t6 = (`6, x > 0 ∧ x′ = x ∧ r′ = r, {`7, `8})
t7 = (`6, x ≤ 0 ∧ x′ = x ∧ r′ = r, `9)
t8 = (`7, x

′ = x, `9)
t9 = (`8, x > 0 ∧ x′ = x− 1, `5)

A configuration is now a multiset of pairs (`,v) of a location ` and a valuation v : V → Z.
An evaluation step takes a pair (`,v) in the current configuration and applies a transition to

it.7 So for a configuration F , we write F →(`,v)
t F ′ for an evaluation step with a transition t =

(`, τ, {`1, . . . , `k}) ∈ T iff there is a pair (`,v) ∈ F , F ′ = (F \{(`,v)})∪{(`1,v′), . . . , (`k,v
′)},

and the valuations v, v′ satisfy the formula τ . To ease readability, sometimes we write

→t instead of →(`,v)
t . Note that in each evaluation step we only evaluate one pair in the

configuration (i.e., this does not model concurrency where several pairs are evaluated in
parallel). So in Ex. 5.1, we have

{(`0,v0)} →(`0,v0)
t0 {(`1,v1)} →(`1,v1)

t1

{(`2,v1), (`3,v1)} →(`2,v1)
t3 {(`1,v2), (`3,v1)} →(`3,v1)

t4

{(`1,v2), (`5,v3)} →(`5,v3)
t5 . . .

for v0(x) = v1(x) = v3(x) = 2, v2(x) = 1, v0(r) = 3, v1(r) = 0, v2(r) = −17, and
v3(r) = 42.

Obviously, such an evaluation can also be represented as an evaluation tree whose nodes

have the form (`,v). If F →(`,v)
t F ′ as above, then in the corresponding evaluation tree, the

node (`,v) has the children (`1,v
′), . . . , (`k,v

′), and the edges to the children are labeled

7For a transition (`, τ,P), one can see P also as a list of locations. Then a configuration is a list of pairs
(`,v), corresponding to the call stack, and the topmost pair in the stack has to be evaluated first. However,
for the purposes of our complexity analysis, the order in which the calls are evaluated makes no difference.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

(`0,v0)

(`1,v1)

(`2,v1)

(`1,v2)

(`3,v1)

(`5,v3)

. . .

t0

t1 t1

t3 t4

t5

with t. So the evaluation above would be represented by the tree
on the right. Albert et al. [2011a] and Debray et al. [1997] propose
a similar notion of evaluation trees or computation trees for cost
relations.

Note that for termination and for size complexity analysis,
one could also replace transitions with multiple target locations
like (`1, τ, {`2, `3}) by the corresponding single-target transitions
(`1, τ, `2) and (`1, τ, `3). But for runtime complexity analysis, this
is not possible. The reason is that the transition (`1, τ, {`2, `3})
means that evaluation continues both at location `2 and at lo-
cation `3. Hence, the runtime complexities resulting from these
two locations have to be added to obtain a bound for the runtime
complexity resulting from location `1. In contrast, the two transitions (`1, τ, `2) and (`1, τ, `3)
would mean that evaluation continues either at location `2 or at location `3. Hence, here
it would suffice to take the maximum of the runtime complexities resulting from `2 and `3
to obtain a bound for the runtime complexity resulting from `1. For example, the program
{t0, . . . , t9} above has quadratic runtime complexity. But if one replaced the transition t1 by
two separate transitions from `1 to `2 and from `1 to `3, then the resulting program would
only have linear runtime complexity.

By adapting the required notions in a straightforward way, our approach for complexity
analysis can easily be extended to programs with (possibly recursive) procedure calls. As
before, the runtime complexity rc maps sizes m of program variables to the maximal number
of evaluation steps that are possible from a start configuration (`0,v) with v ≤m. The only
change compared to Def. 2.3 is that configurations are now multisets of pairs (`,v):

rc(m) = sup{k ∈ N | ∃v0, F .v0 ≤m ∧ {(`0,v0)} →k F}.
Similarly, runtime approximations R from Def. 2.4 also have to be adapted to the new notion
of configurations. Now, R is a runtime approximation iff the following holds for all t ∈ T :

(R(t))(m) ≥ sup{k ∈ N | ∃v0, F .v0 ≤m ∧ {(`0,v0)} (→∗ ◦→t)
k F}

As in Def. 2.6, the definition of size approximations S must ensure that S(t, v′) is a bound
on the size of the variable v after a certain transition t was used in an evaluation. However,
we now regard transitions t of the form (`, τ,P) where P is a multiset of locations. Thus, we
require that whenever there is an evaluation from an initial configuration to a configuration
F such that t can be applied for the next evaluation step (i.e., such that (`,v) ∈ F and v,v′

satisfy τ for some valuations v and v′), then S(t, v′) must be a bound for |v′(v)|. In other
words, S is a size approximation iff for all (`, τ,P) ∈ T and all v ∈ V, we have

(S((`, τ,P), v′))(m) ≥ sup{|v′(v)| | ∃v0, F,v,v
′ . v0 ≤m ∧ {(`0,v0)}→∗ F ∧

(`,v) ∈ F ∧ v,v′ satisfy τ}.
Similarly, Sl is a local size approximation iff

(Sl((`, τ,P), v′))(m) ≥ sup{|v′(v)| | ∃v,v′ .v ≤m ∧ v,v′ satisfy τ}.
To denote the transitions that may precede each other, we also have to adapt the definition
of “pre” (which is needed for the computation of size approximations in Sect. 4). Here, we
have to take into account that a transition may reach a subsequent transition multiple times.
Therefore, we now define pre((`′, τ ′,P ′)) to be the multiset where (`, τ,P) ∈ T is contained
k times in pre((`′, τ ′,P ′)) iff `′ is contained k times in P and there exist v0, F,v,v

′,v′′ such
that {(`0,v0)}→∗ F , (`,v) ∈ F , v,v′ satisfy τ , and v′,v′′ satisfy τ ′.

Finally, we also have to modify the notion of PRFs. We now measure composed config-
urations {(`1,v1), . . . , (`k,vk)} by summing up the measures of their components (`i,vi).
Again, we call Pol a PRF for a program iff no transition increases the measure and at least

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

one decreases it. As before, our goal is to use a PRF to deduce a bound on the runtime
complexity. To this end, we have to ensure that the measure of a configuration is at least
as large as the number of decreasing transition steps that can be used when starting the
program evaluation in this configuration. However, this would not be guaranteed anymore
for composed configurations, since the measures of their components can also be negative.
Therefore, when measuring a composed configuration of k > 1 components, we only sum up
those components with non-negative measure. This gives rise to the following definition.

Definition 5.2 (PRF for Recursive Programs). We call Pol : L → Z[v1, . . . , vn] a PRF
for T iff there is a non-empty T � ⊆ T such that the following conditions hold:

— for all (`, τ, {`1, . . . , `k}) ∈ T , we have
— τ ⇒ (Pol(`))(v1, . . . , vn) ≥ (Pol(`1))(v′1, . . . , v

′
n), if k = 1

— τ ⇒ (Pol(`))(v1, . . . , vn) ≥
∑
j∈{1,...,k} max{0, (Pol(`j))(v

′
1, . . . , v

′
n)}, if k > 1

— for all (`, τ, {`1, . . . , `k}) ∈ T �, we have
— τ ⇒ (Pol(`))(v1, . . . , vn) > (Pol(`1))(v′1, . . . , v

′
n), if k = 1

— τ ⇒ (Pol(`))(v1, . . . , vn) >
∑
j∈{1,...,k} max{0, (Pol(`j))(v

′
1, . . . , v

′
n)}, if k > 1

— τ ⇒ (Pol(`))(v1, . . . , vn) ≥ 1

With this definition of PRFs, the procedure TimeBounds from Thm. 3.6 can also be used
for the new extended notion of programs T . For this, we now let the transitions T ` leading
to the location ` be a multiset that contains all transitions (˜̀, τ̃ ,P) ∈ T \ T ′ with ` ∈ P.

Here (˜̀, τ̃ ,P) has the same multiplicity in T ` as the multiplicity of ` in P (i.e., if ` is

contained k times in P then (˜̀, τ̃ ,P) is contained k times in T `). This is needed, because

the sub-program T ′ is reached k times by the transition (˜̀, τ̃ ,P). Moreover, we now set
L′ = {` | T ` 6= ∅ ∧ ∃P ′. (`, τ,P ′) ∈ T ′} as entry locations. With this extension of our
method, for the program of Ex. 5.1 (with the initial location `0) we obtain the runtime
approximations R(t3) = |x| (for the loop of facSum) and R(t9) = |x|+ |x|2 (for the linear
recursion of fac that is called linearly often from facSum). The overall runtime bound is∑
t∈T R(t) = 8 + 12 · |x|+ 5 · |x|2, i.e., the program’s runtime is quadratic in the size of x.
Alonso-Blas et al. [2013] propose a technique to obtain runtime bounds in closed form by

means of sparse cost relations as an approximation for the overall cost of a cost relation.
Their technique allows to consider cost relations with more than one target location and,
at the same time, only count the cost resulting from a single equation in each step. This is
similar to Def. 5.2 where we also only count the number of evaluation steps of the transitions
in T � instead of having to count all transitions in a single proof step.

5.2. Exponential Complexities for Recursive Programs

We consider two sources for exponential runtime complexity: (1) a variable takes a value of
exponential size or (2) non-linear recursion. We handled the former in Sect. 4 by deriving
exponential size approximations from polynomial runtime approximations. However, up to
now a direct application of polynomial ranking functions (that does not rely on size bounds
computed for preceding loops) could only yield polynomial runtime bounds. We now adapt
and extend a technique by Albert et al. [2011a] to use polynomial ranking functions in order
to infer exponential bounds for recursive programs directly (Case (2)). In contrast to the
approach by Albert et al. [2011a], our adaptation allows to infer exponential complexity
bounds for only some of the transitions and polynomial bounds for others.

Example 5.3. Our technique works for recursive algorithms with multiple recursive calls,
such as the (näıve) recursive computation of the Fibonacci numbers. An implementation
as an imperative program and its transitions are given in Fig. 8. Since we require that
there may not be any transitions back to the initial program location `0, we added a main

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

int main(int x)
`0: return fib(x)

int fib(int x)
`1: if x ≤ 0 then
`2: r := 0
`3: else if x ≤ 1 then
`4: r := 1

else
`5: r := fib(x− 1)︸ ︷︷ ︸

`6
`7: r := r + fib(x− 2)︸ ︷︷ ︸

`8
fi fi

`9: return r

t0 = (`0, x
′ = x, `1)

t1 = (`1, x ≤ 0 ∧ x′ = x ∧ r′ = r, `2)
t2 = (`2, x

′ = x ∧ r′ = 0, `9)
t3 = (`1, x > 0 ∧ x′ = x ∧ r′ = r, `3)
t4 = (`3, x ≤ 1 ∧ x′ = x ∧ r′ = r, `4)
t5 = (`4, x

′ = x ∧ r′ = 1, `9)
t6 = (`3, x > 1 ∧ x′ = x ∧ r′ = r, {`5, `6})
t7 = (`5, x > 1 ∧ x′ = x, {`7, `8})
t8 = (`6, x

′ = x− 1, `1)
t9 = (`7, x

′ = x, `9)
t10 = (`8, x

′ = x− 2, `1)

Fig. 8. Computation of the Fibonacci numbers with non-polynomial complexity

function that calls the recursive function fib. As t6 and t7 can occur Ω(fib(|x|)) times in
an evaluation of T (i.e., an exponential number of times), there does not exist any PRF
with t6 ∈ T � or t7 ∈ T �. The size of x remains bounded by its initial size throughout the
execution. Thus, the super-polynomial runtime cannot be inferred using the exponential size
approximations from Sect. 4.

In Sect. 5.1, we discussed why we cannot just replace transitions with multiple target
locations like (`3, τ, {`5, `6}) by the corresponding single-target transitions (`3, τ, `5) and
(`3, τ, `6) to infer polynomial bounds. However, exponential bounds can be inferred in this
way. Recall that Def. 5.2 required that the ranking function decreases over the sum of
all components of a configuration whenever a transition from T � is used. To weaken this
requirement, we now only require that the ranking function decreases in each individual
component. Then, in each path of the evaluation tree, the number of T �-edges is bounded
by [Pol(`0)], i.e., [Pol(`0)] is a bound for the height h of the evaluation tree (if one only
counts T �-edges to determine this height). For Ex. 5.3, this allows to infer the following
ranking function Pol :

Pol(`0) = Pol(`1) = Pol(`2) = Pol(`3) = Pol(`4) = x + 2 Pol(`5) = Pol(`6) = x + 1

Pol(`7) = Pol(`8) = Pol(`9) = x

In the constraints for the ranking function Pol , we have “separated” the transition t6
into two transitions (from `3 to `5 and from `3 to `6). Similarly, t7 is separated into the
transitions from `5 to `7 and from `5 to `8. With the above ranking function Pol for the
“separated” version of T , the transitions t6 and t7 are in T � (i.e., their separated versions
are strictly decreasing and they are bounded from below by 1). All other transitions are
weakly decreasing with the ranking function Pol .

When considering ranking functions separately for the different target locations of a
transition, we speak of Separated Ranking Functions (SRFs). To obtain complexity bounds
using SRFs, we have to find a bound on the number of evaluation steps with transitions from
T � in the whole tree (i.e., not just in a single path of the tree). Note that each evaluation
step of the program corresponds to the step from an inner node to all of its children. Thus,
we have to approximate the number of inner nodes of the evaluation tree (and not the number
of its edges), because each inner node may have several outgoing edges that correspond to
the same transition in the evaluation sequence (i.e., to just one evaluation step).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

Moreover, we do not have to consider all inner nodes, but we only want to find a bound
on the number of those inner nodes that correspond to an evaluation step with a transition
from T �. To approximate this, we consider a merged variant of the evaluation tree. Here,
for every inner node that corresponds to an evaluation step with T \ T �, we merge all
its children to a single child (which is labeled by a multiset of pairs (`,v)). As we do not
compute bounds for the transitions in T \ T �, this merging is sound (i.e., the number of
inner nodes that correspond to T �-steps is the same as in the original evaluation tree).
Then the branching degree b of this “merged” evaluation tree is bounded by the maximal
number of target locations in the transitions of T �, i.e., b ≤ max{|P| | (`, τ,P) ∈ T �}.
Consequently, if the evaluation tree has the height h, then bh−1

b−1 is an upper bound for the
number of inner nodes of the tree. Analogously, if one only counts T �-steps to determine the

height h, then bh−1
b−1 is an upper bound on the number of those inner nodes that correspond

to T �-steps (i.e., it is a bound on the overall number of T �-steps used in an evaluation).
In Ex. 5.3 all transitions have at most two target locations, and hence the maximal

branching degree is b = 2. The height h of the evaluation tree is at most [Pol(`0)] = |x|+ 2
(counting only T �-steps as contributing to the height). Our ranking function thus allows us

to obtain the exponential runtime complexity approximation R(t6) = R(t7) = 2|x|+2−1
2−1 =

2|x|+2 − 1. The following definition introduces the constraints for SRFs formally.

Definition 5.4 (SRF). We call Pol : L → Z[v1, . . . , vn] a separated ranking function
(SRF) for T iff there is a non-empty T � ⊆ T such that the following conditions hold:

— for all (`, τ, {`1, . . . , `k}) ∈ T \ T �, we have
— τ ⇒ (Pol(`))(v1, . . . , vn) ≥ (Pol(`1))(v′1, . . . , v

′
n), if k = 1

— τ ⇒ (Pol(`))(v1, . . . , vn) ≥
∑
j∈{1,...,k} max{0, (Pol(`j))(v

′
1, . . . , v

′
n)}, if k > 1

— for all (`, τ, {`1, . . . , `k}) ∈ T �, we have

— for all j ∈ {1, . . . , k}, we have τ ⇒ (Pol(`))(v1, . . . , vn) > (Pol(`j))(v
′
1, . . . , v

′
n)

— τ ⇒ (Pol(`))(v1, . . . , vn) ≥ 1

The difference between Def. 5.4 for SRFs and Def. 5.2 for PRFs is highlighted . For

transitions in T � ⊆ T , the constraints are weaker than in Def. 5.2 since now we do not
require the ranking function to decrease when compared to the sum of the components in
the target configuration, but only for each component of the target configuration separately.
The price to pay for these weaker constraints is that we can only deduce exponential bounds,
not polynomial bounds. The following theorem adapts Thm. 3.3 in order to use SRFs to
obtain runtime complexity bounds.

Theorem 5.5 (Complexities from SRFs). Let R be a runtime approximation, Pol
be an SRF for T , and 2 ≤ b = max{|P| | (`, τ,P) ∈ T �}.

Let R′(t) = b[Pol(`0)]−1
b−1 for all t ∈ T � and R′(t) = R(t) for all other t ∈ T . Then, R′ is

also a runtime approximation.

Compared to Thm. 5.5, the related technique for the inference of exponential complexities
by Albert et al. [2011a] has the drawback that it requires using the same ranking function
for all paths through an (outermost) loop. In contrast, we also consider the case that only
some of the transitions are in T �. We also implemented an analogous version of the modular
runtime complexity analysis of Thm. 3.6 for SRFs to obtain exponential complexities.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

Example 5.6. One may wonder if we could make Thm. 5.5 more powerful by replacing
the requirement in Def. 5.4 that for all (`, τ, {`1, . . . , `k}) ∈ T \ T � with k > 1 we must have

τ ⇒ (Pol(`))(v1, . . . , vn) ≥
∑

j∈{1,...,k}
max{0, (Pol(`j))(v

′
1, . . . , v

′
n)}

by the following requirement for all j ∈ {1, . . . , k}
τ ⇒ (Pol(`))(v1, . . . , vn) ≥ (Pol(`j))(v

′
1, . . . , v

′
n)

(in analogy to the change in the requirement for T �). To see that this relaxed version of
separated ranking functions would render Thm. 5.5 unsound, consider the following example.

t0 = (`0, x
′ = x, `1)

t1 = (`1, x
′ = x, {`1, `2})

t2 = (`2, x ≥ 1 ∧ x′ = x− 1, `1)

With the above modification of Def. 5.4, the ranking function Pol with Pol(`0) = Pol(`1) =
Pol(`2) = x would yield T � = {t2} and T \ T � = {t0, t1}. Thus in particular, we would
(wrongly) conclude that t2 can only be used finitely often. But this is refuted by the
non-terminating evaluation sequence

{(`0,v0)} →t0 {(`1,v0)} →t1
{(`1,v0), (`2,v0)} →t2 {(`1,v0), (`2,v1)} →t1
{(`1,v0), (`2,v0), (`2,v1)} →t2 {(`1,v0), (`2,v1), (`2,v1)} →t1 . . .

with v0(x) = 1 and v1(x) = 0, which uses t2 infinitely many times.

The technique by Albert et al. [2011a] to search for logarithmic runtime complexity bounds
could be lifted to our setting analogously. Indeed, our approach in Thm. 3.3 and Thm. 3.6
is not restricted to polynomials. Instead, we can plug in an arbitrary weakly monotonic
function that correctly over-approximates the number of times a transition from T � is
used in T (or T ′). To infer such a function, we could also use a different tool for runtime
complexity analysis. Even if this tool does not return a weakly monotonic function f , we
could then still use a weakly monotonic over-approximation [f]. Thus, other approaches and
tools can effectively be combined with the contributions of our paper.

6. MODULAR COMPLEXITY ANALYSIS FOR PROGRAMS USING COST MEASURES

We now show how to extend our analysis to not only compute bounds for runtime and
sizes of variables, but also for other arbitrary cost measures. This enables general resource
analysis, e.g., to infer bounds on the number and size of network requests. In Sect. 6.1, we
discuss how to annotate each transition with a specific cost that depends on the current
values of variables, and how to adapt our analysis to also approximate the overall cost of
a program run. The general idea of allowing parametric cost measures for each transition
is a fairly standard approach to lift resource analysis from runtime bounds to other cost
models (see, e.g., [Albert et al. 2012; Navas et al. 2007]). The interesting contribution here
is the integration into our framework. In particular, we show in Sect. 6.2 how to use costs in
order to modularize our runtime complexity analysis. To this end, a program part can be
summarized by a single transition whose cost corresponds to the runtime of the program
part.

6.1. Programs with Cost Measures

While our analysis is focused on finding bounds for the program’s runtime and for the
sizes of variables, our approach can easily be extended to handle different cost measures.
To this end, we consider annotated programs (T ,M), where we use a measure function
M : T → UB to annotate each transition with a corresponding cost. As in Sect. 5, we
consider transitions of the form (`, τ,P) where P is a non-empty multiset of locations. The

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

cost M(t) for a transition t may depend on the values of the variables before the transition
is applied. For example, M can be used to approximate the number of actual arithmetic
operations performed by each transition, or the number of file system or network accesses
performed by each transition.

Example 6.1. For the program from Ex. 2.1 we could set

M(t0) = 1 M(t1) =M(t4) = 3

M(t2) =M(t3) =M(t5) = 2

to reflect the actual number of program statements represented by each transition (recall
that z > 0 was only introduced by invariant generation). Here, the higher cost for t4 also
reflects the statement z.val += u.val of the original program, which has no counterpart in
the integer abstraction of the program.

Similar to the runtime complexity of a program, we define the cost complexity cc of a
program as a function that maps a vector of bounds m on the input values to the maximal
cost of a run that starts in an initial state where the variables have values bounded by m.
To make the considered program explicit, in the following definition we use cc(T ,M), but
we omit the index when T and M are clear from the context. Moreover, we abbreviate
(M(ti))(vi(v1), . . . ,vi(vn)) by (M(ti))(vi).

Definition 6.2 (Annotated Program, Cost Complexity). Let T be a program and M :
T → UB a cost measure. Then, (T ,M) is an annotated program. The cost complexity
cc(T ,M) : Nn → N ∪ {ω} of a program (T ,M) is defined as

cc(T ,M)(m) = sup{
∑

0≤i<k(M(ti))(vi) | there are v0 ≤m and k ≥ 1 with

{(`0,v0)} →(`0,v0)
t0 F1 →(`1,v1)

t1 F2 →(`2,v2)
t2 . . . Fk}.

We can derive a cost approximation from our runtime approximation R and size ap-
proximation S. An upper bound C(t) for the overall cost of a transition t in any possible
evaluation is computed by combining the number of times it is used (i.e., R(t)) with its
cost M(t) parametrized by the maximal sizes of variables (i.e., S(t̃, v′) for all transitions t̃
preceding t). To make the considered program explicit, we use C(T ,M), RT , ST , and preT ,
but we omit the indexes again when T resp. M are clear from the context.

Definition 6.3 (Cost Approximation). Let (T ,M) be an annotated program. Given run-
time and size approximations R = RT , S = ST , and using pre = preT , we can derive the
cost approximation C(T ,M) : T → UB as

C(T ,M)(t) =

{
R(t) · M(t), if t is an initial transition

R(t) ·max{(M(t))(S(t̃, v′1), . . . ,S(t̃, v′n)) | t̃ ∈ pre(t)}, otherwise.

Example 6.4. Continuing with Ex. 6.1, we can obtain the bound C(t1) = R(t1) ·
max{M(t1)(. . .) | . . .} = |x| · 3 for t1, reflecting that the number of evaluated statements
in the first loop is bounded by |x| · 3. Similarly, we obtain C(t0) = R(t0) · M(t0) = 1,
C(t2) = R(t2) · M(t2) = 2, C(t3) = R(t3) · M(t3) = (|x| + 1) · 2, C(t4) = R(t4) · M(t4) =
(|x|+ |x|2) · 3, and C(t5) = R(t5) · M(t5) = |x| · 2. The overall costs are thus bounded by∑

t∈T C(T ,M)(t) = 3 · |x|2 + 10 · |x|+ 5.

Note that cost complexity and cost approximation are indeed generalizations of runtime
complexity and approximation. If M(t) = 1 for all transitions t ∈ T , then we obtain
cc(T ,M) = rcT and C(T ,M) = RT . The following theorem shows that our cost approximation
C is indeed an upper bound for the cost complexity cc.

Theorem 6.5 (Soundness of C). Let (T ,M) be an annotated program. Then
(
∑
t∈T C(T ,M)(t)) ≥ cc(T ,M).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

6.2. Separated Analysis of Program Parts

We now introduce a compositional “bottom-up” analysis in which procedures or loops are
handled separately (and even in advance or in parallel). To model the runtime of program
parts that were analyzed before, we can employ our cost measure.

Example 6.6. Consider the procedure len in Fig. 9, which computes the length of a
list. In the integer abstraction of this procedure, we use the special variable res to model
the return value of len. Our approach infers R(tlen0) = 1, R(tlen1) = |x|, R(tlen2) = 1, and
S(tlen2 , res′) = |x|, similar to the analysis of the first loop of Ex. 2.1.

int len(List x)
`0: int r := 0
`1: while x 6= null do

r := r + 1
x := x.next

done
`2: return r

`0

`1

`2

tlen0 : r := 0

tlen1 : if(x > 0)
r := r+ 1
x := x− 1

tlen2 : if(x ≤ 0)
res := r

Fig. 9. Procedure to compute list length and its integer abstraction

Now, whenever a procedure call statement k := len(y) occurs in a program, we can use
the previously computed runtime and size approximations for the procedure len. Instead
of analyzing the procedure len again whenever it is called, we can represent the effect of
calling len by introducing a new meta-transition tlen that approximates its effects, i.e.,
it bounds the size of the return value. In our example, we label tlen with the formula
|k′| ≤ S(tlen2 , res′)(|y|).8 To reflect the cost of calling len, we use our cost measure function
and set M(tlen) = R(tlen0) +R(tlen1) +R(tlen2).

This treatment of procedure calls differs from our technique in Sect. 5. Note that in
general, our formalism of integer programs cannot represent concepts such as procedures or
recursion. Hence, when translating a program into our formalism, a suitable representation
of procedures needs to be chosen. The technique of Sect. 5 handles procedures and recursion
by encoding procedure calls using transitions with several target locations. The drawback of
this encoding is that return values of procedures are ignored (i.e., this encoding is a rather
coarse abstraction of procedure calls).

In contrast, the separated “bottom-up” analysis presented in this section allows to infer
information about the return value of procedure calls. However, it only works for non-
recursive procedures, whereas recursive procedure need to be handled by the technique of
Sect. 5.

We now extend the bottom-up approach to also allow a separated analysis for arbitrary
program parts (within the same procedure). This bottom-up approach and the top-down
approach of Fig. 3 (that is based on the sub-procedure TimeBounds from Thm. 3.6) yield
similar results for programs with a simple structure, but they differ when handling nested
loops. Here, the top-down approach usually first finds a termination (and hence complexity)
argument for the outermost loop (since it starts by finding a PRF for all transitions T ′ = T),
and then continues to find bounds for inner loops (i.e., it then only considers those transitions
T ′ (T for which no bound has been computed up to now). In contrast, our bottom-up
approach first finds bounds for the innermost loop and then replaces it by a single transition

8Of course, in general such formulas can also contain non-linear expressions. When generating PRFs for
such transitions, one then either has to use techniques that can also deal with non-linear arithmetic or one
has to “generalize” these transitions by “abstracting away” non-linear sub-expressions.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

`0: r := 0
`1: while x > 0 do

i := 0
s := 0

`2: while i < x do
s := s + i
i := i + 1

done
r := r + s
x := x− 1

done

`0

`1

`2

tsum0 : r := 0

tsum1 : if(x > 0)
i := 0
s := 0

tsum2 : if(i < x)
s := s+ i
i := i+ 1

tsum3 : if(i ≥ x)
r := r+ s
x := x− 1

`0

`2

t′0

tsum2 : if(i < x)
s = s+ i
i = i+ 1

Fig. 10. Nested loop program sum, its graph representation, and isolated sub-program for inner loop

that represents its costs and its changes to program variables. It then continues on the
simplified program, handling the outer loops in the following steps.

The top-down and the bottom-up methods are orthogonal in power and precision. When
handling nested loops with a complex control flow, where inner and outer loops manipulate
the same data, the top-down method tends to perform better, as it allows to consider all
relevant program transitions at the same time.

Example 6.7. As an (albeit pathological) example, consider the following program:

while x > 0 do
y := x
while y > 0 do
x := x− 1
y := y− 1

done
done

Here, separating the analysis of the inner loop from the analysis of the outer loop makes the
complexity analysis extremely hard. The reason is that the underlying invariants x ≥ 0 and
y = x are not visible anymore when considering the transition t of the inner loop separately.
We could only obtain the local size bound Sl(t, x′) = |x|+ 1 (as decreasing x by 1 increases
|x| for x ≤ 0). Since the inner loop is executed |y| times, this yields the global size bound
S(t, x′) = |x| + |y|. Using this bound afterwards for the analysis of the outer loop would
fail, since x could be increased by y = x in each loop iteration. Hence, one could not even
prove termination of the outer loop anymore and would obtain the upper bound ω for the
program’s runtime complexity.

On the other hand, if the inner loop only modifies variables that do not influence the
values in the condition of the outer loop, then the bottom-up approach may lead to less
aggressive approximations and thus, to more precise size bounds.

Example 6.8. Consider the procedure sum in Fig. 10, where two nested loops are used to

compute
∑x
j=1(

∑j−1
i=0 i). Using the top-down approach, the sub-procedure TimeBounds infers

the runtime bound R(tsum2) = |x|2. However, when computing the size bound S(tsum2 , i′), this
leads to a surprising effect. Using the local size bound |i| + 1 for |tsum2 , i′|, the procedure
SizeBounds infers that S(tsum2 , i′) = R(tsum2) · 1 = |x|2. Here, the information that tsum2 is
executed at most |x|2 times in a full program run is combined with the fact that each
application of tsum2 increases i by 1. This is imprecise because our approximation does not
take into account that i is reset to 0 after each inner loop and that tsum2 is used at most |x|
times in each iteration of the outer loop. For that reason, in reality |i| never gets larger
than |x|. Similarly, our method computes S(tsum2 , s′) = R(tsum2) · S(tsum2 , i′) = |x|2 · |x|2 = |x|4

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

instead of the more precise correct bound |x|2 and S(tsum3 , r′) = |x|5 instead of the more
precise bound |x|3. Such imprecisions can be avoided using a bottom-up approach which
correctly determines that each time after i is set to 0, the transition tsum2 is only executed
|x| times. As will be shown, our bottom-up approach will result in S(tsum3 , r′) = |x|+ |x|3,
which is asymptotically a tight upper bound.

We describe our bottom-up approach in three steps. First, we show how to identify a
subset L′ of locations that should be analyzed separately (Sect. 6.2.1). In Sect. 6.2.2, we
then explain how to extract the locations L′ (and their connecting transitions T L′) from
a given annotated program (T ,M) to create an isolated sub-program (T | L′ ,M| L′) that
can be analyzed on its own. In a third step (Sect. 6.2.3), we discuss how to construct a
simplified annotated program (T \L′ ,M\L′), where the extracted transitions are replaced by
a summary obtained from the analysis of the sub-program. Finally, we show the soundness
of our analysis by proving that cc(T \L′ ,M\L′) is an upper bound for cc(T ,M). For the case

that we are only interested in runtime bounds, we extend the program T with the cost
measure M(t) = 1 for all t ∈ T . Then cc(T ,M) = rcT and hence, C(T \L′ ,M\L′) is also a

runtime approximation for the original program T .

6.2.1. Identifying Candidates for Separated Complexity Analysis. We have developed a heuristic
SepHeuristic to identify suitable candidate sets L′ for a separated analysis. To achieve good
results, the set L′ should correspond to a semantic unit of the program. Such a unit can be
a procedure (or a group of mutually recursive procedures), or a sub-loop of the program,
such that the separated part does not “interfere” with the remaining program. So this is
a special case of a loop extraction technique, in which we introduce additional constraints
on the data flow. In future work, it could be interesting to investigate whether other loop
extraction techniques (e.g., [Wei et al. 2007]) could be used to further improve precision of
our analysis.

Formally, we require (i) `0 6∈ L′ and (ii) that for all transitions (`, τ,P) that lead from
L′ to several locations (i.e., where ` ∈ L′ and |P| > 1), the locations in P may only reach

locations in L′ again. Here, we define `1 →reach `2 iff there exists a transition (`1, τ̃ , P̃) ∈ T
with `2 ∈ P̃, and we say that `1 reaches `2 iff `1 →∗reach `2, where →∗reach denotes the
transitive and reflexive closure of →reach . For example, if there is a transition (`, τ, {`, `′})
with ` ∈ L′, then `′ may not reach any locations `′′ outside of L′. The reason for requirement
(ii) is that otherwise, in every iteration of the sub-loop from ` to itself, one would also reach
`′′. Hence, the number of evaluation steps inside L′ would influence how often another part
of the program is called. This would complicate a separated treatment of L′ substantially.

The procedure SepHeuristic(T ,R) returns a set of location sets L′ that satisfy the re-
quirements (i) and (ii) above and in addition are good candidates for separation. For this,
we define the sets GT ′ , UT ′ ⊆ V. The guard variables GT ′ are those variables from V that
are “restricted” by conditions in the formulas of the transitions of T ′. Formally, we define
v ∈ GT ′ iff v ∈ V and there exists a transition (`, τ,P) ∈ T ′ and some m ∈ Z such that
∀v1, . . . , vn.∃v′1, . . . , v′n. τ [v/m] is unsatisfiable. Here, τ [v/m] denotes the result of instanti-
ating the variable v in τ by the number m. For example, if the only transition of T ′ has the
formula x > y ∧ x′ = x ∧ y′ = y ∧ z′ = z, then GT ′ = {x, y}.

The update variables UT ′ are all variables that may be changed by a transition from T ′
(i.e., variables v ∈ V where v′ = v cannot be inferred from the transition’s formula). Now
the heuristic SepHeuristic(T ,R) works as follows. First, we identify those location sets L1,
L2, . . . , Ln that are strongly connected components (SCCs) of the program graph and
satisfy the requirement (i). Then, we return those proper sub-cycles L′ (Li that satisfy
requirement (ii) and where for the transitions T ′ = {(`, τ,P) ∈ T | ` ∈ L′} that originate in
L′, there exists a t ∈ T ′ with R(t) = ω and GT \ T ′ ∩UT ′ = ∅ holds. The latter requirement

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

ensures that variables that are updated in the separated part (i.e., in the inner cycle) do not
influence the guards in the enclosing cycle.

6.2.2. Creating Isolated Sub-Programs for Separated Complexity Analysis. Note that our require-
ments on L′ from Sect. 6.2.1 ensure that for every transition (`, τ,P) with ` ∈ L′, we either
have P ∩L′ = ∅ or P ⊆ L′. Thus, the inner transitions T L′ ⊆ T of L′ are the transitions
(`, τ,P) with ` ∈ L′ and P ⊆ L′. The isolated sub-program T | L′ corresponding to L′ then
consists of T L′ and a set of extra transitions that connect the start location `0 to all “entry
locations” of L′.

Definition 6.9 (Isolated Sub-Program). Let (T ,M) be an annotated program and L′ ⊆
L where `0 6∈ L′. Moreover, for all (`, τ,P) with ` ∈ L′ and |P| > 1, there may not
be any `′ ∈ P and `′′ ∈ L\L′ with `′ →∗reach `′′. We define the inner transitions as
T L′ = {(`, τ,P) | ` ∈ L′,P ⊆ L′}. Then, the isolated sub-program (T | L′ ,M| L′) is defined

by T | L′ = T L′ ∪{(`0,
∧
v∈V v

′ = v,P) | (˜̀, τ,P) ∈ T ,P ⊆ L′, ˜̀ 6∈ L′} and M| L′(t) =M(t)
for all t ∈ T L′ and M| L′(t) = 0 for all t ∈ T | L′ \ T L′ .

Example 6.10. We continue with sum from Ex. 6.8, whereM| L′(tsumi) = 1 for all 0 ≤ i ≤ 3,

i.e., our aim is just to analyze its runtime complexity. Let L′ = {`2} be the only self-loop
of the example. For the transitions T ′ = {tsum2 , tsum3 } originating in L′, we indeed have
GT \ T ′ ∩ UT ′ = {x} ∩ {s, i} = ∅, i.e., L′ would be suggested by SepHeuristic. We have
the inner transition T L′ = {tsum2 }. The isolated sub-program (T | L′ ,M| L′) is displayed on
the right of Fig. 10. Its costs are M| L′(t′0) = 0 and M| L′(tsum2) = 1, reflecting that t′0 is a
fresh transition introduced only for technical reasons.

The isolated sub-program T | L′ can now be analyzed independently to obtain a runtime
approximation RT | L′ and a size approximation ST | L′ . This can either be done by splitting

it up into further isolated sub-programs, or by applying the top-down approach with
the sub-procedure TimeBounds directly. In our example, only the latter makes sense, as
there is only one loop remaining. We obtain RT | L′ (t

′
0) = 1, RT | L′ (t

sum
2) = |x| + |i| (as

x − i is a PRF for {tsum2 }), ST | L′ (t
sum
2 , r′) = |r|, ST | L′ (t

sum
2 , x′) = |x|, ST | L′ (t

sum
2 , i′) =

|i|+ (|x|+ |i|) ·1 = 2 · |i|+ |x|, and ST | L′ (t
sum
2 , s′) = max{|i|, |s|}+ (|x|+ |i|) · (2 · |i|+ |x|) =

max{|i|, |s|} + 3 · |x| · |i| + 2 · |i|2 + |x|2. Finally, using the costs from above, we obtain
C(T | L′ ,M| L′)(t

′
0) = 0 and C(T | L′ ,M| L′)(t

sum
2) = |x|+ |i|.

6.2.3. Replacing Sub-Programs by the Results of Their Complexity Analysis. Note that the runtime
approximation RT | L′ , size approximation ST | L′ , and cost approximation C(T | L′ ,M| L′) de-

scribe how the complexity of the loop T L′ depends on the values before entering T L′ . Thus,
the next step is to include the information obtained for the isolated sub-program T L′ in
the original program T , which yields a so-called L′-reduced program (T \L′ ,M\L′) with a
complexity approximation (R\L′ ,S\L′). To define T \L′ , let T →L′ be all transitions that

reach L′ and let T L′→ be all transitions that leave L′:
T →L′ ={(`, τ,P) ∈ T | ` /∈ L′ ∧ P ∩L′ 6= ∅}
T L′→ ={(`, τ,P) ∈ T | ` ∈ L′ ∧ P ∩L′ = ∅}

Now we remove all locations L′ from T and replace them by a fresh entry and exit location
`→L′ and `L′→. To handle computations that use inner transitions of L′, we add a new
“meta-transition” tT L′ that approximates the effect of the inner transitions T L′ in one
transition step. To handle computations that just “skip” the inner transitions, we introduce
an additional transition tskip between the entry and exit location `→L′ and `L′→. In the
example of Fig. 10 such a “skip” transition would not be required, since the inner loop of the
sub-program T L′ = {`2} is always executed at least once. But if one applies the bottom-up

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

approach to the program of Fig. 2, a “skip” transition would be needed when removing the
isolated sub-program with the location `3, in order to model computations where t5 directly
follows t3, without using t4 in between. So we obtain

T \L′ = T \(T →L′ ∪T L′ ∪T L′→)

∪ {(`, τ, (P \L′) ∪ {`→L′}) | (`, τ,P) ∈ T →L′}
∪ {(`L′→, τ,P) | (`, τ,P) ∈ T L′→}
∪ {tT L′ , tskip}

To reflect the changes of values in the sub-program T L′ , we make use of the size approxi-
mation ST | L′ obtained for our isolated sub-program. It provides upper bounds on the sizes

of variables expressed in the input values v1, . . . , vn before entering the sub-program T L′ .
Thus, they can be used for the formula of our new meta-transition tT L′ . More precisely,

we only have to consider ST | L′ for result variables |t̃, v′i| where t̃ ∈ T L′ might be the last

transition used before leaving the sub-program T L′ . In contrast, the “skip” transition tskip
does not change the values of the program variables.

tT L′ = (`→L′ , τT L′ , `L′→) with

τT L′ =
∧

v∈V
|v′| ≤ max{ST | L′ (t̃, v

′) | t̃ = (`, τ,P) ∈ T L′ ∧
there exist `′ ∈ P and (`′, τ ′,P ′) ∈ T \ T L′}

tskip = (`→L′ ,
∧

v∈V
v′ = v, `L′→)

In the formula for τT L′ , as usual the empty conjunction is considered to be true, i.e., if there

is no ` ∈ L′ with `→reach `
′ for some `′ /∈ L′, then τT L′ = true.

We define the cost for the new meta-transition tT L′ to be
∑
t̃∈T L′

C(T | L′ ,M| L′)(t̃), since

this is a bound on the cost of any evaluation that only uses the removed inner transitions
T L′ . Note that here we implicitly use the runtime approximation RT | L′ , which is used to

compute C(T | L′ ,M| L′). The cost for the “skip” transition tskip is 0. Hence, we obtain the

following cost measure for the reduced program:

M\L′(t) =



∑
t̃∈T L′

C(T | L′ ,M| L′)(t̃) if t = tT L′
0 if t = tskip
M(t) if t ∈ T \(T →L′ ∪T L′ ∪T L′→)

max{M(t′) | ∃P ′. t′ = (`, τ,P ∪P ′) ∈ T →L′} if t = (`, τ,P]{`→L′})
max{M(t′) | ∃ `. t′ = (`, τ,P) ∈ T L′→} if t = (`L′→, τ,P)

Finally, the runtime and size approximations for the new transitions are set to ω:

R\L′(t) =

{
R(t) if t ∈ T \(T →L′ ∪T L′ ∪T L′→)

ω otherwise

S\L′(t, v′) =

{
S(t, v′) if t ∈ T \(T →L′ ∪T L′ ∪T L′→)

ω otherwise

Definition 6.11 (Reduced Program). Let (T ,M) be an annotated program and (R,S)
be a complexity approximation for T , let L′ ⊆ L satisfy the requirements in Def. 6.9,
and let RT | L′ , ST | L′ , resp. MT | L′ be the runtime resp. size approximation resp. cost

measure for the isolated sub-program (T | L′ ,M| L′). Then the L′-reduced program is defined

as Reduce(T ,M,L′,RT | L′ ,ST | L′ ,MT | L′) = (T \L′ ,M\L′ ,R\L′ ,S\L′).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

`0

`1

`→L′`L′→

tsum0 : r = 0

tsum1 : if(x > 0)
i = 0
s = 0

t
sum

3
: if(i

≥ x)

r =
r+

s

x =
x− 1

tskip

t{tsum2 }

Fig. 11. Reduced program

Example 6.12. We continue Ex. 6.10 with
L′ = {`2}. The L′-reduced program is displayed
in Fig. 11. The transition t{tsum2 } is labeled with

the formula |r′| ≤ |r| ∧ |x′| ≤ |x| ∧ |i′| ≤ 2 · |i|+
|x|∧|s′| ≤ max{|i|, |x|}+3 · |x| · |i|+2 · |i|2+ |x|2,
using the results obtained from the isolated
sub-program. Similarly, the cost for t{tsum2 } is
C(T |{`2},M|{`2})(t

sum
2) = |x|+ |i|. We can now ap-

ply the procedures TimeBounds and SizeBounds
on the simplified program. For example, we can
use the PRF P with P(`1) = P(`→L′) = P(`L′→) = x to infer R(tsum3) = |x|. In a simi-
lar way, we also obtain R(tsum1) = R(t{tsum2 }) = R(tskip) = |x|. We can also trivially infer

S(tsum1 , i′) = S(tsum1 , s′) = 0 from the formula of tsum1 . This allows to deduce S(t{tsum2 }, i
′) = |x|

and S(t{tsum2 }, s
′) = |x|2. In turn, we also obtain a size bound for r, resulting in the (asymp-

totically) precise bound S(tsum3 , r′) = max{S(tsum0 , r′),S(t{tsum2 }, s
′),S(tskip , s

′)} + R(tsum3) ·
S(t{tsum2 }, s

′) = |x|+ |x| · |x|2 = |x|+ |x|3.

The following theorem states the correctness of our bottom-up approach, justifying
Def. 6.11.

Theorem 6.13 (Soundness of Separated Modular Complexity Analysis).
Let (T ,M) be an annotated program, let R, S, and L′ ⊆ L satisfy the requirements in

Def. 6.9, and let (T \L′ ,M\L′ ,R\L′ ,S\L′) be the L′-reduced program. Then (R\L′ ,S\L′)
is a complexity approximation for T \L′ and cc(T \L′ ,M\L′) ≥ cc(T ,M).

In Fig. 12 of Sect. 7.2, we will present an improved general procedure which combines the
top-down approach of Fig. 3 with the bottom-up approach of Thm. 6.13.

7. RELATED WORK, IMPLEMENTATION, AND EVALUATION

Several methods to determine symbolic runtime complexity bounds for programs have been
developed in recent years. We give an overview on related work in Sect. 7.1, describe the
implementation of our approach in Sect. 7.2, and compare our implementation empirically
with related tools in Sect. 7.3.

7.1. Related Work

Our approach builds upon well-known basic concepts (like lexicographic ranking functions),
but uses them in a novel way to obtain a more powerful technique than previous approaches.
In particular, in contrast to previous work, our approach deals with non-linear information
flow between different program parts, by benefiting from intermediate analysis results for
runtime complexity bounds in order to deduce size bounds.

Similar to our technique, the approaches of Albert et al. [2011a] and Albert et al. [2012]
(implemented in COSTA and its backend PUBS), of Flores-Montoya and Hähnle [2014] (im-
plemented in CoFloCo), and of Zuleger et al. [2011] and Sinn et al. [2014] (implemented in
Loopus) also use an iterative procedure based on termination proving techniques to find
runtime bounds for single loops. The techniques differ in the decomposition of the program
into smaller (and thus, easier to analyze) parts and in the combination of partial results
into an overall bound. However, they do not take the interaction between runtime and data
sizes into account. In contrast, in our approach this enables a flexible decomposition of the
considered program during the analysis, making use of intermediate results.

In the approach by Albert et al. [2011a] and Albert et al. [2012], all transitions of an
SCC in the program graph need to be handled at once. Pre-processing techniques are
employed to decompose nested loops such as while B1 do while B2 do P; done; done

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:29

into two loops while B2 do P; done and while B1 do Pi; done, where Pi has a cost
corresponding to the bound computed for the inner loop. A related idea is also used in
our technique from Sect. 6.2. Flores-Montoya and Hähnle [2014] extend this idea to a
new complexity analysis framework based on control-flow refinement. The program is first
decomposed into different “chains”, where each chain corresponds to program runs under
a certain condition (i.e., the program can be analyzed separately for the cases x > 0 and
x ≤ 0). Experiments show that this allows to find precise bounds in programs with complex
control flow.

The approach of Zuleger et al. [2011] is restricted to termination proofs via the size-change
principle [Lee et al. 2001]. Finally, Sinn et al. [2014] introduce an amortized complexity
analysis based on lexicographic termination proofs, in which the interaction between different
components of the lexicographic termination argument is handled explicitly.

The approach of Alias et al. [2010] (implemented in Rank) first proves termination by a
lexicographic combination of linear ranking functions, similar to our Thm. 3.6. However,
while Thm. 3.6 combines these ranking functions with size bounds, Alias et al. [2010]
approximate the reachable state space using Ehrhart polynomials. The tool SPEED [Gulwani
et al. 2009] instruments programs by counters and employs an invariant generation tool
to obtain bounds on these counters. The ABC system [Blanc et al. 2010] also determines
symbolic bounds for nested loops, but does not treat sequences of loops.

Finally, our technique in Sect. 4.2 to infer size bounds by estimating the effect of repeated
local changes has some similarities to the approach of Ben-Amram et al. [2008]. They
introduce a Turing-incomplete imperative programming language and propose a sound and
complete automated technique to decide whether variables in that language have linear,
polynomial, or exponential size bounds. They also classify the effects of each transition
(more generally, of a sub-program) on a variable w.r.t. the respective pre-variables, similar
to our classification of local size bounds into

.
=, u, and ×̇. Based on a dataflow relation,

which is similar to our result variable graph, they introduce a calculus to compose such
bounds. However, their analysis does not aim for concrete bounds, but considers the more
coarse-grained question whether a dependency of a result variable on an input variable is
linear, polynomial, or exponential.

The work on determining the worst-case execution time (WCET) for real-time systems
[Wilhelm et al. 2008] is largely orthogonal to symbolic loop bounds. It distinguishes processor
instructions according to their complexity, but requires loop bounds to be provided by the
user. Recently, recurrence solving has been used as an automatic pre-processing step for
WCET analysis in the tool r-TuBound [Knoop et al. 2012].

There is also a wealth of work on complexity analysis for declarative paradigms. For
instance, resource aware ML [Hoffmann et al. 2012; Hoffmann and Shao 2014] analyzes
amortized complexity for recursive functional programs with inductive data types, natural
numbers, and arrays. RAML uses a type-based approach to obtain (possibly non-linear)
complexity bounds. The sizes of data structures are used as parameters, and the approach
is automated by linear constraint solving. RAML computes bounds on runtime and size
simultaneously using templates for the considered classes of resource polynomials. However,
RAML appears to have only limited support for programs whose complexity depends on
(possibly negative) integers: On a manually translated variant of the integer program from
Ex. 2.1 where the variables are annotated with natural numbers as their type, RAML’s
prototype web interface at http://raml.tcs.ifi.lmu.de/prototype infers a quadratic
bound for the runtime complexity, similar to our method. However, on the integer version of
the example from Fig. 2, RAML does not find any bound.

Complexity analysis is also an active topic of research in the area of logic programming.
In particular, already Debray and Lin [1993] propose a technique to compute bounds on
runtime using a dedicated analysis for size bounds. They use a graph structure similar to
our RVGs to track local size bounds between input and output variables. Among other

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30

techniques, they apply computer algebra systems to determine non-linear size bounds. While
our approach in Sect. 5 over-approximates the results of recursive calls via a fresh variable,
the analysis by Debray and Lin [1993] takes them into account. The work of Debray and
Lin [1993] is extended by Navas et al. [2007] and by Serrano et al. [2014] to support also
user-defined complexity metrics, similar to our Sect. 6.1, and to benefit from sized types.
However, the idea of using analysis results for runtime bounds to compute size bounds is
not present in these works.

There is a recent trend in program analysis to use Horn clauses (the core formalism behind
logic programs) as an intermediate format for program verification [Grebenshchikov et al.
2012; Hojjat et al. 2012; Bjørner et al. 2014]. Thus, via a suitable complexity-preserving
translation to Horn clauses, work on complexity analysis for logic programs can become
applicable also for imperative programs.

Complexity analysis has also become a topic of intense study for term rewrite systems
(TRSs), see, e.g., [Avanzini and Moser 2013; Noschinski et al. 2013]. To deduce bounds on
the runtime complexity of TRSs, most techniques adapt suitable techniques for termination
proving (e.g., polynomial interpretations [Lankford 1979; Fuhs et al. 2007], which are very
similar to our PRFs). In fact, this line of research forms one of the inspirations for the use
of PRFs in the present paper. A restriction of these works is that in contrast to us, they
do not use a dedicated initial location `0, but allow a rewrite sequence to start at a term
with an arbitrary function symbol at the root. Moreover, the inferred complexity bounds
are only asymptotic and univariate (i.e., the size of the initial data enters the analysis only
as a whole and not argument-dependent, as in our case).

The potential of this approach is harnessed by Giesl et al. [2012] for complexity analysis
of logic programs. Giesl et al. [2012] propose a translation of logic programs to TRSs in
such a way that a complexity bound for the TRS also induces a runtime bound for the
logic program. Based on a tool for complexity analysis of TRSs, the experiments by Giesl
et al. [2012] indicate that the resulting implementation is competitive to complexity analysis
with dedicated logic programming tools like CASLOG [Debray and Lin 1993] and CiaoPP
[Hermenegildo et al. 2012].

7.2. Implementation

We have implemented our contributions in the prototype tool KoAT, an open-source OCaml
project available online at https://github.com/s-falke/kittel-koat.

Procedure KoAT
Input Transitions T , cost measureM
(R,S) := (R0,S0)
while there are t, v with R(t) = ω or S(t, v′) = ω do
(T ,M,R,S) := InformationPropagate(T ,M,R,S)
if existsL′ ∈ SepHeuristic(T ,R) then
(T T | L′ ,MT | L′ ,RT | L′ ,ST | L′) := KoAT(T | L′ ,M| L′)

(T ,M,R,S) := Reduce(T ,M,L′,RT | L′ ,ST | L′ ,MT | L′)

else
T ′ := {t ∈ T | R(t) = ω}
R := TimeBounds(R,S, T ′)

fi
for all SCCs C of the RVG in topological order do
S := SizeBounds(R,S, C)

done
done
return (T ,M,R,S)

Fig. 12. Alternating modular complexity analysis

The overall analysis imple-
mented by KoAT is shown in
Fig. 12, which combines the
top-down approach of Fig. 3
with the modular bottom-up ap-
proach of Sect. 6.2. Of course,
we do not always succeed in find-
ing bounds for all transitions
and variables. In our implemen-
tation, we give up after a cer-
tain time, and report the values
of R and S at that point. As
these bounds are correct over-
approximations of runtime and
size, even a partial result may
still provide useful bounds for a
part of the input program.

Here, the sub-procedures
TimeBounds, SizeBounds, and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:31

Reduce are as defined in Thm. 3.6, Thm. 4.6 and Thm. 4.15, and Def. 6.11. When
applying TimeBounds to transitions with multiple target locations, we also apply the
extension of Sect. 5.2 which uses PRFs to infer exponential runtime bounds. As some of
our sub-procedures change the program T and its cost measure M, KoAT does not only
return runtime and size bounds R and S, but also the updated versions of T and M. With
these results, one can then compute a cost approximation C(T ,M) as in Def. 6.3. This cost
approximation is an upper bound for the cost complexity of the original program.

To find polynomial ranking functions in TimeBounds, we employ a standard synthesis
procedure based on Farkas’ Lemma [Podelski and Rybalchenko 2004; Alias et al. 2010]. To
handle SMT queries, we use the Z3 SMT solver [Moura and Bjørner 2008]. The procedure
SepHeuristic is used to identify a sub-program that can be separated, and is implemented
as described in Sect. 6.2. In our implementation, we allow to backtrack from the bottom-up
approach if KoAT fails to find time bounds for all transitions in the separated program (i.e.,
if there is a t with RT | L′ (t) = ω), and proceed to the top-down approach in the else-case

with the standard TimeBounds procedure instead.
Finally, we use the sub-procedure InformationPropagate to perform simplifications of the

problem. More precisely, this sub-procedure uses four techniques:

— Removing unreachable transitions. In the very first iteration of the while-loop, we
remove transitions t that cannot be reached from the initial location, i.e., transitions t
where there are no v0, F with {(`0,v0)}→∗ ◦ →t F . As in the computation of the RVG
where we over-approximate pre, this is approximated by decidable sufficient criteria.

— Knowledge propagation. We propagate runtime information to successor transitions in
simple sequences of code. For a location ` with only one outgoing transition t = (`, τ,P),
we use that t cannot be used more often than all of its predecessors together, and set
R(t) =

∑
t̃∈pre(t)R(t̃) whenever R(t̃) 6= ω for all t̃ ∈ pre(t) and ` /∈ P . So while we used a

(trivial) constant ranking function to infer R4(t3) = 1 + |x| in Ex. 3.7, KoAT computes
this directly as R3(t2) +R3(t5), without synthesizing a ranking function.
Similarly, if all transitions only have a single target location, we assign the trivial runtime
bound 1 for transitions that do not occur in cycles of the program graph. For example, in
Fig. 2, this procedure directly infers R(t2) = 1.

— Invariant generation. To infer valuable program invariants relating variables with
each other, we use the Apron library [Jeannet and Miné 2009]. Apron is an abstract
interpretation [Cousot and Cousot 1977] framework implementing a number of numerical
domains. In our experience, the Octagon [Miné 2006] domain with an aggressive widening
strategy yields the best tradeoff between precision and performance.

— Transition chaining. Heuristically (more precisely, when other techniques do not yield
new results anymore), we use a complexity-preserving variation of the chaining technique
by Falke et al. [2011] to “unroll” loops.

Note that the procedure KoAT calls itself recursively on an isolated sub-program when using
the bottom-up approach in the then-case of Fig. 12. In these cases, a simple memoization
technique can be used to avoid recomputing results for reappearing sub-programs (e.g., code
copies or inlined procedures).

7.3. Evaluation

To evaluate our approach, we compare our implementation KoAT with PUBS [Albert
et al. 2011a; Albert et al. 2012], Rank [Alias et al. 2010], Loopus [Sinn et al. 2014],
and CoFloCo [Flores-Montoya and Hähnle 2014]. We also compare our new version with
KoAT-TACAS, which implements only the techniques described in the preliminary version
[Brockschmidt et al. 2014] of our paper (i.e., it does not feature exponential size and time

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32

Tool 1 log n n n log n n2 n3 n>3 EXP No res. Time

KoAT 131 0 167 0 78 7 3 18 285 0.7 s
CoFloCo 117 0 153 0 66 9 2 0 342 1.3 s
Loopus 117 0 130 0 49 5 5 0 383 0.2 s
KoAT-TACAS 118 0 127 0 50 0 3 0 391 1.1 s
PUBS 109 4 127 6 24 8 0 7 404 0.8 s
Rank 56 0 16 0 8 1 0 0 608 0.1 s

Loopus (authors) 128 0 161 0 69 7 7 0 286 n/a

Fig. 13. Experimental results, grouped by asymptotic complexity classes

bounds (Sect. 4 and Sect. 5), the handling of recursion (Sect. 5), or the bottom-up approach
(Sect. 6)). We contacted the authors of SPEED [Gulwani et al. 2009], but were not able to
obtain their tool. We decided not to compare KoAT to ABC [Blanc et al. 2010], RAML [Hoffmann
et al. 2012; Hoffmann and Shao 2014], or r-TuBound [Knoop et al. 2012], as their input or
analysis goals differ considerably from ours.

As benchmarks, we collected 689 programs from the literature on termination and com-
plexity of integer programs. These include all 36 examples from the evaluation of Rank,
all 53 programs used to evaluate PUBS except one program with undefined semantics, all
27 examples from the evaluations of SPEED, and all examples from this paper. The large
majority of our example collection has also been used in the evaluations of Loopus and
CoFloCo. The collection contains 50 recursive examples, which cannot be analyzed with
KoAT-TACAS, Rank, and Loopus, and 20 examples with non-linear arithmetic, which can be
handled by neither Rank nor PUBS.

Where examples were available as C programs, we used the tool KITTeL [Falke et al.
2011] to transform them into integer programs automatically. To compare KoAT, PUBS, Rank,
and CoFloCo, we used automatic translators between the different integer program formats
provided by the authors of the respective tools (in the case of PUBS and CoFloCo) or by
us (in the case of Rank). Loopus only accepts C programs as input. We used a translation
from our integer programs to C/goto programs to compare with Loopus, even for examples
which were originally available as C programs. The reason for this is that we wanted to
avoid differences that were due to different integer abstractions of C programs. However, as
the results differ greatly from the results reported by the authors of Loopus in [Sinn et al.
2014], we have also included their results in our evaluation, in the row “Loopus (authors)”.
Note that these results include 81 cases where Loopus reports a bound depending on a
value non-deterministically chosen in the program, whereas we consider the runtime of such
programs as unbounded in the row for Loopus since it does not depend on the values of the
input parameters (cf. Def. 2.3). Also note that the numbers in this row refer to a run on a
subset of 658 examples.

The source repository for KoAT also contains all the scripts created by us for this evaluation
and for the generation of the detailed reports, together with a document explaining how to
reproduce the experiments.

The evaluation results are summarized in Fig. 13, showing how often each tool could
infer a specific runtime bound for the example set. Here, 1, log n, n, n log n, n2, n3, and
n>3 represent their corresponding asymptotic classes and EXP is the class of exponential
functions. In order to simplify the comparison, we did not perform a more fine-grained
analysis (e.g., we represent all linear bounds by the same asymptotic class n, although one
linear bound might be tighter or incomparable with another linear bound). The column “No
res.” lists the number of examples for which the tool could not find any bound (i.e., where it
either failed or ran into a timeout). In the column “Time”, we give the average runtime on
those examples where the respective tool was successful. The benchmarks were executed on

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:33

a computer with 6GB of RAM and an Intel i7 CPU clocked at 3.07 GHz, using a timeout of
60 seconds for each example. A longer timeout did not yield additional results.

Compared tool more precise less precise

CoFloCo 31 80
KoAT-TACAS 0 118
PUBS 46 134
Loopus 16 117
Rank 5 327

Fig. 14. Comparison of results relative to KoAT

On this collection, our approach was more
powerful than the competing tools. The ex-
periments also clearly show the usefulness of
the new contributions compared to the pre-
liminary version of our paper [Brockschmidt
et al. 2014] (since KoAT now succeeds on 689−
285 = 404 examples, whereas KoAT-TACAS
only succeeded on 689−391 = 298 programs).
However, our experiments show that all the
different tools have their own strengths. To
illustrate this, consider the results in Fig. 14, which show for how many results the bounds
reported by a tool were (asymptotically) tighter (i.e., more precise) than those reported by
KoAT and vice versa. For details, we refer to our website, which allows to view all examples,
results, and proof outputs, and also offers dynamic controls to compare the results of different
tools:

http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity-Journal/

8. CONCLUSION

We presented an alternating modular approach for runtime and size complexity analysis of
integer programs, shown in Fig. 12. Each step only considers a small part of the program,
and runtime bounds help to infer (possibly non-linear and even non-polynomial) size bounds
and vice versa, cf. Sect. 3 and 4.

In Sect. 5, we provided an extension to handle (possibly recursive) procedure calls in a
modular fashion and to use polynomial ranking functions for the inference of exponential
runtime bounds as well. Moreover, in Sect. 6 we showed how to treat other forms of bounds
(e.g., on the number of sent network requests) and how to compute bounds for separate
program parts in advance or in parallel. The power of our approach was demonstrated by
an implementation in the tool KoAT and an extensive experimental comparison with related
tools in Sect. 7.

In future work, we intend to investigate how to use our method for high-level programming
languages such as C and Java. To this end, we plan to combine the framework presented in
this paper with earlier work on complexity analysis of term rewriting systems [Noschinski
et al. 2013], and use terms to represent inductive heap data structures (such as lists or trees).

A limitation of our implementation is that it only generates PRFs to detect polynomial
and exponential bounds. In contrast, PUBS uses PRFs to find logarithmic complexity bounds
as well [Albert et al. 2011a]. As mentioned in Sect. 5.2, such an extension could also be
directly integrated into our method. Moreover, we are restricted to weakly monotonic bounds
in order to allow their modular composition. Thus, for a loop like

while x < y do x := x + 1

we can only infer the runtime bound |y|+ |x| instead of |y− x|. Another limitation is that
our size analysis only handles certain forms of local size bounds in non-trivial SCCs of the
result variable graph. For that reason, it often over-approximates the sizes of variables that
are both incremented and decremented in the same loop. Due to all these imprecisions, our
approach sometimes infers bounds that are asymptotically larger than the actual asymptotic
costs.

Thus, another interesting line of research for future work is to improve our core complexity
analysis. For this, our procedure TimeBounds could be strengthened by combining it with
recent advances in finding complexity bounds [Sinn et al. 2014] and by using recurrence

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34

solving. Furthermore, the precision of our analysis could be improved by using ideas from
control-flow refinement (as those by Flores-Montoya and Hähnle [2014]). Moreover, the
techniques in the tool ABC [Blanc et al. 2010] could be invoked whenever our separated
analysis from Sect. 6.2 proposes a sub-program whose shape is suitable for the specialized
analysis of Blanc et al. [2010]. We are also interested in experimenting with Max-SMT
solving to infer more precise PRFs, as this strategy has shown great promise for termination
proving [Larraz et al. 2013]. Finally, similar to the coupling of COSTA with the tool KeY
[Albert et al. 2011b], we want to automatically certify the complexity bounds found by our
implementation KoAT.

Acknowledgments. We thank the anonymous reviewers for their in-depth reviews and
comments – their work contributed greatly to the readability of this paper. Furthermore, we
thank Amir Ben-Amram, Byron Cook, Christian von Essen, and Carsten Otto for valuable
discussions and Christophe Alias, Antonio Flores-Montoya, Samir Genaim, and Moritz Sinn
for help with the experiments.

REFERENCES

Elvira Albert, Puri Arenas, Michael Codish, Samir Genaim, Germán Puebla, and Damiano Zanardini. 2008.
Termination Analysis of Java Bytecode. In FMOODS ’08. 2–18.

Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. 2011a. Closed-Form Upper Bounds in Static
Cost Analysis. JAR 46, 2 (2011), 161–203.

Elvira Albert, Richard Bubel, Samir Genaim, Reiner Hähnle, Germán Puebla, and Guillermo Román-Dı́ez.
2011b. Verified Resource Guarantees using COSTA and KeY. In PEPM ’11. 73–76.

Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano Zanardini. 2012. Cost Analysis of
Object-Oriented Bytecode Programs. TCS 413, 1 (2012), 142–159.

Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. 2010. Multi-Dimensional Rankings,
Program Termination, and Complexity Bounds of Flowchart Programs. In SAS ’10. 117–133.

Diego Esteban Alonso-Blas, Puri Arenas, and Samir Genaim. 2013. Precise Cost Analysis via Local Reasoning.
In ATVA ’13. 319–333.

Martin Avanzini and Georg Moser. 2013. A Combination Framework for Complexity. In RTA ’13. 55–70.

Roberto Bagnara, Fred Mesnard, Andrea Pescetti, and Enea Zaffanella. 2012. A New Look at the Automatic
Synthesis of Linear Ranking Functions. IC 215 (2012), 47–67.

Amir M. Ben-Amram, Neil D. Jones, and Lars Kristiansen. 2008. Linear, Polynomial or Exponential?
Complexity Inference in Polynomial Time. In CiE ’08. 67–76.

Amir M. Ben-Amram and Samir Genaim. 2013. On the Linear Ranking Problem for Integer Linear-Constraint
Loops. In POPL ’13. 51–62.

Nikolaj Bjørner, Fabio Fioravanti, Andrey Rybalchenko, and Valerio Senni (Eds.). 2014. First Workshop on
Horn Clauses for Verification and Synthesis, HCVS 2014. EPTCS, Vol. 169.

Régis Blanc, Thomas A. Henzinger, Thibaud Hottelier, and Laura Kovács. 2010. ABC: Algebraic Bound
Computation for Loops. In LPAR ’10. 103–118.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. 2005. Linear Ranking with Reachability. In CAV ’05.
491–504.

Marc Brockschmidt, Richard Musiol, Carsten Otto, and Jürgen Giesl. 2012. Automated Termination Proofs
for Java Programs with Cyclic Data. In CAV ’12. 105–122.

Marc Brockschmidt, Byron Cook, and Carsten Fuhs. 2013. Better Termination Proving Through Cooperation.
In CAV ’13. 413–429.

Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen Giesl. 2014. Alternating
Runtime and Size Complexity Analysis of Integer Programs. In TACAS ’14. 140–155.

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. 2006. Termination Proofs for Systems Code. In
PLDI ’06. 415–426.

Byron Cook, Abigail See, and Florian Zuleger. 2013. Ramsey vs. Lexicographic Termination Proving. In
TACAS ’13. 47–61.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In POPL ’77. 238–252.

Saumya Debray and Nai-Wei Lin. 1993. Cost Analysis of Logic Programs. TOPLAS 15 (1993), 826–875.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:35

Saumya Debray, Pedro López-Garćıa, Manuel V. Hermenegildo, and Nai-Wei Lin. 1997. Lower Bound Cost
Estimation for Logic Programs. In ILPS ’97. 291–305.

Stephan Falke, Deepak Kapur, and Carsten Sinz. 2011. Termination Analysis of C Programs Using Compiler
Intermediate Languages. In RTA ’11. 41–50.

Antonio Flores-Montoya and Reiner Hähnle. 2014. Resource Analysis of Complex Programs with Cost
Equations. In APLAS ’14. 275–295.

Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René Thiemann, and Harald Zankl.
2007. SAT Solving for Termination Analysis with Polynomial Interpretations. In SAT ’07. 340–354.

Carsten Fuhs, Jürgen Giesl, Martin Plücker, Peter Schneider-Kamp, and Stephan Falke. 2009. Proving
Termination of Integer Term Rewriting. In RTA ’09. 32–47.

Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. 2006. Mechanizing and Improving
Dependency Pairs. JAR 37, 3 (2006), 155–203.

Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes, and Carsten Fuhs. 2012. Symbolic
Evaluation Graphs and Term Rewriting: A General Methodology for Analyzing Logic Programs. In
PPDP ’12. 1–12.

Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs, Carsten Otto, Martin
Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie Swiderski, and René Thiemann. 2014.
Proving Termination of Programs Automatically with AProVE. In IJCAR ’14. 184–191.

Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko. 2012. Synthesizing
Software Verifiers from Proof Rules. In PLDI ’12. 405–416.

Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. 2009. SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity. In POPL ’09. 127–139.

William R. Harris, Akash Lal, Aditya V. Nori, and Sriram K. Rajamani. 2010. Alternation for Termination.
In SAS ’10. 304–319.

Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. 2014. Termination Analysis by Learning
Terminating Programs. In CAV ’14. 797–813.

Manuel V. Hermenegildo, Francisco Bueno, Manuel Carro, Pedro López-Garćıa, Edison Mera, José F. Morales,
and Germán Puebla. 2012. An Overview of Ciao and its Design Philosophy. TPLP 12, 1-2 (2012),
219–252.

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012. Multivariate Amortized Resource Analysis.
TOPLAS 34, 3 (2012).

Jan Hoffmann and Zhong Shao. 2014. Type-Based Amortized Resource Analysis with Integers and Arrays.
In FLOPS ’14. 152–168.

Hossein Hojjat, Filip Konecný, Florent Garnier, Radu Iosif, Viktor Kuncak, and Philipp Rümmer. 2012. A
Verification Toolkit for Numerical Transition Systems – Tool Paper. In FM ’12. 247–251.

Bertrand Jeannet and Antoine Miné. 2009. Apron: A Library of Numerical Abstract Domains for Static
Analysis. In CAV ’09. 661–667.

Jens Knoop, Laura Kovács, and Jakob Zwirchmayr. 2012. r-TuBound: Loop Bounds for WCET Analysis. In
LPAR ’12. 435–444.

Dallas Lankford. 1979. On Proving Term Rewriting Systems are Noetherian. Technical Report MTP-3.
Louisiana Technical University, Ruston, LA, USA.

Daniel Larraz, Albert Oliveras, Enric Rodŕıguez-Carbonell, and Albert Rubio. 2013. Proving Termination of
Imperative Programs Using Max-SMT. In FMCAD ’13. 218–225.

Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. 2001. The Size-Change Principle for Program
Termination. In POPL ’01. 81–92.

Jan Leike and Matthias Heizmann. 2014. Ranking Templates for Linear Loops. In TACAS ’14. 172–186.

Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay. 2010. Automatic Numeric Abstractions
for Heap-Manipulating Programs. In POPL ’10. 211–222.

Antoine Miné. 2006. The Octagon Abstract Domain. HOSC 19, 1 (2006), 31–100.

Leonardo M. de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS ’08. 337–340.

Jorge A. Navas, Edison Mera, Pedro López-Garćıa, and Manuel V. Hermenegildo. 2007. User-Definable
Resource Bounds Analysis for Logic Programs. In ICLP ’07. 348–363.

Lars Noschinski, Fabian Emmes, and Jürgen Giesl. 2013. Analyzing Innermost Runtime Complexity of Term
Rewriting by Dependency Pairs. JAR 51, 1 (2013), 27–56.

Andreas Podelski and Andrey Rybalchenko. 2004. A Complete Method for the Synthesis of Linear Ranking
Functions. In VMCAI ’04. 239–251.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36

Alejandro Serrano, Pedro López-Garćıa, and Manuel V. Hermenegildo. 2014. Resource Usage Analysis of
Logic Programs via Abstract Interpretation Using Sized Types. TPLP 14, 4-5 (2014), 739–754.

Moritz Sinn, Florian Zuleger, and Helmut Veith. 2014. A Simple and Scalable Static Analysis for Bound
Analysis and Amortized Complexity Analysis. In CAV ’14. 745–761.

Fausto Spoto, Fred Mesnard, and Étienne Payet. 2010. A Termination Analyser for Java Bytecode Based
on Path-Length. TOPLAS 32, 3 (2010).

Aliaksei Tsitovich, Natasha Sharygina, Christoph M. Wintersteiger, and Daniel Kroening. 2011. Loop
Summarization and Termination Analysis. In TACAS ’11. 81–95.

Tao Wei, Jian Mao, Wei Zou, and Yu Chen. 2007. A New Algorithm for Identifying Loops in Decompilation.
In SAS ’07. 170–183.

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David B. Whalley,
Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut,
Peter P. Puschner, Jan Staschulat, and Per Stenström. 2008. The Worst-Case Execution-Time Problem:
Overview of Methods and Survey of Tools. TECS 7, 3 (2008), 36:1–36:53.

Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith. 2011. Bound Analysis of Imperative
Programs with the Size-Change Abstraction. In SAS ’11. 280–297.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:37

A. PROOFS

In this section, we provide the proofs for all theorems of our paper.

Remark 2.5 (Approximating rc). Let R be a runtime approximation for T . Then∑
t∈T R(t) ≥ rc.

Proof. We have to show that (
∑
t∈T (R(t))(m)) ≥ rc(m) holds for all m ∈ Nn. We first

regard the case where there is a valuation v0 with v0 ≤m such that (`0,v0) starts an infinite
evaluation (thus, rc(m) = ω). Hence, there is some transition t ∈ T which is used infinitely
often in this evaluation. Thus, we have (R(t))(m) = ω and therefore (

∑
t∈T (R(t))(m)) = ω.

Otherwise, it suffices to prove that for any v0 with v0 ≤m and (`0,v0)→k (`,v) for some
configuration (`,v), we have (

∑
t∈T (R(t))(m)) ≥ k. Let T = {t1, . . . , td}. Moreover, for each

i ∈ {1, . . . , d}, let ki be the number of times that the transition ti was used in the evaluation
(`0,v0) →k (`,v). Then we obviously have k = k1 + . . . + kd and for each i ∈ {1, . . . , d},
there is an evaluation w.r.t. (→∗ ◦→ti) of length ki that starts in the configuration (`0,v0).
Hence, (R(ti))(m) ≥ ki. This implies (

∑
t∈T (R(t))(m)) ≥ k1 + . . .+ kd = k, as desired.

In Sect. 5 we generalized transitions to allow several target locations. Sect. 5.1 adapted
the notions of complexity to such transitions and Def. 5.2 correspondingly generalized the
notion of PRFs from Def. 3.1. We now provide the proofs of soundness for Thm. 3.3 and
Thm. 3.6 for these generalized notions of transitions and PRFs.

Theorem 3.3 (Complexities from PRFs). Let R be a runtime approximation and
Pol be a PRF for T . Let R′(t) = [Pol(`0)] for all t ∈ T � and R′(t) = R(t) for all other
t ∈ T . Then, R′ is also a runtime approximation.

Proof. To prove

(R′(t))(m) ≥ sup{k ∈ N | ∃v0, F .v0 ≤m ∧ {(`0,v0)} (→∗ ◦→t)
k F}

for all t ∈ T and m ∈ Nn, it obviously suffices to show that

[Pol(`0)](m) ≥ sup{k ∈ N | ∃v0, F .v0 ≤m ∧ {(`0,v0)} (→∗ ◦→t)
k F}

holds for all t ∈ T � and m ∈ Nn. To this end, let v0 be a valuation with v0 ≤ m and
consider a (finite or infinite) evaluation of the form

{(`0,v0)} →t0 {(`1,1,v1,1), . . . , (`1,p1 ,v1,p1)} →t1 {(`2,1,v2,1), . . . , (`2,p2 ,v2,p2)} →t2 . . .

where k ∈ N ∪ {ω} steps are performed with the transition t. In the following, we also write
`0,1 for `0, p0 = 1, and v0,1 = v0.

Our goal is to show that [Pol(`0)](m) ≥ k holds. This is trivial for the case k = 0, as
[Pol(`0)] only has non-negative coefficients. Thus, we now consider the case where k > 0.

Since Pol is a PRF for T , we have∑
j∈{1,...,pi} max{0, (Pol(`i,j))(vi,j(v1), . . . ,vi,j(vn))} ≥∑

j∈{1,...,pi+1} max{0, (Pol(`i+1,j))(vi+1,j(v1), . . . ,vi+1,j(vn))}

for all i.
Let i1 < i2 < . . . be the k indices where ti = t. Then for all i ∈ {i1, i2, . . .}, t ∈ T � implies∑

j∈{1,...,pi} max{0, (Pol(`i,j))(vi,j(v1), . . . ,vi,j(vn))} >∑
j∈{1,...,pi+1} max{0, (Pol(`i+1,j))(vi+1,j(v1), . . . ,vi+1,j(vn))}

and ∑
j∈{1,...,pi}

max{0, (Pol(`i,j))(vi,j(v1), . . . ,vi,j(vn))} ≥ 1.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38

Thus, we obtain

max{0, (Pol(`0))(v0(v1), . . . ,v0(vn))} ≥∑
j∈{1,...,pi1}

max{0, (Pol(`i1,j))(vi1,j(v1), . . . ,vi1,j(vn))} >∑
j∈{1,...,pi2}

max{0, (Pol(`i2,j))(vi2,j(v1), . . . ,vi2,j(vn))} >

...∑
j∈{1,...,pik−1

} max{0, (Pol(`ik−1,j))(vik−1,j(v1), . . . ,vik−1,j(vn))} >∑
j∈{1,...,pik}

max{0, (Pol(`ik,j))(vik,j(v1), . . . ,vik,j(vn))} ≥ 1.

From max{0, (Pol(`0))(v0(v1), . . . ,v0(vn))} ≥ 1 we obtain in particular that 0 6=
max{0, (Pol(`0))(v0(v1), . . . ,v0(vn))} = (Pol(`0))(v0(v1), . . . ,v0(vn)). So we have k 6= ω
and Pol(`0) (v0(v1), . . . ,v0(vn)) ≥ k, i.e., Pol(`0) (v0(v1), . . . ,v0(vn)) is an upper bound on
the number of evaluation steps with the transition t. This implies

[Pol(`0)] (m) ≥
[Pol(`0)] (|v0(v1)|, . . . , |v0(vn)|) ≥
Pol(`0) (v0(v1), . . . ,v0(vn)) ≥ k.

In the following theorem, for any location `, let T ` be the multiset of all transitions
(˜̀, τ̃ ,P) ∈ T \ T ′ with ` ∈ P. Here, (˜̀, τ̃ ,P) is contained k times in T ` iff ` is contained k
times in P . Moreover, let L′ = {` | T ` 6= ∅ ∧ ∃P ′. (`, τ,P ′) ∈ T ′} contain all entry locations
of T ′.

Theorem 3.6 (TimeBounds). Let (R,S) be a complexity approximation, let T ′ ⊆ T
such that T ′ contains no initial transitions, and let Pol be a PRF for T ′. Let R′(t) =∑

`∈L′, t̃∈T ` R(t̃) · [Pol(`)](S(t̃, v′1), . . . ,S(t̃, v′n)) for t ∈ T ′� and R′(t) = R(t) for all t ∈
T \ T ′�. Then, TimeBounds(R,S, T ′) = R′ is also a runtime approximation.

Proof. To prove

(R′(t))(m) ≥ sup{k ∈ N | ∃v0, F .v0 ≤m ∧ {(`0,v0)} (→∗ ◦→t)
k F}

for all t ∈ T and m ∈ Nn, similar to the proof of Thm. 3.3, it suffices to show that for all
t ∈ T ′� and m ∈ Nn, we have∑

`∈L′,t̃∈T ` (R(t̃)) (m) · [Pol(`)]((S(t̃, v′1))(m), . . . , (S(t̃, v′n))(m)) ≥
sup{k ∈ N | ∃v0, F .v0 ≤m ∧ {(`0,v0)} (→∗ ◦→t)

k F}.

To this end, let v0 again be a valuation with v0 ≤m and consider a (finite or infinite)
evaluation starting with the configuration {(`0,v0)} where k ∈ N ∪ {ω} steps are performed
with the transition t. The goal now is to show∑

`∈L′,t̃∈T `
(R(t̃)) (m) · [Pol(`)]((S(t̃, v′1))(m), . . . , (S(t̃, v′n))(m)) ≥ k.

As in the proof of Thm. 3.3, this is trivial for k = 0. Thus, we now consider the case where
k > 0.

For any set of transitions T , let →T =
⋃
t∈T →t and let →+

T denote the transitive closure
of →T . Then we can represent the considered evaluation as

{(`0,v0)} →+
T \ T ′ {(ˆ̀

1,1, v̂1,1), . . . , (ˆ̀
1,p̂1 , v̂1,p̂1)} →+

T ′

{(`1,1,v1,1), . . . , (`1,p1 ,v1,p1)} →+
T \ T ′ {(ˆ̀

2,1, v̂2,1), . . . , (ˆ̀
2,p̂2 , v̂2,p̂2)} →+

T ′

{(`2,1,v2,1), . . . , (`2,p2 ,v2,p2)} →+
T \ T ′ . . . ,

(1)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:39

where in the corresponding evaluation tree, for all i, j the outgoing edges of (ˆ̀
i,j , v̂i,j) are

labeled by transitions from T ′ and the outgoing edges of (`i,j ,vi,j) are labeled by transitions
from T \ T ′.

Now we have to investigate how often the transition t is used in the evaluation (1). Since
t ∈ T ′, it can only be used in sequences of the form

{(ˆ̀
i,1, v̂i,1), . . . , (ˆ̀

i,p̂i , v̂i,p̂i)} →+
T ′ {(`i,1,vi,1), . . . , (`i,pi ,vi,pi)}. (2)

As in the proof of Thm. 3.3 one can show that∑
j∈{1,...,p̂i}

[Pol(ˆ̀
i,j)](|v̂i,j(v1)|, . . . , |v̂i,j(vn)|)

is an upper bound on the number of times the transition t is used in the sequence (2).

For all j ∈ {1, . . . , p̂i}, let the edge in the evaluation tree reaching (ˆ̀
i,j , v̂i,j) be

labeled by t̃i,j . Thus, we have ˆ̀
i,j ∈ L′ and t̃i,j ∈ T ˆ̀

i,j
. As (`0,v0) →∗T ◦ →t̃i,j

{(ˆ̀
i,1, v̂i,1), . . . , (ˆ̀

i,p̂i , v̂i,p̂i)} and v0 ≤ m, by the definition of size approximations we

have (S(t̃i,j , v
′)) (m) ≥ |v̂i,j(v)|. By the weak monotonicity of [Pol(ˆ̀

i,j)], we obtain

[Pol(ˆ̀
i,j)]((S(t̃i,j , v

′
1)) (m), . . . , (S(t̃i,j , v

′
n)) (m)) ≥

[Pol(ˆ̀
i,j)](|v̂i,j(v1)|, . . . , |v̂i,j(vn)|).

Thus,
∑
j∈{1,...,p̂i} [Pol(ˆ̀

i,j)]((S(t̃i,j , v
′
1)) (m), . . . , (S(t̃i,j , v

′
n)) (m)) is an upper bound on

the number of times the transition t is used in the sequence (2).
It remains to examine how often a sequence like (2) can occur in the full evaluation (1).

As observed above, the edge reaching (ˆ̀
i,j , v̂i,j) in the evaluation tree is always labeled by

some t̃i,j ∈ T ˆ̀
i,j

. Note that by defining T ` as a multiset, we take into account that the same

transition t̃i,j might give rise to multiple sub-configurations with the same location ˆ̀
i,j . Thus,

a sequence like (2) cannot occur more often than the transitions in T ˆ̀
i,j

. Note that each t̃i,j

can occur at most (R(t̃i,j)) (m) times in evaluations. As discussed above, in every T ′-sequence

(2), the transition t can be applied at most
∑

j∈{1,...,p̂i}
[Pol(ˆ̀

i,j)](|v̂i,j(v1)|, . . . , |v̂i,j(vn)|) times.

Thus, an upper bound for the number k of applications of t in the overall sequence (1) is∑
`∈L′,t̃∈T `

R(t̃) (m) · [Pol(`)]((S(t̃, v′1)) (m), . . . , (S(t̃, v′n)) (m)).

To ease readability, we present the proofs for Thm. 4.6 and Thm. 4.15 only for transitions
with single target locations. Their extension to transitions with multiple target locations is
straightforward: instead of evaluations one simply has to regard paths of the evaluation tree.

Theorem 4.6 (SizeBounds for Trivial SCCs). Let (R,S) be a complexity approxima-
tion, let Sl be a local size approximation, and let {α} ⊆ RV be a trivial SCC of the RVG.
We define S ′(α′) = S(α′) for α′ 6= α and

• S ′(α) = Sl(α), if α = |t, v′| for some initial transition t
• S ′(α) = max{ Sl(α) (S(t̃, v′1), . . . ,S(t̃, v′n)) | t̃ ∈ pre(t)}, otherwise.

Then SizeBounds(R,S, {α}) = S ′ is also a size approximation.

Proof. Let α = |t, v′| ∈ RV be the trivial SCC for which the processor was applied. We
have to show that

(S ′(t, v′)) (m) ≥ sup{|v(v)| | ∃v0, `,v .v0 ≤m ∧ (`0,v0) (→∗ ◦→t) (`,v)}

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40

holds for all m ∈ Nn. To this end, we consider a valuation v0 ≤m and an evaluation

(`0,v0) (→∗ ◦→t) (`,v). (3)

Now the goal is to show that (S ′(t, v′)) (m) ≥ |v(v)| holds.
If t is an initial transition, then the evaluation (3) has the form (`0,v0) →t (`,v),

since by definition there are no transitions leading back to the initial location `0. Thus,
(Sl(t, v′)) (m) ≥ |v(v)|. Since S(t, v′) is defined as Sl(t, v′) for initial transitions t, we obtain

(S ′(t, v′)) (m) = (Sl(t, v′)) (m) ≥ |v(v)|.
In the case where t is not an initial transition, the evaluation (3) has the form

(`0,v0) (→∗ ◦→t̃) (˜̀, ṽ) →t (`,v)

for some transition t̃ ∈ pre(t). As v0 ≤ m, we have (S(t̃, v′i)) (m) ≥ |ṽ(vi)| for all i ∈
{1, . . . , n}, i.e., S(t̃, v′i) is a bound for the size of the variable vi before the transition t is
applied.

The local size change resulting from the transition t is approximated by the function
Sl(t, v′). Thus, we have

(Sl(t, v′)) ((S(t̃, v′1)) (m), . . . , (S(t̃, v′n)) (m)) ≥ |v(v)|,
and hence (S(t, v′)) (m) ≥ |v(v)|, as desired.

Theorem 4.15 (SizeBounds for Non-Trivial SCCs). Let (R,S) be a complexity ap-
proximation, Sl a local size approximation, and C ⊆ RV a non-trivial SCC of the RVG. If
there is a β ∈ C with β /∈ ×̇, then we set S ′ = S. Otherwise, for all β /∈ C let S ′(β) = S(β).
For all β ∈ C, we set S ′(β) =

s×̇ ·
(

max({S(α̃) | there is an α ∈ C with α̃ ∈ pre(α) \ C} ∪ {cα | α ∈
.
= ∩ C})

+
∑
t∈T (R(t) ·max{dα | α ∈ (u \ .=) ∩ Ct})

+
∑
t∈T (R(t) ·max{eα +

∑
v∈actV(Sl(α))\Vα f

α
v | α ∈ (×̇ \u) ∩ Ct})

)
.

Then SizeBounds(R,S, C) = S ′ is also a size approximation.

Proof. We only regard the case where α ∈ ×̇ holds for all α ∈ C. Then for all |r, w′| ∈ RV
we have to show that

(S ′(r, w′)) (m) ≥ sup{|v(w)| | ∃v0, `,v .v0 ≤m ∧ (`0,v0) (→∗ ◦→r) (`,v)}
holds for all m ∈ Nn. To this end, we now fix m to an arbitrary value and consider a fixed
valuation v0 ≤m and a fixed evaluation

(`0,v0) (→∗ ◦→r) (`,v). (4)

Our goal is to show that

(S ′(r, w′)) (m) ≥ |v(w)|.
For any transition t ∈ T , let kt be the number of times that the transition t was used in

the evaluation (4). To simplify the remaining proof, we define the following values:

e = max({S(α̃) (m) | there is an α ∈ C with α̃ ∈ pre(α) \ C} ∪ {cα | α ∈
.
= ∩ C})

fα =
∑
v∈actV(Sl(α))\Vα f

α
v (m)

st = max{sα | α ∈ (×̇ \u) ∩ Ct} · max{|Vα| | α ∈ (×̇ \u) ∩ Ct}
d =

(∏
t∈T sktt

)
·
(
e +

∑
t∈T (kt ·max{dα | α ∈ (u \ .=) ∩ Ct})

+
∑
t∈T (kt ·max{eα + fα | α ∈ (×̇ \u) ∩ Ct})

)
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:41

Then we prove the following claim:

d ≥ |v(w)|. (5)

Note that Thm. 4.15 follows from Claim (5), as (R(t))(m) ≥ kt holds by definition of kt.
Let γ = |r, w′|. The only interesting case is if γ ∈ C. Then we have

(S ′(γ))(m) =
(∏

t∈T s
R(t)
t

)
·
(
e +

∑
t∈T (R(t)(m) ·max{dα | α ∈ (u \ .=) ∩ Ct})

+
∑
t∈T (R(t)(m) ·max{eα + fα | α ∈ (×̇ \u) ∩ Ct})

)
≥
(∏

t∈T sktt

)
·
(
e +

∑
t∈T (kt ·max{dα | α ∈ (u \ .=) ∩ Ct})

+
∑
t∈T (kt ·max{eα + fα | α ∈ (×̇ \u) ∩ Ct})

)
= d
≥ |v(w)| by (5).

We prove the claim (5) by induction on the length of the evaluation (4). Intuitively, we
show that we correctly approximate the effect of the last transition step r on the size of the
value obtained so far (which in turn is captured by the induction hypothesis).

Note that r cannot be an initial transition, since there are no transitions leading back to
the initial location `0 (i.e., then γ = |r, w′| would not be contained in a non-trivial SCC C
of the result variable graph). Thus, the reduction (4) has the form

(`0,v0) (→∗ ◦→r̃) (˜̀, ṽ) →r (`,v)

for some transition r̃ ∈ pre(r). In the induction step, we perform a case analysis depending
on the class of the local size bound Sl(γ). As induction hypothesis, we assume that (5) holds

for the evaluation leading up to (˜̀, ṽ).

Case 1: γ ∈ .
=

Then for all u1, . . . , un ∈ N, we have

max{cγ , u1, . . . , un} ≥ (Sl(γ)) (u1, . . . , un). (6)

While (6) describes the local effect of the transition r (i.e., of the last step in the evaluation
(4)), we now have to estimate the sizes of the input variables u1, . . . , un of r. So for each
vi ∈ V, we have to find a bound on its size after the application of the transition r̃ that
precedes r.

If |r̃, v′i| is also a result variable of the SCC C (i.e., |r̃, v′i| ∈ C), then the induction
hypothesis implies that the claim (5) also holds for the shorter reduction from (`0,v0) to

(˜̀, ṽ). In other words, we have d ≥ |ṽ(vi)|. Of course, one might even obtain a more precise
bound than d, because one could replace kr by kr − 1 now. However, the bound d ≥ |ṽ(vi)|
is already sufficient for our purpose.

If |r̃, v′i| /∈ C, then v0 ≤ m implies (S(r̃, v′i)) (m) ≥ |ṽ(vi)|. As |r̃, v′i| ∈ pre(γ) \ C, we
have e ≥ (S(r̃, v′i)) (m), which implies d ≥ e ≥ (S(r̃, v′i)) (m) ≥ |ṽ(vi)|. So irrespective of
whether |r̃, v′i| is in the same SCC C or not, we always obtain d ≥ |ṽ(vi)|.

As d ≥ e ≥ cα for all α ∈ .
= ∩ C, we also have d ≥ cγ . Hence,

d ≥ max{cγ , |ṽ(v1)|, . . . , |ṽ(vn)|}
≥ (Sl(γ)) (|ṽ(v1)|, . . . , |ṽ(vn)|) by (6)
≥ |v(w)| by definition of local size approximations.

Case 2: γ ∈ u \ .=
Now for all u1, . . . , un ∈ N, we have

dγ + max{u1, . . . , un} ≥ (Sl(γ)) (u1, . . . , un). (7)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42

Again, we have to estimate the sizes of the input variables u1, . . . , un, i.e., we have to find a
bound on the size of each vi ∈ V after the application of the transition r̃ that precedes r.

If |r̃, v′i| ∈ C, then the induction hypothesis implies that (5) also holds for the reduction

from (`0,v0) to (˜̀, ṽ). Let

d′ =
(∏

t∈T sktt

)
·
(
e +

∑
t∈T \{r}(kt ·max{dα | α ∈ (u \ .=) ∩ Ct})

+(kr − 1) ·max{dα | α ∈ (u \ .=) ∩ Cr}
+
∑
t∈T (kt ·max{eα + fα | α ∈ (×̇ \u) ∩ Ct})

)
.

The reason for using “kr − 1” in d′ is that the last application of the transition r in
the evaluation (4) is missing in the evaluation from (`0,v0) to (˜̀, ṽ). Then the induction
hypothesis implies d′ ≥ |ṽ(vi)|. Again, one might even obtain a more precise bound than
d′ by replacing all occurrences of kr by kr − 1. However, the bound d′ ≥ |ṽ(vi)| is already
sufficient for our purpose.

If |r̃, v′i| /∈ C, then as in Case 1 we obtain d′ ≥ e ≥ (S(r̃, v′i)) (m) ≥ |ṽ(vi)|. So irrespective
of whether |r̃, v′i| is in the same SCC C or not, we always get d′ ≥ |ṽ(vi)|. Thus, we also
have d′ ≥ max{|ṽ(v1)|, . . . , |ṽ(vn)|}. Hence,

d ≥ max{dα | α ∈ (u \ .=) ∩ Cr}+ d′ as
∏

t∈T
sktt ≥ 1

≥ dγ + d′

≥ dγ + max{|ṽ(v1)|, . . . , |ṽ(vn)|}
≥ Sl(γ) (|ṽ(v1)|, . . . , |ṽ(vn)|) by (7)

≥ |v(w)|.

Case 3: γ ∈ ×̇ \u
Now for all u1, . . . , un ∈ N, we have

sγ · (eγ + u1 + . . .+ un) ≥ Sl(γ) (u1, . . . , un).

Since Sl(γ) only depends on the active variables in actV(Sl(γ)), let ûi = ui if vi ∈ actV(Sl(γ))
and ûi = 0 otherwise. Then

sγ · (eγ +
∑

vi∈actV(Sl(γ))
ui) = sγ · (eγ + û1 + . . .+ ûn)

≥ Sl(γ) (û1, . . . , ûn)

= Sl(γ) (u1, . . . , un). (8)

Again, we have to estimate the sizes of the input variables u1, . . . , un, i.e., we have to find a
bound on the size of each vi ∈ V after the application of the transition r̃ that precedes r.

If |r̃, v′i| ∈ C, then the induction hypothesis again implies that (5) also holds for the

reduction from (`0,v0) to (˜̀, ṽ). Let

d′′ =
(∏

t∈T \{r} s
kt
t

)
· skr−1r ·

(
e +

∑
t∈T (kt ·max{dα | α ∈ (u \ .=) ∩ Ct})

+
∑
t∈T \{r}(kt ·max{eα + fα | α ∈ (×̇ \u) ∩ Ct})

+(kr − 1) ·max{eα + fα | α ∈ (×̇ \u) ∩ Cr})
)
.

As in Case 2, the reason for using “kr − 1” in d′′ is that the last application of the
transition r in the evaluation (4) is missing in the evaluation from (`0,v0) to (˜̀, ṽ). Then
the induction hypothesis implies d′′ ≥ |ṽ(vi)|.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:43

For vi ∈ actV(Sl(γ)) with vi 6∈ Vγ , we have |r̃, v′i| /∈ C (by definition of Vγ). For such vi,
we can deduce the following:

fγvi(m) ≥ S(r̃, v′i) (m) ≥ |ṽ(vi)|. (9)

We now combine these bounds to prove that d is indeed a bound for |v(w)|:

d =
(∏

t∈T sktt

)
·

(
e +

∑
t∈T (kt ·max{dα | α ∈ (u \ .=) ∩ Ct})

+
∑
t∈T (kt ·max{eα + fα | α ∈ (×̇ \u) ∩ Ct})

)
= sr ·

(∏
t∈T \{r} s

kt
t

)
· skr−1r ·

(
e +

∑
t∈T (kt ·max{dα | α ∈ (u \ .=) ∩ Ct})

+
∑
t∈T \{r}(kt ·max{eα + fα | α ∈ (×̇ \u) ∩ Ct})

+(kr − 1) ·max{eα + fα | α ∈ (×̇ \u) ∩ Cr})
+ max{eα + fα | α ∈ (×̇ \u) ∩ Cr})

)
= sr · d′′ + sr ·

(∏
t∈T \{r} s

kt
t

)
· skr−1r · max{eα + fα | α ∈ (×̇ \u) ∩ Cr}

≥ sr ·
(
d′′ + max{eα + fα | α ∈ (×̇ \u) ∩ Cr}

)
≥ sr ·

(
d′′ + eγ + fγ

)
= max{sα | α ∈ (×̇ \u) ∩ Cr} · max{|Vα| | α ∈ (×̇ \u) ∩ Cr} ·

(
d′′ + eγ + fγ

)
≥ sγ · |Vγ | ·

(
d′′ + eγ + fγ

)
≥ sγ ·

(
|Vγ | · d′′ + eγ + fγ

)
= sγ ·

(∑
vi∈Vγ d

′′ + eγ + fγ
)

≥ sγ ·
(∑

vi∈Vγ |ṽ(vi)| + eγ + fγ
)

by the induction hypothesis

= sγ ·
(∑

vi∈Vγ |ṽ(vi)| + eγ +
∑
vi∈actV(Sl(γ))\Vγ f

γ
vi(m)

)
≥ sγ ·

(∑
vi∈Vγ |ṽ(vi)| + eγ +

∑
vi∈actV(Sl(γ))\Vγ |ṽ(vi)|

)
by (9)

= sγ ·
(
eγ +

∑
vi∈actV(Sl(γ))|ṽ(vi)|

)
since Vγ ⊆ actV(Sl(γ))

≥ Sl(γ)(|ṽ(v1)|, . . . , |ṽ(vn)|) by (8)
≥ |v(w)|

Theorem 5.5 (Complexities from SRFs). Let R be a runtime approximation, Pol
be an SRF for T , and 2 ≤ b = max{|P| | (`, τ,P) ∈ T �}.

Let R′(t) = b[Pol(`0)]−1
b−1 for all t ∈ T � and R′(t) = R(t) for all other t ∈ T . Then, R′ is

also a runtime approximation.

Proof. To prove

(R′(t))(m) ≥ sup{k ∈ N | ∃v0, F .v0 ≤m ∧ {(`0,v0)} (→∗ ◦→t)
k F}

for all t ∈ T and m ∈ Nn, it obviously suffices to show that

b[Pol(`0)](m) − 1

b− 1
≥ sup{k ∈ N | ∃v0, F .v0 ≤m ∧ {(`0,v0)} (→∗ ◦→t)

k F}

holds for all t ∈ T � and m ∈ Nn. To this end, let v0 be a valuation with v0 ≤ m and
consider a (finite or infinite) evaluation of the form

{(`0,v0)} →t0 {(`1,1,v1,1), . . . , (`1,p1 ,v1,p1)} →t1 {(`2,1,v2,1), . . . , (`2,p2 ,v2,p2)} →t2 . . .

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44

where k ∈ N ∪ {ω} steps are performed with the transition t.

Our goal is to show that b[Pol(`0)](m)−1
b−1 ≥ k holds. This is trivial for the case k = 0, as

b[Pol(`0)](m)−1
b−1 ≥ 0. Thus, we now consider the case where k > 0.

For a composed configuration {(`1,v1), . . . , (`p,vp)}, we have

sup{k ∈ N | ∃v0, F .v0 ≤m ∧ {(`1,v1), . . . , (`p,vp)} (→∗ ◦→t)
k F} =∑

j∈{1,...,p}
sup{k ∈ N | ∃v0, F .v0 ≤m ∧ {(`j ,vj)} (→∗ ◦→t)

k F}.

Based on this observation, for a given SRF we represent a (finite or infinite) evaluation
{(`0,v0)} → F1 → F2 → . . . as a tree structure. This tree is similar to the evaluation tree,
but it does not branch for steps with transitions from T \ T �. To this end, an evaluation
step F1 = F] {(`,v)} →t F] {(`1,v′), . . . , (`p,v

′)} = F2 is represented as follows. Let
t = (`, τ, {`1, . . . , `p}).
— If t ∈ T �, we write the following:

F] {(`,v)}

{(`1,v′)} . . . {(`p−1,v′)} F] {(`p,v′)}

t t t t

So here a transition is “split up”, corresponding to the constraints imposed on the SRF.
In the last child F] {(`p,v′)}, we also keep the pairs F that were not altered by the
transition.

— If t ∈ T \ T �, we write:

F] {(`,v)}

F] {(`1,v′), . . . , (`p,v′)}

t

So here a transition is just taken as such and not split up.

Now we consider each (maximal) path from the root of this tree individually. Such a path
has the shape

{(`0,v0)} →t0 {(`1,1,v1,1), . . . , (`1,p1 ,v1,p1)} →t1 {(`2,1,v2,1), . . . , (`2,p2 ,v2,p2)} →t2 . . .

where h ∈ N ∪ {ω} steps are performed with the transition t. In the following, we also write
`0,1 for `0, p0 = 1, and v0,1 = v0.

Since Pol is a SRF for T , we have∑
j∈{1,...,pi} max{0, (Pol(`i,j))(vi,j(v1), . . . ,vi,j(vn))} ≥∑

j∈{1,...,pi+1} max{0, (Pol(`i+1,j))(vi+1,j(v1), . . . ,vi+1,j(vn))}

for all i.
Let i1 < i2 < . . . be the h indices where ti = t. Then for all i ∈ {i1, i2, . . .}, t ∈ T � implies∑

j∈{1,...,pi} max{0, (Pol(`i,j))(vi,j(v1), . . . ,vi,j(vn))} >∑
j∈{1,...,pi+1} max{0, (Pol(`i+1,j))(vi+1,j(v1), . . . ,vi+1,j(vn))}

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:45

and ∑
j∈{1,...,pi}

max{0, (Pol(`i,j))(vi,j(v1), . . . ,vi,j(vn))} ≥ 1.

Recall that we are looking at the paths of the specially constructed tree here, not at the
original evaluation. There, this reasoning would not work.

Thus, we obtain

max{0, (Pol(`0))(v0(v1), . . . ,v0(vn))} ≥∑
j∈{1,...,pi1}

max{0, (Pol(`i1,j))(vi1,j(v1), . . . ,vi1,j(vn))} >∑
j∈{1,...,pi2}

max{0, (Pol(`i2,j))(vi2,j(v1), . . . ,vi2,j(vn))} >

...∑
j∈{1,...,pih−1

} max{0, (Pol(`ih−1,j))(vih−1,j(v1), . . . ,vih−1,j(vn))} >∑
j∈{1,...,pih}

max{0, (Pol(`ih,j))(vih,j(v1), . . . ,vih,j(vn))} ≥ 1.

From max{0, (Pol(`0))(v0(v1), . . . ,v0(vn))} ≥ 1 we obtain in particular that 0 6=
max{0, (Pol(`0))(v0(v1), . . . ,v0(vn))} = (Pol(`0))(v0(v1), . . . ,v0(vn)). So we have h 6= ω
and Pol(`0) (v0(v1), . . . ,v0(vn)) ≥ h, i.e., Pol(`0) (v0(v1), . . . ,v0(vn)) is an upper bound on
the number of evaluation steps with the transition t. This implies

[Pol(`0)] (m) ≥
[Pol(`0)] (|v0(v1)|, . . . , |v0(vn)|) ≥
Pol(`0) (v0(v1), . . . ,v0(vn)) ≥ h.

By construction of the tree, the tree can only branch with degree ≥ 2 if a transition
t ∈ T � is used. For all those (finite or infinite) paths F1 → F2 → . . . of the tree where
all edges are labeled by transitions from T \ T �, we collapse the path to the single node
F1. Then we get a finite tree whose inner nodes are the nodes that have an outgoing edge
labeled by a transition from T �. We want to count these inner nodes since their number
corresponds to the number of steps with transitions from T � in the original evaluation.

Let b be the maximum arity of P for the transitions (`, τ,P) ∈ T �. Note that b is an
upper bound on the branching factor in the collapsed tree. As the height of the collapsed

tree is bounded by h, it has at most bh−1
b−1 inner nodes.

As [Pol(`0)](m) ≥ h, this implies the desired statement that for all t ∈ T �, we have

b[Pol(`0)](m) − 1

b− 1
≥ sup{k ∈ N | ∃v0, F .v0 ≤m ∧ {(`0,v0)} (→∗ ◦→t)

k F}.

Theorem 6.5 (Soundness of C). Let (T ,M) be an annotated program. Then
(
∑
t∈T C(T ,M)(t)) ≥ cc(T ,M).

Proof. Let m be arbitrary, but fixed. We consider an evaluation

{(`0,v0)} →(`0,v0)
t0 F1 →(`1,v1)

t1 F2 →(`2,v2)
t2 . . . (10)

for some v0 ≤m. To prove the theorem, it suffices to show that∑
t∈T

(C(T ,M)(t))(m) ≥
∑

i≥0
(M(ti))(vi(v1), . . . ,vi(vn)).

Let T 0 consist of all initial transitions from T and for any transition t ∈ T , let kt ∈ N∪ {ω}
be the number of →t-steps in our evaluation. For any i > 0, let ĩ < i be the step where
the sub-configuration (`i,vi) was introduced, i.e., the edge reaching (`i,vi) is labeled by t̃i
in the evaluation tree corresponding to (10). In other words, for every i > 0, there is an

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46

ĩ < i such that t̃i ∈ pre(ti) and vĩ,vi satisfies the formula of t̃i. Thus, {(`0,v0)} →∗ Fĩ and
(`ĩ,vĩ) ∈ Fĩ implies (S(t̃i, v

′))(m) ≥ vi(v) for all v ∈ V. Thus, we obtain∑
t∈T (C(T ,M)(t))(m)

=
∑
t∈T 0

(R(t))(m) · (M(t))(m)+∑
t∈T \ T 0

(R(t))(m) ·max{(M(t))((S(t̃, v′1))(m), . . . , (S(t̃, v′n))(m)) | t̃ ∈ pre(t)}
≥ (M(t0))(m) +

∑
t∈T \ T 0

kt ·max{(M(t))((S(t̃, v′1))(m), . . . , (S(t̃, v′n))(m)) | t̃ ∈ pre(t)}
≥ (M(t0))(m) +

∑
i>0 max{(M(ti))((S(t̃, v′1))(m), . . . , (S(t̃, v′n))(m)) | t̃ ∈ pre(ti)}

≥ (M(t0))(m) +
∑
i>0(M(ti))((S(t̃i, v

′
1))(m), . . . , (S(t̃i, v

′
n))(m))

≥
∑
i≥0(M(ti))(vi(v1), . . . ,vi(vn)).

Theorem 6.13 (Soundness of Separated Modular Complexity Analysis).
Let (T ,M) be an annotated program, let R, S, and L′ ⊆ L satisfy the requirements in
Def. 6.9, and let (T \L′ ,M\L′ ,R\L′ ,S\L′) be the L′-reduced program. Then (R\L′ ,S\L′)
is a complexity approximation for T \L′ and cc(T \L′ ,M\L′) ≥ cc(T ,M).

Proof. We only prove cc(T \L′ ,M\L′) ≥ cc(T ,M) (the claim that (R\L′ ,S\L′) is a com-

plexity approximation for T \L′ is straightforward). Consider an evaluation in the program

T . For the proof, we transform this evaluation to a corresponding evaluation in the L′-
reduced program T \L′ . Here, we replace parts of the evaluation that make use of T L′ by
corresponding evaluation steps with T \L′ . We then show that the cost of the replaced
evaluation steps with T L′ is bounded by the cost of the newly introduced evaluation steps
with T \L′ . Of course, this observation is trivial if the original evaluation in T never reaches

locations from L′, because then all transitions used in the original evaluation are also
contained in T \L′ .

Otherwise, we regard the corresponding evaluation tree and consider a maximal subtree
whose edges are labeled with transitions from T L′ . Let (`1,v1) be the root of this subtree
where `1 ∈ L′. As the start location is not contained in L′, (`1,v1) has a parent node (`,v)
with ` /∈ L′, and the edge from (`,v) to (`1,v1) is labeled by a transition (`, τ,P) ∈ T →L′ . To
transform the current evaluation tree w.r.t. T to an evaluation tree w.r.t. T \L′ , we replace the

label (`, τ,P) on the edges from (`,v) to its children by the transition (`, τ, (P \L′)∪{`→L′}).
Note that the cost for this transition is at least as high as the cost of the original transition
(`, τ,P). Moreover, whenever (`,v) has a child node (`′,v′) with `′ ∈ L′, then we replace
that child node by (`→L′ ,v

′). The child nodes (`′,v′) with `′ /∈ L′ are not modified. So in
particular, (`1,v1) is replaced by (`→L′ ,v1).

Case 1: There is a path from (`1,v1) to a node (`k+1,vk+1) with `k+1 /∈ L′.
Let the path have the form (`1,v1), (`2,v2), . . . , (`k,vk), (`k+1,vk+1), where `k+1 is the first
location from L\L′ on the path (i.e., `1, . . . , `k ∈ L′). Since we have `i →∗reach `k+1 for all
1 ≤ i ≤ k, the transitions ti used on this path all have the form (`i, τi, `i+1) for 1 ≤ i ≤ k
(i.e., these transitions only have singleton multisets of locations in their third components).
Thus, we have the evaluation steps

(`1,v1)→t1 (`2,v2)→t2 . . .→tk−1
(`k,vk)→tk (`k+1,vk+1)

where t1, . . . , tk−1 ∈ T L′ and tk ∈ T L′→.
So in this case, the subtree that has to be replaced only consists of a “list” of evaluations

with T L′ . Recall that we already replaced (`1,v1) by (`→L′ ,v1). Similarly, we now replace
(`k,vk) by (`L′→,vk) and on its edge to (`k+1,vk+1), we replace the current label tk =
(`k, τk, `k+1) by t′k = (`L′→, τk, `k+1). Again, the cost for the transition t′k is at least as high
as the cost of the original transition tk.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:47

It remains to replace the path from (`1,v1) to (`k,vk), where (`1,v1) has already been
modified to (`→L′ ,v1) and (`k,vk) has been modified to (`L′→,vk).

If k = 1, then no transition of T L′ was used in the path above, and thus, the original edge
from (`1,v1) = (`k,vk) to (`k+1,vk+1) labeled by tk is replaced by a path with two edges.
The first edge is from (`→L′ ,v1) to (`L′→,vk) and it is labeled with tskip . The second edge
from (`L′→,vk) to (`k+1,vk+1) is labeled with t′k.

If k > 1, then the path from (`1,v1) to (`k,vk) and further to (`k+1,vk+1) labeled with
t1, . . . , tk−1, tk is also replaced by a path with two edges. The first edge is again from
(`→L′ ,v1) to (`L′→,vk), but now it is labeled with tT L′ . The second edge from (`L′→,vk)
to (`k+1,vk+1) is again labeled with t′k. It remains to show that the evaluation step using
tT L′ can indeed lead to the valuation vk (S), and that the cost of tT L′ is at least as high as
the sum of the costs of the original transitions t1, . . . , tk−1 (C).

To prove the latter observation (C), let |v1| = (|v1(v1)|, . . . , |v1(vn)|). Then we have

(M\L′(tT L′))(|v1|)

=
∑

t∈T L′
(C(T | L′ ,M| L′)(t))(|v1|)

(†)
=
∑

t∈T L′
(RT | L′ (t))(|v1|) ·max{(MT | L′ (t))((ST | L′ (t̃, v

′
1))(|v1|), . . . ,

(ST | L′ (t̃, v
′
n))(|v1|)) | t̃ ∈ preT | L′ (t)}

(‡)
≥
∑

1≤i<k
max{(MT | L′ (ti))((ST | L′ (t̃, v

′
1))(|v1|), . . . , (ST | L′ (t̃, v

′
n))(|v1|)) |

t̃ ∈ presep T | L′ (ti)}
(‡‡)
≥
∑

1≤i<k
(MT | L′ (ti))((ST | L′ (ti−1, v

′
1))(|v1|), . . . , (ST | L′ (ti−1, v

′
n))(|v1|))

(‡‡‡)
≥
∑

1≤i<k
(MT | L′ (ti))(|vi(v1)|, . . . , |vi(vn)|).

(†): By construction, as T L′ contains no initial transitions.
(‡): By soundness of RT | L′ , as otherwise, there would be some t ∈ T L′ that is used more

often in an evaluation with T | L′ than RT | L′ allows.

(‡‡): Each path of the evaluation tree corresponds to an evaluation with a variant of T where
each transition only contains a single target location. Hence, ti−1 ∈ preT | L′ (ti) holds for all

2 ≤ i < k. Moreover, the isolated sub-program T | L′ contains an extra transition from `0 to
the set of locations P, where `1 ∈ P . Thus, there is a transition t0 = (`0,

∧
v∈V v

′ = v, `1) ∈
preT | L′ (t1) and an evaluation (`0,v1)→t0 (`1,v1).

(‡ ‡ ‡): By soundness of ST | L′ , as for all result variables |ti−1, v′j | with 1 ≤ i < k and

1 ≤ j ≤ n we have ST | L′ (ti−1, v
′
j) ≥ vi(vj).

The proposition (S) can be proven analogously to the step (‡ ‡ ‡).

Case 2: There is no path from (`1,v1) to a node (`k+1,vk+1) with `k+1 /∈ L′.
This means that all edges in the subtree rooted by (`1,v1) are labeled by transitions from
T L′ . Recall that we already replaced (`1,v1) by (`→L′ ,v1). To finish the transformation
of this subtree, the whole subtree rooted by (`1,v1) is replaced by (`→L′ ,v1) and an edge
to an additional node (`L′→,v2), where the edge is labeled with tT L′ . Here, we choose
a valuation v2 such that v1,v

′
2 satisfy the formula τT L′ . It remains to show that the

cost of tT L′ is at least as high as the cost of the evaluation of (`1,v1) represented by
the original subtree. Note that this part of the evaluation corresponds to an evaluation
w.r.t. the isolated sub-program T | L′ . As in the proof of Thm. 6.5, one can show that

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:48

(M\L′(tT L′))(|v1|) =
∑
t∈T L′

(C(T | L′ ,M| L′)(t))(|v1|) is an upper bound for the costs of this

evaluation w.r.t. (T | L′ ,M| L′).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

