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Abstract

We show how the problem of nontermination proving can be reduced to a ques-
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Abstract. We show how the problem of nontermination proving can be
reduced to a question of underapproximation search guided by a safety
prover. This reduction leads to new nontermination proving implementa-
tion strategies based on existing tools for safety proving. Our preliminary
implementation beats existing tools. Furthermore, our approach leads to
easy support for programs with unbounded nondeterminism.

1 Introduction

The problem of proving program nontermination represents an interesting com-
plement to termination as, unlike safety, termination’s falsification cannot be
witnessed by a finite trace. While the problem of proving termination has now
been extensively studied, the search for reliable and scalable methods for proving
nontermination remains open.

In this paper we develop a new method of proving nontermination based on a
reduction to safety proving that leverages the power of existing tools. An iterative
algorithm is developed which uses counterexamples to a fixed safety property
to refine an underapproximation of a program. With our approach, existing
safety provers can now be employed to prove nontermination of programs that
previous techniques could not handle. Not only does the new approach perform
better, it also leads to nontermination proving tools supporting programs with
nondeterminism, for which previous tools had only little support.

Limitations. Our proposed nontermination procedure can only prove

if (k ≥ 0)
skip;

else

i := −1;

while (i ≥ 0) {
i := nondet();

}

i := 2;

nontermination. On terminating programs the procedure is
likely to diverge (although some heuristics are proposed
which aim to avoid this). While our method could be ex-
tended to further programming language features (e.g. heap,
recursion), in practice the supported features of an under-
lying safety prover determine applicability. Our implemen-
tation uses a safety prover for non-recursive programs with
linear integer arithmetic commands.

Example. Before discussing our procedure in a formal set-
ting, we begin with a simple example given to the right. In
this program the command i := nondet() represents non-
deterministic value introduction into the variable i. The loop in this program



is nonterminating when the program is invoked with appropriate inputs and
when appropriate choices for nondet assignment are made. We are interested in
automatically detecting this nontermination. The basis of our procedure is the
search for an underapproximation of the original program that never terminates.
As “never terminates” can be encoded as safety property (defined later as closed
recurrence in Sect. 2), we can then iterate a safety prover together with a method
of underapproximating based on counterexamples. We have to be careful, how-
ever, to find the right underapproximation in order to avoid unsoundness.

In order to find the desired underapproximation for our example, we intro-
duce an assume statement at the beginning with the initial precondition true.
We also place assume(true) statements after each use of nondet. We then put
an assert(false) statement at points where the loop under consideration exits
(thus encoding the “never terminates” property). See Fig. 1(a).

We can now use a safety checker to search for paths that violate this assertion.
Any error path clearly cannot contribute towards the nontermination of the loop.
After detecting such a path we calculate restrictions on the introduced assume

statements such that the path is no longer feasible when the restriction is applied.

Initially as a first counterexample to safety, we might get the path k < 0, i :=
−1, i < 0, from a safety prover. We now want to determine from which states
we can reach assert(false) and eliminate those states. Using a precondition
computation similar to Calcagno et al. [6] we find the condition k < 0. The
trick is to use the standard weakest precondition rule for assignments, but to use
pre(assume(Q), P ) , P∧Q instead of the standard wp(assume(Q), P ) , Q⇒ P .
This way, we only consider executions that actually reach the error location. To
rule out the states k < 0 we can add the negation (e.g. k ≥ 0) to the precondition
assume statement. See Fig. 1(b).

In our procedure we try again to prove the assertion statement unreachable,
using the program in Fig. 1(b). In this instance we might get the path k ≥
0, skip, i < 0, which again violates the assertion. For this path we would
discover the precondition k ≥ 0 ∧ i < 0, and to rule out these states we refine
the precondition assume statement with “assume(k ≥ 0∧ i ≥ 0);”. See Fig. 1(c).

On this program our safety prover will again fail, perhaps resulting in the path
k ≥ 0, skip, i ≥ 0, i := nondet(), i < 0. Then our procedure would stop
computing the precondition at the command i := nondet() (for reasons discussed
later). Here we would learn that at the nondeterministic command the result
must be i < 0 to violate the assertion, thus we would refine the assume statement
just after the nondet with the negation of i < 0: “assume(i ≥ 0);” See Fig. 1(d).

The program in Fig. 1(d) cannot violate the assertion, and thus we have
hopefully computed the desired underapproximation to the transition relation
needed in order to prove nontermination. However, for soundness, it is essential
to ensure that the loop in Fig. 1(d) is still reachable, even after the successive
restrictions to the state-space. We encode this condition as a safety problem. See
Fig. 1(e). This time we add assert(false) before the loop and aim to prove
that the assertion is violated. The existence of a path violating the assertion
ensures that the loop in Fig. 1(d) is reachable. Here the assertion and thus the
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assume(true);

if (k ≥ 0)
skip;

else

i := −1;

while (i ≥ 0) {
i := nondet();
assume(true);

}

assert(false);

i := 2;

assume(k ≥ 0);

if (k ≥ 0)
skip;

else

i := −1;

while (i ≥ 0) {
i := nondet();
assume(true);

}

assert(false);

i := 2;

assume(k ≥ 0 ∧ i ≥ 0);

if (k ≥ 0)
skip;

else

i := −1;

while (i ≥ 0) {
i := nondet();
assume(true);

}

assert(false);

i := 2;
(a) (b) (c)

assume(k ≥ 0 ∧ i ≥ 0);

if (k ≥ 0)
skip;

else

i := −1;

while (i ≥ 0) {
i := nondet();
assume(i ≥ 0);

}

assert(false);

i := 2;

assume(k ≥ 0 ∧ i ≥ 0);

if (k ≥ 0)
skip;

else

i := −1;

assert(false);

while (i ≥ 0) {
i := nondet();
assume(i ≥ 0);

}

assume(k ≥ 0 ∧ i ≥ 0);
assume(k ≥ 0);

skip;
while (i ≥ 0) {

i := nondet();
assume(i ≥ 0);

}

(d) (e) (f)

Fig. 1. Original instrumented program (a) and its successive underapproximations
(b), (c), (d). Reachability check for the loop (e), and nondeterminism-assume that
must be checked for satisfiability (f).

loop are still reachable. The path violating the assertion is our desired path to
the loop which we refer to as stem. Fig. 1(f) shows the stem and the loop.

Finally we need to ensure that the assume statement in Fig. 1(f) can always
be satisfied with some i by any reachable state from the restricted pre-state.
This is necessary: our underapproximations may accidentally have eliminated
not only the paths to the loop’s exit location, but also all of the nonterminating
paths inside the loop. Once this check succeeds we have proved nontermination.
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2 Closed recurrence sets

In this section we define a new concept which is at the heart of our procedure,
called closed recurrence. Closed recurrence extends the known concept of (open)
recurrence [16] in a way that facilitates automation, e.g. via a safety prover.

Preliminaries. Let S be the set of states. Given a transition relation R ⊆ S×S,
for a state s with R(s, s′), we say that s′ is a successor of s under R.

We will be considering programs P with finitely many program locations
L and a set of memory states M , so the program’s state space S is given as
S = L×M . For instance, for a program on n integer variables, we have M = Zn,
and a memory state amounts to a valuation of the program variables.

A program P on locations L is represented via its control-flow graph (CFG)
(L, ∆, li, lf , le). The program locations are the CFG’s nodes and ∆ is a set of
edges between locations labeled with commands. We designate special locations
in L: li is the initial location, lf the final location, and le the error location. Each
(l, T, l′) ∈ ∆ is a directed edge from l to l′ labeled with a command T . We write
RT ⊆M ×M for the relation on memory states induced by T in the usual way.

We say that a memory state s at node l has a successor s′ along the edge
(l, T, l′) iff RT (s, s′) holds. A path π in a CFG is a sequence of edges (l0, T0, l1)
(l1, T1, l2) . . . (ln−1, Tn−1, ln). The composite transition relation Rπ of a path π is
the composition RT0

◦RT1
◦...◦RTn−1

of the individual relations. We also describe
a path π by the sequence of nodes it visits, e.g. l0 → l1 → . . .→ ln−1 → ln.

Commands. We represent by V the set of all program variables. A deterministic
assignment statement is of the form i := exp where i ∈ V and exp is an expression
over program variables. A nondeterministic assignment statement is of the form
i := nondet(); assume(Q); where i ∈ V , nondet() is a nondeterministic choice and
Q is a boolean expression over V representing the restriction that the nondet()
choice must obey. Conditional statements are encoded using assume commands
(from Nelson [22]): assume(Q), where Q is a boolean expression over V . W.l.o.g.
li has 0 incoming and 1 outgoing edge, labeled with assume(Q), where initially
usually Q , true. For readability, in our example CFGs we often write Q for
assume(Q). Our algorithm will later strengthen Q in the assume-statements.

We define the indegree of a node l in a CFG to be the number of incoming
edges to l. Similarly, the outdegree of a node l in a CFG is the number of outgoing
edges from l. A node l ∈ L \ {li, lf , le} must be of one of the following types.

1. A deterministic assignment node: l has outdegree exactly 1 and the outgoing
edge is labeled with a deterministic assignment statement or skip. Any
memory state s at l has a unique successor s′ along the edge.

2. A deterministic conditional node: l has outdegree 2 with one edge labeled
assume(ϕ), the other edge labeled assume(¬ϕ). Any memory state s at l has
a unique successor s′ along one edge and no successor along the other edge.

3. A nondeterministic assignment node: l has outdegree exactly 1 and the out-
going edge is labeled with a nondeterministic assignment statement. A mem-
ory state s at l may have zero or more successors along the outgoing edge
depending on the condition present in the assume(Q) statement.
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In our construction of a CFG, a lone statement assume(Q) from an input
program is modeled by a deterministic conditional node, with one edge labeled
assume(Q) and the other edge labeled assume(¬Q) leading to the end location lf .

0

1

2

3

4

5

6

7

8

Error

true

k ≥ 0

k < 0

skip

i := −1

i ≥ 0

i < 0

i := nondet()
assume(true)

i := 2

Fig. 2. CFG for initial example

Example. Consider the CFG for our ini-
tial example given in Fig. 2. Here we have
the initial location li = 0, the final loca-
tion lf = 7, and the error location le = 8.
The nodes 2, 3 and 6 are deterministic as-
signment nodes, nodes 1 and 4 are deter-
ministic conditional nodes, and node 5 is
a nondeterministic assignment node.

CFG loops. Given a program with its CFG,
a loop L in the CFG is a set of nodes s.t.

– There exists a path from any node of
L to any other node of L.

– (W.l.o.g.) we assume that there is only
one node h of L s.t. there exists a node
n /∈ L with an edge from n to h. The node h is called the header node of L.

The subgraph of CFG containing all nodes of L is called the loop body of L.
Header h of L is a deterministic conditional node with one edge that is part of
the loop body, the guard edge of L. The other edge of h goes to a node e /∈ L.
We call this edge the exit edge of L and e the exit location of L.3

Example. In Fig. 2, the only loop is L = {4, 5}, and its header node h is 4.
The exit location of L is 6.

Given a loop L in program P , we define a loop path πL as any finite path
through L’s body of the form (l0 = lh)→ l1 → ...→ ln−1 → (ln = lh), where lh is
the header node of L and ∀p.(0 < p < n) → lp 6= lh. We define the composite
transition relation RL of L as RL(s, s′) iff there exists a loop path π s.t. Rπ(s, s′).
Here RL can be an infinite (or empty) set. The initial states IL for RL are the set
of reachable states at the loop header before the loop is entered for the first time.

Preconditions. When computing preconditions of assume statements we borrow
from Calcagno et al. [6]: pre(assume(Q), P ) , P ∧ Q, called the “assume as
assert trick”. This lets us interpret assume statements (often from conditional
branches) in a way that allows us to determine in a precondition the states from
which an error location can be reached in a safety counterexample path. For
assignment statements we will use the standard weakest precondition [12].

Example. Note that the weakest precondition of an assignment with nonde-
terminism is a little subtle. Let i := nondet(); assume(true); be the nondet

statement under consideration. The weakest precondition for the postcondition
(i < j) is false (equivalent to ∀i. i < j). However the weakest precondition for
the postcondition (i < j ∨ k > 0) is (k > 0).

3 Languages like Java or C allow loops with additional exit edges also from locations
other than the loop header, which are implemented by commands like break or goto.
We also support such more general loops, via a program transformation.
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Recurrence sets. A relation R with initial states I is nonterminating iff there

exists an infinite transition sequence s0
R−→ s1

R−→ s2
R−→ . . . with s0 ∈ I. Gupta

et al. [16] characterize nontermination of a relation R by the existence of a
recurrence set, viz. a nonempty set of states G such that for each s ∈ G there
exists a transition to some s′ ∈ G. In particular, an infinite transition sequence

s0
R−→ s1

R−→ s2
R−→ . . . itself gives rise to the recurrence set {s0, s1, s2, . . .}. Here

∃s.G(s) ∧ I(s) (1)

∀s∃s′.G(s)→ R(s, s′) ∧ G(s′) (2)

we extend the notion of a recurrence set
to include initial states. A transition rela-
tion R with initial states I has an (open)
recurrence set of states G(s) iff (1) and (2) hold. A transition relation R with
initial states I is nonterminating iff it has a recurrence set of states.

∃s.G(s) ∧ I(s) (3)

∀s∃s′.G(s)→ R(s, s′) (4)

∀s∀s′.G(s) ∧R(s, s′)→ G(s′) (5)

A set G is a closed recurrence set for a
transition relation R with initial states I
iff the conditions (3)–(5) hold. In contrast
to open recurrence sets, we now require a
purely universal property: for each s ∈ G and for each of its successors s′, also s′

must be in the recurrence set (Condition (5)). So instead of requiring that we can
stay in the recurrence set, we now demand that we must stay in the recurrence
set. This now helps us to incorporate nondeterministic transition systems too.

Now what if a state s in our recurrence set G has no successor s′ at all? Our
alleged infinite transition sequence would reach a sudden halt, yet our universal
formula would trivially hold. Thus, we impose that each s ∈ G has some successor
s′ (Condition (4)). But this existential statement need not mention that s′ must
be in G again—our previous universal statement already takes care of this.

Theorem 1 (Closed Recurrence Sets are Recurrence Sets). Let G be
a closed recurrence set for R with initial states I. Then G is also an (open)
recurrence set for R with initial states I.

The proofs for all theorems can be found in the Appendix. ut
Underapproximation. We call a transition relation R′ with initial states I ′ an
underapproximation of transition relation R with initial states I iff R′ ⊆ R, I ′ ⊆
I. Then every nonterminating program contains a closed recurrence set as an
underapproximation (i.e., together with underapproximation, closed recurrence
sets characterize nontermination).

Theorem 2 (Open Recurrence Sets Always Contain Closed Recur-
rence Sets). There exists a recurrence set G for a transition relation R with
initial states I iff there exist an underapproximation R′ with initial states I ′ and
G′ ⊆ G such that G′ is a closed recurrence set for R′ with initial states I ′.

3 Algorithm

Our nontermination proving procedure Prover is detailed in Fig. 3. Its input is
a program P given by its CFG, and a loop to be considered for nontermination.
To prove nontermination of the entire program P we need to find only one
nonterminating loop L. This can be done in parallel. Alternatively, the procedure
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Prover (CFG P , Loop L)
h := header node of L
e := exit node of L in P
P ′ := Underapproximate(P, e)
L′ := refined loop L in P ′

if ¬ Reachable(P ′, h) then
return Unknown, ⊥

fi
Π := {π | π feasible path to h in P ′}
for all π ∈ Π do

P ′ := π :: L′ // concatenation
if Validate(P ′) then

return NonTerminating, P ′

fi
done
return Unknown, ⊥

Underapproximate (CFG P , Node e)
κ := [ ]
while Reachable(P, e) do

π := feasible path to e in P
κ := π :: κ
P := Refine(P, π)
if the n most recent paths in κ

are repeating then
P := Strengthen(P,First(κ))

fi
done
return P

Refine (CFG P , Path π)
(l0 T0 l1)(l1 T1 l2) . . . (ln−1 Tn−1 ln) := π
Calculate WPs ψ1, ψ2 . . . ψn−1 along π

so {ψ1}T1{ψ2}T2 . . . {ψn−1}Tn−1{true}
are valid Hoare-triples.

Find p s.t. ψp 6= false ∧ ∀q < p. ψq = false

P := P |(Tp−1,¬ψp)

return P

Strengthen (CFG P , Path π)
(l0 T0 l1)(l1 T1 l2) . . . (ln−1 Tn−1 ln) := π
Calculate WPs ψ1, ψ2 . . . ψn−1 along π

so {ψ1}T1{ψ2}T2 . . . {ψn−1}Tn−1{true}
are valid Hoare-triples.

Find p s.t. ψp 6= false ∧ ∀q < p. ψq = false

W := {v | v gets updated in subpath
(lp Tp lp+1) . . . (ln−1Tn−1ln)}

ρp := QE(∃W. ψp)
P := P |(Tp−1,¬ρp)
return P

Validate (CFG P ′)
L′ := the outermost loop in P ′

M := {l | l is nondet assignment node in L′}
for all l ∈ M do

Calculate invariant invl at node l in P ′

let nondet statement at l be
v := nondet(); assume(ϕ);

if invl → ∃v. ϕ is not valid then
return false

fi
done
return true

Fig. 3. Algorithm Prover for underapproximation to synthesize a reachable nontermi-
nating loop. To prove nontermination of P , Prover should be run on all loops L.

can be implemented sequentially, but then timeouts are advisable in Prover,
as the procedure might diverge and cause another loop to not be considered.

The subprocedure Underapproximate performs the search for an underap-
proximation such that we can prove the loop is never exited. While the loop exit
is still Reachable (a.k.a. “unsafe”), we use the subprocedure Refine to exam-
ine paths returned from an off-the-shelf safety prover. Here the notation P |(Ti,ϕ)

denotes P with an additional assume(ϕ) added to the transition Ti. From the
postcondition true (used to indicate success in reaching the loop exit), we use a
backwards precondition analysis to find out which program states will inevitably
end up in the loop exit. We continue this precondition calculation until either
we have reached the beginning of the path or until just before we have reached
a nondeterministic assignment that leads to the precondition false. We then
negate this condition as our underapproximating refinement.
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In some cases our refinement is too weak, leading to divergence. The difficulty
is that in cases the same loop path will be considered repeatedly, but at each
instance the loop will be unrolled for an additional iteration. To avoid this prob-
lem we impose a limit n for the number of paths that go along the same locations
(possibly with more and more repetitions). We call such paths repeating. If we
reach this limit, we use the subprocedure Strengthen to strengthen the precon-
dition, inspired by a heuristic by Cook and Koskinen [8]. Here we again calculate
a precondition, but when we have found ψp, we quantify out all the variables that
are written to after ψp and apply quantifier elimination (QE) to get ρp. We then
refine with ¬ρp. This leads to a more aggressive pruning of the transition rela-
tion. This heuristic can lead to additional incompleteness.

0

1

2

3 4

5

6

Error

ϕ

i ≥ 0

i < 0

k ≥ 0
k < 0

i := i− 1
skip

skip

Example. Consider the instrumented pro-
gram to the right. Suppose we have initially
ϕ , i ≥ 0. We might get cex1 : 0 → 1 →
2 → 3 → 5 → 1 → 6 as a first counterexample.
The Refine procedure finds the weakest precon-
dition k ≥ 0∧i = 0 at location 1. Adding its nega-
tion to ϕ and simplifying the formula gives us
ϕ , (i ≥ 0) ∧ (k < 0 ∨ i ≥ 1). Now we may get
cex2 : 0 → 1 → 2 → 3 → 5 → 1 → 2 → 3 →
5→ 1→ 6 as next counterexample, and Refine
updates ϕ , (i ≥ 0) ∧ (k < 0 ∨ i ≥ 2). Now we
may get cex3 : 0→ 1→ 2→ 3→ 5→ 1→ 2→
3 → 5 → 1 → 2 → 3 → 5 → 1 → 6 as next counterexample. Note that cex1,
cex2, cex3 are repeating counterexamples and if we just use the Refine pro-
cedure, Underapproximate gets stuck in a sequence of infinite counterexam-
ples. Now Strengthen identifies the repeating counterexamples, considers cex1

and calculates the weakest precondition ψ1 , k ≥ 0∧ i = 0. It then existentially
quantifies out variable i as it gets modified later along cex1. We get ∃i. k ≥ 0∧ i =
0, and quantifier elimination yields ρ1 , k ≥ 0. Clearly ψ1 entails ρ1. Adding ¬ρ1
to ϕ and simplifying the formula we get ϕ , i ≥ 0 ∧ k < 0. Now all repeating
counterexamples are eliminated, the program is safe, and we have obtained a
closed recurrence set witnessing nontermination of the original program.

In the Underapproximate procedure, once there are no further counterex-
amples to safety of P , we know that in P the loop exit is not reachable. The
procedure returns the final underapproximation (denoted by P ′) that is safe.

When Underapproximate returns to Prover, we check if in P ′ the original
loop L after refinements has a closed recurrence set. We refer to the refined loop
as L′. In order to check the existence of a closed recurrence set, we first need to
ensure that L′ is reachable in P ′ even after the refinements. We again pose this
problem as a safety/reachability problem. This time we mark the header node of
L′ as an error location in P ′ and hope that P ′ is unsafe. If P ′ is safe then clearly
we have failed to prove nontermination and we report the result as unknown. If
P ′ is unsafe, then the counterexample to its safety is a path to the header of L′.
We enumerate all such paths to the header of L′ in a set Π (generated lazily
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in our implementation). For each such path π ∈ Π we then create a simplified
CFG P ′ by concatenating π to L′, thus eliminating other paths to L′.

At this point, we are sure that the header of L′ is reachable and there is no
path that can reach the exit location of L′. However refinements in Underap-
proximate may have restricted the nondet statements inside L′ by strength-
ening the assume statements associated with them. Thus a reachable state
at the nondeterministic assignment node may not have a successor along its

0

1

2

3

4 5

6

7

Error

i == 10

i == 10

i 6= 10

j := nondet()
assume(ϕ)

j ≥ 4

j < 4

i := i + 1

i := i− 1

skip

Fig. 4. Program showing why we
need Validate procedure

outgoing edge. This would bring our alleged in-
finite execution to a halt. The safety checker
cannot detect this since then the path just gets
blocked at this node, and the error location at
the exit of L′ cannot be reached.

Example. Consider the instrumented pro-
gram in Fig. 4. Suppose initially ϕ , true. The
original program (without instrumentation) is
clearly terminating. Our algorithm might give
cex1 : 0 → 1 → 2 → 3 → 4 → 6 → 1 → 7
as the first counterexample. The nondet state-
ment at node 2 gets restricted by updating
ϕ , (j ≤ 3 ∨ i == 9). Now we might get
cex2 : 0 → 1 → 2 → 3 → 5 → 6 → 1 → 7
as the next counterexample. Our algorithm re-
stricts the nondet statement at node 2 by up-
dating ϕ , (j ≤ 3∨ i == 9)∧ (j ≥ 4∨ i == 11).

However now there are no further coun-
terexamples, and the safety checker returns
safe. The state s � i = 10 at node 2 has no
successor along the outgoing edge as there is
no way to satisfy the condition ϕ and the execution is halted, so it would be
unsound to report the result as Nonterminating.

Note that at first it may appear that adding another outgoing edge to node
2 with j := nondet(); assume(¬ϕ); and marking the next node as an error node
would help us catch the halted execution. However the problem is that this would
discover again all of the previously eliminated counterexamples as well. Thus we
need a special check by the Validate procedure, which we describe next.

Validate takes as input the final underapproximation P ′. It first calculates
a location invariant at every nondet. assignment node inside the outermost loop
L′ in P ′. Let l be a nondet. assignment node with: v := nondet(); assume(ϕ); Let
inv be a location invariant at l. Validate then checks if (6) is valid. This formula

inv→ ∃v. ϕ (6)
checks if for all reachable states at l, a choice can be made
for the nondet assignment obeying ϕ (and thus Condition
(4) holds). Validate returns true iff (6) holds for all nondet statements in L′.

Example. Consider the program in Fig. 1(f). Using a standard invariant gen-
erator we calculate the invariant i ≥ 0 before line 4. Substituting in (6) we get,
i ≥ 0 → ∃i′. i′ ≥ 0. Clearly the formula is valid. Note that in most of the cases
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even the weakest invariant true can be sufficient to prove validity of (6). In this
example as well we can easily prove that true→ ∃i′. i′ ≥ 0 is valid.

Moreover, consider the program in Fig. 4. Suppose ϕ , (j ≤ 3 ∨ i == 9) ∧
(j ≥ 4∨ i == 11). Using an invariant generator, we obtain the location invariant
i = 10 at location 2. Then (6) becomes i = 10→ ∃j. (j ≤ 3∨i = 9)∧(j ≥ 4∨i = 11).
Clearly the formula is not valid. In this case Validate returns false.

If Validate returns true, we are sure that every reachable state at the
nondeterministic assignment node in L′ has a successor along the edge. At this
point, we report nontermination and return the final underapproximation P ′ of
P as a proof of nontermination for P : P ′ is a closed recurrence set.

Note that as invariants are overapproximations, we may report unknown in
some cases even when the discovered underapproximation actually does have a
closed recurrence set. However, the check is essential to retain soundness.

Theorem 3 (Correctness of Prover for Nontermination). Let P be a
program and L a loop in P . Suppose Prover (P,L) = Nonterminating, P ′. Then
P is nonterminating.

4 Nested Loops if (i == 10) {
while (i > 0) {

i := i − 1;
while (i == 0)

skip;
}
assert(false);

}

Our algorithm can handle nested loops easily. That is
a part of the beauty of the reduction to safety, as ex-
isting safety provers (e.g. SLAM, Impact, etc.) han-
dle nested loops with ease. Note that technically we
only need to consider an outermost loop. Consider the
instrumented program with nested loops to the right.
Here the outer loop decreases the value of i 10 times and then it is the inner loop
that is nonterminating. However, it suffices only to consider the outermost loop
for safety as the assert(false) at the end of the outer loop is not reachable, but
the head of the outer loop is reachable, so that we have proved nontermination.

:::::::::::
assume(ϕ);
while (k ≥ 0) {

k := k + 1;
j := k;
while (j ≥ 1)

j := j− 1;
}
:::::::::::::::
assert(false);

Tricky example. We close with an example that par-
tially explains the advantage seen for our tool over TNT
(discussed in Sect. 5). Consider the program to the right
(already shown with our algorithm’s

::::::::::::::::
instrumentation, ini-

tially with ϕ , true). This program clearly does not ter-
minate, yet TNT will fail to prove it. In fact, our imple-
mentation of TNT which follows the strategy discussed
for enumerating lassos [16] diverges looking at larger and
larger cyclic paths (i.e. straight-line code from a location
back to that location). The difficulty here is that each cyclic path is well-founded.
Consider e.g. this cyclic path from the head h of the outer loop back to h:

k ≥ 0, k := k + 1, j := k, j ≥ 1, j := j− 1, j < 1, k ≥ 0

This path is well-founded. In fact the path cannot be repeated. The root of
the problem is the command sequence j ≥ 1, j := j−1, j < 1, which tells us that
j goes from exactly 1 to 0. Because j = 1 before entering the inner loop, we know
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that k = 1, thus by the k := k + 1 command we know that k = 0 at the start of
the loop’s execution. Thus the command sequence respects the following condi-
tion: k′ > k∧k′ ≤ 1, and thus it is well-founded. Hence, the lasso-based tool TNT
will never be able to prove nontermination of this program. The tool AProVE
cannot prove such aperiodic nontermination for nested loops either [5].

Our approach, however, does not fall victim to this problem. It will find the
path: k < 0, resulting in ϕ , k ≥ 0. As assert(false) is unreachable with this
restriction (and the loop is still reachable), we have proved nontermination.

5 Related work

Automatic tools for proving nontermination of term rewriting systems include
[14, 23]. However, while nontermination analysis for term rewriting considers the
entire state space as legitimate initial states for a (possibly infinite) evaluation
sequence, our setting also factors in reachability from the initial states.

Static nontermination analysis has also been investigated for logic programs
(e.g. [24, 31]). Most related to our setting are techniques for constraint-logic pro-
grams (CLPs) [25]. Termination tools for CLPs (e.g. [25]) can in cases be used to
prove nontermination of imperative programs (e.g. Julia [26] can show nontermi-
nation for Java Bytecode programs if the abstraction to CLPs is exact, but gives
no witness like a recurrence set to the user). The main difficulty for imperative
programs is that typically overapproximating abstractions (in general unsound
for nontermination) are used for converting languages like Java and C to CLPs.

TNT [16] uses a characterization of nontermination by recurrence sets. We
build upon this notion and introduce closed recurrence sets in our formalization,
as an intermediate concept during our nontermination proof search. In contrast
to us, TNT is restricted to programs with periodic “lasso-shaped” counterexam-
ples to termination. We support unbounded nondeterminism in the program’s
transition relation, whereas TNT is restricted to deterministic commands.

The tool Invel [30] analyzes nontermination of Java programs using a com-
bination of theorem proving and invariant generation. However, Invel does not
provide a witness for nontermination. Like Brockschmidt et al. [5], we were un-
able to obtain a working version of Invel. Note that in the empirical evaluation
by Brockschmidt et al. [5], the AProVE tool (which we have compared against)
subsumed Invel on Invel’s data set. Finally, Invel is only applicable to deter-
ministic (integer) programs, yet our approach allows nondeterminism as well.

Atig et al. [1] describe a technique for proving nontermination of multi-
threaded programs, via a reduction to nontermination reasoning for sequential
programs. Our work complements Atig et al., as we provide improvements to
the underlying sequential tools that future multithreaded tools can make use of.

The tool TRex [19] combines existing nontermination proving techniques
with a Terminator-like [9] iterative procedure. Our new method should com-
plement TRex nicely, as ours is more powerful than the underlying nontermi-
nation proving approach previously used [16].
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AProVE [13] uses SMT to prove nontermination of Java programs [5]. First
nontermination of a loop regardless of its context is shown, then reachability of
this loop with suitable values. Drawbacks are that they require recurrence sets
to be singletons (after program slicing) or the loop conditions to be invariants.

Gurfinkel et al. [18] present the CEGAR-based model checker Yasm which
supports arbitrary CTL properties, such as EG pc 6= END, denoting nontermi-
nation. Yasm implements a method of both under and over-approximating the
input program. Unfortunately, together with the author of Yasm we were not
able to get the tool working on our examples [17]. We suspect that our approach
will be faster, as it uses current safety proving techniques, i.e. Impact [20] rather
than Slam-style technology [2]. This is a feature of our approach: any off-the-
shelf software model checker can be turned into a nontermination prover.

Nontermination proving for finite-state systems is essentially a question of
safety [3]. Nontermination and/or related temporal logics are also supported for
more expressive systems, e.g. pushdown automata [28].

Recent work on CTL proving for programs uses an off-the-shelf nontermina-
tion prover [8]. We use a few steps when treating nondeterminism which look
similar to the approach from [8]. The key difference is that our work provides a
nontermination prover, whereas the previous work requires one off-the-shelf.

Gulwani et al. [15] (Claim 3), make a false claim that is similar to our own.
Their claim is false, as a nondeterministic program can be constructed which
represents a counterexample. Much of the subtlety in our approach comes from
our method of dealing with nondeterminism.

6 Experiments

We have built a preliminary implementation of our approach within the tool
T2 [10, 4]4 and conducted an empirical evaluation with it against these tools:

– TNT [16], the original TNT tool was not available, and thus we have reim-
plemented its constraint-based algorithm with Z3 [11] as SMT backend.

– AProVE [13], via the Java Bytecode frontend, using the SMT-based non-
termination analysis by Brockschmidt et al. [5].

– Julia [29], which implements an approach via a reduction to constraint logic
programming described by Payet and Spoto [26].

As a benchmark set, we used a set of 492 benchmarks for termination analysis
from a variety of applications also used in prior tool evaluations (e.g. Windows
device drivers, the Apache web server, the PostgreSQL server, integer approx-
imations of numerical programs from a book on numerical recipes [27], integer
approximations of benchmarks from LLBMC [21] and other tool evaluations).5

Of these, 81 are known to be nonterminating and 254 terminating. For 157
examples, the termination status is unknown. These examples include a program
whose termination would imply the Collatz conjecture, and the remaining ex-
amples are too large to render a manual analysis feasible. On average a CFG in

4 We will make our implementation available in the next source code release of T2.
5 Download: http://www0.cs.ucl.ac.uk/staff/C.Fuhs/safety-nontermination
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(a) (b) (c)
Nonterm TO No Res Nonterm TO No Res Nonterm TO No Res

Fig. 3 51 0 30 0 45 209 82 3 72

AProVE 0 61 20 0 142 112 0 139 18

Julia 3 8 70 0 40 214 0 91 66

TNT 19 3 59 0 48 206 32 12 113

Fig. 5. Evaluation success overview, showing the number of problems solved for each
tool. Here (a) represents the results for known nonterminating examples, (b) is known
terminating examples, (c) is (previously) unknown examples.

our test suite has 18.4 nodes (max. 427 nodes) and 2.4 loops (max. 120 loops).
Unfortunately each tool requires a different machine configuration, and thus a

direct comparison is difficult. Experiments with our procedure were performed on
a dualcore Intel Core 2 Duo U9400 (1.4 GHz, 2 GB RAM, Windows 7). TNT was
run on Intel Core i5-2520M (2.5 GHz, 8 GB RAM, Ubuntu Linux 12.04). We ran
AProVE on Intel Core i7-950 (3.07 GHz, 6 GB RAM, Debian Linux 7.2). Note
that the TNT-/AProVE-machines are significantly faster than the machine our
new procedure was run on, thus we can make some adjusted comparison between
the tools. For Julia, an unknown cloud-based configuration was used. All tools
were run with a timeout of 60s. When a tool returned early with no definite
result, we display this in the plots using the special “NR” (no result) value.

We ran three sets of experiments: (a) all the examples previously known to be
nonterminating, (b) all the examples previously known to be terminating, and
(c) all the examples where no previous results are known. With (a) we assess
the efficiency of the algorithm, (b) is used to demonstrate its soundness, and (c)
checks if our algorithm scales well on relatively large and complicated examples.
The results of the three sets of experiments are given in Fig. 5, which shows for
each tool and for each set (a)–(c) the numbers of benchmarks with nontermina-
tion proofs (“Nonterm”), timeouts (“TO”), and no results (“No Res”). (Proofs
of termination, found by AProVE and Julia, are also listed as “No Res”.)

# Paths Nonterm Time [s]

2 133 272
4 133 301
6 129 264
∞ 123 272

Fig. 6. Repeated paths be-
fore calling Strengthen

On the 89 deterministic instances of our bench-
mark set, our implementation proves nontermina-
tion of 33 examples, and TNT of 21 examples.
We have also experimented with different values
for the number of repeated paths before invoking
Strengthen. The results are reported in Fig. 6
(runtimes are for successful nontermination proofs).

Fig. 7 charts the difference in power and performance between our imple-
mentation and TNT in a scatter plot, in log scale. Here we have included all
programs from (a)–(c). Each ‘x’-mark in the plot represents an example from the
benchmark. The value of the x-axis plots the runtime of TNT and the y-axis
value plots the runtime of our procedure on the same example. Points under the
diagonal are in favor of our procedure. Thus, the more ‘x’-marks there are in the
lower-righthand corner, the better our tool has performed.

Discussion. Figs. 5(a&c) demonstrate that our technique is overwhelmingly
the most successful tool (Fig. 5(b) confirms simply that no tool has demonstrable
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Fig. 7. Evaluation results of our
procedure vs. TNT. Scatter plot in
log scale. Timeout=60s. NR=“No
Result”, indicating failure of the
tool.

soundness bugs). The poor precision of
AProVE & Julia is mainly due to the non-
deterministic updates originally present in
many of the benchmarks and also introduced
by the (automated) conversion of the bench-
marks to Java (the two tools’ input syntax).
This shows the lack of reliable support of non-
determinism in today’s nontermination tools.

The TNT algorithm requires outright
that nondeterminism must not occur in the
input. Our implementation of TNT softens
this requirement slightly: parts of the pro-
gram with nondet-assignments are allowed as
long as they are not used during the synthesis
of recurrence sets.

Finally, we observe in Fig. 6 that the Strengthen procedure provides ad-
ditional precision for our approach without harming performance.

7 Conclusion

We have introduced a new method of proving nontermination. The idea is to split
the reasoning in two parts: a safety prover is used to prove that a loop in an
underapproximation of the original program never terminates; meanwhile failed
safety proofs are used to calculate the underapproximation. We have shown that
nondeterminism can be easily handled in our framework while previous tools
often fail. Furthermore, we have shown that our approach leads to performance
improvements against previous tools where they are applicable.

Our technique is not restricted to linear integer arithmetic: Given suitable
tools for safety proving and for precondition inference, in principle our approach
is applicable to any program setting (note that the Strengthen procedure is
just an optimization). For future work, e.g. heap programs are a highly promising
candidate for nontermination analysis via abduction tools for separation logic [6].

This technical report is an extended version of the conference paper [7].
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termination proofs in the dependency pair framework. In Proc. IJCAR ’06.
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A Proofs

In this appendix we provide the proofs for all theorems introduced in our paper.

Theorem 1 (Closed Recurrence Sets are Recurrence Sets). Let G be
a closed recurrence set for R with initial states I. Then G is also an (open)
recurrence set for R with initial states I.

Proof. We only need to show Condition (2), which follows directly from Condi-
tion (4) and Condition (5). ut

Theorem 2 (Open Recurrence Sets Always Contain Closed Recur-
rence Sets). There exists a recurrence set G for a transition relation R with
initial states I iff there exist an underapproximation R′ with initial states I ′ and
G′ ⊆ G such that G′ is a closed recurrence set for R′ with initial states I ′.

Proof. “⇐”: Any closed recurrence set G′ for some transition relation R′ with
initial states I ′ with R′ ⊆ R and I ′ ⊆ I is also a recurrence set for the transition
relation R with initial states I.

“⇒”: Suppose G is a recurrence set for the transition relation R with initial
states I. Thus there must exist an infinite R-path π in G with

π , s0
R−→ s1

R−→ s2
R−→ . . .

and s0 ∈ I such that {si | i ≥ 0} ⊆ G. We now set G′ = {si | i ≥ 0}, I ′ = {s0},
and R′ = {(si, si+1) | (si, si+1) ∈ π}. Thus, I ′ ⊆ I and R′ ⊆ R hold by
construction, making R′ with initial states I ′ an underapproximation of R with
initial states I, and G′ ⊆ G is a closed recurrence set for R′ with initial states
I ′. ut

For the proof of correctness of our method, we still need the following con-
cepts and a lemma:

Let MP ′ be the set of all memory states in P ′. Let RL′ ⊆ MP ′ ×MP ′ be
the composite transition relation of L′. Let IL′ be the set of initial states for L′.
Formally IL′ is the strongest postcondition after execution of π.

Lemma 1 (Prover Finds Closed Recurrence Sets for Loops). Let P be
a program and L a loop in P . Suppose Prover (P,L) = Nonterminating, P ′.
Then the set of all reachable memory states at the loop header h of L′ forms a
closed recurrence set for the composite relation RL′ with initial states IL′ .

Proof. Let Θ ⊆ M represent the set of all reachable memory states at the loop
header h of L′. We need to show Conditions (3), (4), and (5) for Θ.

For Condition (3) for Θ: As L′ is reachable via π (because Reachable (P ′, h)
holds), we must have ∃s. IL′(s). We have IL′ ⊆ Θ. Thus we have ∃s.IL′(s)∧Θ(s).
Thus we have Condition (3) for Θ.

For Condition (4) for Θ: Let s such that Θ(s). We need to show that there ex-
ists some s′ such that RL′(s, s

′) holds. As finally the safety check in the Under-
approximate loop succeeds, we know that s cannot have a successor along the
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exit edge of L. (Otherwise the error location would be reachable and the safety
checker would catch it.) By construction of deterministic conditional nodes, the
memory state s at h must have a successor along the guard edge of L′.

Every reachable memory state at every deterministic conditional node of L
must have a successor along one of its outgoing edges. Similarly, every reachable
memory state at every deterministic assignment node of L must have a successor
along its outgoing edge. As Validate returns true, every reachable memory
state at a nondeterministic assignment node in L′ also has a successor along its
outgoing edge. This ensures that there must be a loop path π from memory state
s to a memory state s′ at the loop header going through the loop body such that
Rπ(s, s′). This ensures that RL′(s, s

′). Thus we have Condition (4) for Θ.
For Condition (5) for Θ: Let s, s′ such that Θ(s) ∧ RL′(s, s′). Clearly s′ is

also a reachable memory state at the loop header of L′ and the definition of Θ
implies Θ(s′). Thus we have Condition (5) for Θ. ut

Now we are ready for the proof of Thm. 3.

Theorem 3 (Correctness of Prover for Nontermination). Let P be a
program and L a loop in P . Suppose Prover (P,L) = Nonterminating, P ′. Then
P is nonterminating.

Proof. Let L′ be the loop in P ′. Let π be the path to L′ in P ′. Let L be the
corresponding loop in P before the refinements.

Note that every refinement in Prover either restricts the assume statement
at the initial node li representing the precondition for P or restricts the assume

statement associated with a nondeterministic assignment statement. Thus every
edge (l, T, l′) in P gets refined to the edge (l, T ′, l′) such that RT ′ ⊆ RT .

Now let s such that IL′(s). Then we must have IL(s), as the memory state
s must be reachable at the header node of L in P as well. This gives IL′ ⊆ IL.
Let s, s′ such that RL′(s, s

′). We must have RL(s, s′). This gives RL′ ⊆ RL.
From Lemma 1 we have that the reachable memory states at the loop header

of L′ form a closed recurrence set for RL′ with initial memory states IL′ . Now
Thm. 2 implies the existence of a recurrence set for RL with initial states IL.
This proves that P is nonterminating. ut
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