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Abstract. Many functional programs and higher order term rewrite
systems contain, besides higher order rules, also a significant first order
part. We discuss how an automatic termination prover can split a rewrite
system into a first order and a higher order part. The results are appli-
cable to all common styles of higher order rewriting with simple types,
although some dependency pair approach is needed to use them.
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1 Introduction

Termination of term rewrite systems has been an area of active research for
several decades. In recent years the field of automatically proving termination
has flourished, and several strong provers have been developed to participate
in the annual International Termination Competition; there is a wide range
of automated methods available for (and used in) these tools: the dependency
pair framework [3,17,14], polynomial and matrix orderings [9,8], recursive path
orderings [7], semantic labelling [36], and many more techniques.

In higher order termination, however, fewer results have been obtained so
far. Recursive and monotonic semantic path orderings have been generalised to
a higher order setting [21,5,6], but other automatable term orderings have not
(yet?) been extended to this setting.

In the last three years there has been a lot of work on higher order dependency
pair approaches and several strong results have been obtained, such as the ability
to use argument filterings and to restrict to non-collapsing dependency pairs
[28,32,26]. But after simplifying the ordering requirements on terms with this
approach, we still have little but a higher order RPO to compare them.

However, in many (realistic) term rewrite systems, only a small number of
the rules use functional variables or λ-abstraction. The majority of the rules
usually consists entirely of first order symbols. It would therefore be convenient
to analyse termination of at least those rules directly with first order techniques.
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The progress in dependency pair approaches opens possibilities: we can split
the dependency pairs into those which could be considered first order and the
higher order remainder, and analyse termination of these parts separately. While
the first order dependency pairs classically still need to be regarded together with
all rules from the underlying system (some of which are higher order), it may be
possible to remove these higher order rules, or replace them by first order ones.

In this paper we discuss how to reduce the termination of an orthogonal or
finitely branching higher order term rewrite system to the termination of a first
order (sub-)system and a (smaller) dependency pair problem. The technique is
comparable to a usable rules [14,18] approach, but focusses on first order rules.
We aim to be as general as possible by not choosing a definition of dependency
pairs and assuming as little as possible about the formalism. Consequently, the
results presented in this paper can be used for all the common styles of higher
order rewriting, and with both dynamic and static dependency pairs [31,32].

We have implemented the method in the higher order termination prover
WANDA [24], using the tool AProVE [12] to analyse termination of the first
order part of a higher order rewrite system. As far as we know, this is the first
time a tool for termination of higher order rewriting is combined with a first
order termination tool. Experimental results (see Section 5) demonstrate that
this combination significantly improves the strength of the prover.

Higher Order Rewriting “Higher order rewriting”, rewriting with some form
of functional variables, comes in several forms: typed and untyped, with and
without λ-abstraction. To understand the relevance of this work, it should be
noted that these styles are fundamentally different.

Without giving complete definitions, consider the system with two function
symbols: app : o⇒o⇒ o (which takes two arguments of type o and returns an
object of type o) and lam : (o⇒o)⇒o (which takes a functional argument of type
o⇒o and returns an object of type o), and a single rule app (lam F ) x→ F x.
In simply-typed applicative systems, terms are built from typed constants and
a binary application operator. The given system terminates, because the size
of a term decreases with every reduction step. In higher order systems with λ-
abstraction, β-reduction may increase the size of a term. Here, defining ω =
lam (λx.app x x), there is a loop app ω ω → (λx.app x x) ω →β app ω ω.

Since terms in a formalism with λ-abstraction may include anonymous func-
tions (such as λx.app x x) whose presence may give rise to non-termination,
these formalisms cannot easily be simulated with applicative systems. In addi-
tion, in an applicative system it is impossible to express rules like this derivation
rule:

D (λx.sin(Z(x)))→ λx.(D (λy.Z(y)) x)× cos(Z(x))

As we will see below, applicative systems can be transformed into standard first
order TRSs via some kind of uncurrying; thus, this work is primarily relevant
for formalisms which do have λ-abstraction.

Related work Other work on using first order techniques in higher order rewrit-
ing is often focussed on applicative systems, where only terms without binders
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like λ are considered. By [22], currying untyped TRSs does not affect termination
and certain other properties. In [19] an uncurrying transformation from untyped
applicative systems to standard first order TRSs is used, which preserves and
reflects termination. The result of [13] is similar, but works on a more restricted
set of problems, and presents termination techniques that operate directly on ap-
plicative systems. In [1,2] simply typed applicative systems are discussed; here,
leading variables are eliminated by instantiating them with “template” terms of
the right type. Having this, they can be transformed into many-sorted TRSs.

However, these results do not apply to systems with binders and β-reduction,
nor does it seem likely that they can easily be extended to such a formalism.

In [11] termination is studied for Haskell programs, a (higher order) poly-
morphic functional language, via a translation to first order term rewriting. The
approach relies on symbolic partial evaluation of a start term, which is made
feasible essentially by Haskell’s deterministic evaluation strategy. In a general
term rewrite setting, however, there is no fixed strategy, which renders the con-
struction from [11] infeasible. Moreover, we are interested in termination of all
terms, while the construction in [11] considers only terms of a given form.

In this paper, we consider typed higher order rewriting which may have binders;
we show how part of a higher order termination problem can be dealt with
as a first order problem (leaving the truly higher order part to higher order
techniques). An early work in this context, [33], considers termination of the
combination of typed λ-calculus with first order TRSs. A first modularity result
with higher order rules is given in [20], where the authors show that a terminating
first order system combined with a number of higher order rules is terminating
if the higher order rules satisfy certain restrictions, and the first order part is
non-duplicating. The restriction on the first order rules is not present in the
current work, nor do we pose limitations on the higher order part.

Another relevant work is [32], which studies static dependency pairs for a
subset of the HRS formalism and defines a usable rules approach. The usable
rules for a set of first order dependency pairs are all first order. However, this
approach does not give an equivalence result like our Theorem 9. In addition,
we do not choose a definition of dependency pairs or a formalism.

2 Preliminaries

As stated in the introduction, we aim for generality. Rather than focussing on a
formalism, we will discuss the basic definitions used in common styles of higher
order rewriting with simple types. Consequently, these definitions are incomplete,
but our results can be used for instance with AFSs [21], HRSs [29] and CRSs [23].

Types Given a set of base types B, types are built according to the grammar:

T = B | T ⇒T

The ⇒ associates to the right; a type of the form σ ⇒ τ is called functional.
Every type can be written in the form σ1⇒ . . .⇒σn⇒ ι with n ≥ 0 and ι ∈ B.
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Terms A term is an expression s over a set F of typed function symbols and a
set V of typed variables, for which we can derive s : σ for some type σ using the
following recursive rules (which also define the set FV (s) of free variables of s):

(var) x : τ if x : τ ∈ V FV (x) = {x}
(fun) f : τ if f : τ ∈ F FV (f) = ∅
(abs) λx.s : σ⇒τ if x : σ ∈ V and s : τ FV (λx.s) = FV (s) \ {x}
(app) s · t : τ if s : σ⇒τ and t : σ FV (s · t) = FV (s) ∪ FV (t)

The · operator associates to the left and is usually omitted; a term s t r is short
for (s · t) · r. We consider term equality modulo renaming of bound variables
(α-conversion), so λx.s = λy.s[x := y] if y does not occur in s.
Note that this is a general definition of terms; there are several higher order
formalisms which do not allow, for instance, a term (λx.s) · t, or f s : σ⇒τ .

Define head(s), the head symbol of s, as the first part of an application:
head(s) = s if s is a variable, constant or abstraction, and head(u v) = head(u).

Meta-terms Some formalisms, like Klop’s CRSs [23] or Blanqui’s definition of
IDTSs [4], use special meta-terms to construct rules. A meta-term is a typed
expression generated with clauses (var), (fun), (abs), (app) and additionally:

(meta) Z(s1, . . . , sn) : τ if s1 : σ1, . . . , sn : σn and Z : [σ1, . . . , σn]⇒τ ∈MV

whereMV is a fresh set of meta-variables, each equipped with a vector of input
types (σ1, . . . , σn, where n may be 0) and an output type (τ); the si are meta-
terms. Evidently, all terms are also meta-terms. Meta-terms can be used to match
a term which may contain some bound variables, for instance in a rule like:

map (λx.F (x)) (cons h t)→ cons F (h) (map (λx.F (x)) t)

Note that not all higher order formalisms use meta-variables; for instance Jouan-
naud’s and Okada’s AFSs [21] use variables for matching instead, at the price of
some (easy) expressivity. Nipkow’s HRSs [29] also use variables, but here terms
are equivalence classes modulo β/η, which is not always a practical modelling.
In the examples in this paper, we will use meta-variables to define rules.

Contexts and subterms A context is a term containing one occurrence of a
special symbol 2σ : σ. Contexts are usually denoted as C[], and C[] with 2σ

replaced by some t of type σ is denoted C[t]. If s = C[t], then t is a subterm of
s, denoted s� t. If C is non-empty, then t is a strict subterm of s, denoted s� t.

Substitutions A substitution is a type-preserving function mapping variables
and meta-variables to terms; substitutions on a finite domain are usually denoted
[x1 := s1, . . . , xn := sn]. A substitution γ may be applied on (meta-)terms by
placewise replacing variables and meta-variables by their image in γ; depending
on the rewriting formalism the result might be β-normalised. Formally:

xγ = x if x ∈ V, x /∈ dom(γ)
xγ = γ(x) if x ∈ V, x ∈ dom(γ)

(f s1 · · · sn)γ = f (s1γ) · · · (snγ) (f ∈ F , n ≥ 0)
((λx.q) s1 · · · sn)γ = (λx.qγ) (s1γ) · · · (snγ) (n ≥ 0, ∗∗)

Z(s1, . . . , sn)γ = q[x1 := s1γ, . . . , xn := snγ] if γ(Z) = λx1 . . . xn.q
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(**): When substituting an abstraction λx.q, the variable x may not occur in
either domain or range of γ. Using α-conversion, this is always defined. We
assume that γ(Z) has the form λx1 . . . xn.q whenever Z : [σ1, . . . , σn]⇒τ ∈MV.

This definition is incomplete. The cases where formalisms differ, in particular
(x s1 · · · sn)γ with n ≥ 1, are omitted. However, the given cases are the only ones
we will need.

Rules A rewrite rule is a pair l→ r of (meta-)terms such that l and r have the
same type and head(l) is a function symbol or abstraction. Let R be a (possibly
infinite) set of rewrite rules. The rewrite relation →R generated by R is given
by: s →R t if s = C[lγ], t = C[rγ] for some l → r ∈ R, substitution γ and
context C; write s→R,top t if C is empty and s→R,in t otherwise.
Depending on the formalism, this rewrite relation may only be defined on terms
of a given form, for instance β/η-normal form; however, base-type variables and
terms f s1 · · · sn of base type always have such a form if the si do.

A set of rules R is finitely branching if, for any term s, there are only finitely
many different t with s→R t. This is commonly the case when R is finite. A set
of rules is terminating if there is no infinite reduction s0 →R s1 →R . . .

Example 1. An example system we will use throughout this paper is the system
Rlist, a module for list manipulation, with the following function symbols:

nil : list append : list⇒list⇒list reverse : list⇒list
cons : nat⇒list map : (nat⇒nat)⇒list⇒list shuffle : list⇒list

mirror : list⇒list
And moreover ten rules:

append nil l→ l
append (cons h t) l→ cons h (append t l)

reverse nil→ nil
reverse (cons h t)→ append (reverse t) (cons h nil)

shuffle nil→ nil
shuffle (cons h t)→ cons h (shuffle (reverse t))

mirror nil→ nil
mirror (cons h t)→ append (cons h (mirror t)) (cons h nil)
map (λx.F (x)) nil→ nil

map (λx.F (x)) (cons h t)→ cons F (h) (map (λx.F (x)) t)

There is only one really higher order function symbol (map), as its rules use an
abstraction. Intuitively, the first eight rules are first order. Note that mirror has
a duplicating rule, so the result from [20] cannot be used to prove termination.

Remarks Despite our aim for generality, we do make a number of assumptions:

– the requirement that head(l) /∈ V for left-hand sides l of a rule is not present
in Yamada’s STTRSs [35] or (certain variations of) Jouannaud’s AFSs [21];

– we use applicative rather than functional notation (f s1 · · · sn rather than
f(s1, . . . , sn)), where the latter is used in AFSs and Blanqui’s IDTSs [4];
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– unlike in AFSs, we do not assume the presence of a β-rule;
– unlike in CRSs or ERSs, typing is enforced;
– we assume monomorphic, simple types, while more advanced type classes

are regularly used in several of the formalisms.

Only the first of these is essential: all the proofs in this paper pass almost unmod-
ified even if we use functional notation and admit polymorphic types or include
a β-rule. We chose this definition because, through simple transformations, we
can usually obtain a system as described above without affecting termination:
for the removal of head-variables and currying see for instance [25], to ignore
typing embed abstractions into some new symbol T : (term⇒term)⇒term, to
add β-reduction create, for every two types σ, τ , a rule (λx.Z(x)) y → Z(y) with
Z : [σ]⇒ τ ∈ MV, and for dealing with (ML-style) polymorphism, instantiate
all type variables in all closed ways and consider types of the form list(nat) as
base types. These last two transformations lead to an infinite system, but only
in so far as infinity was already implicit in the formalism. If the original system
was finitely branching or orthogonal, the same holds for the result.

Variables or Meta-variables Due to our aim of giving formalism-independent
definitions, matching may be done either with variables or meta-variables. To
ease definitions, we will identify meta-variables without arguments with vari-
ables. Thus, a meta-variable Z : []⇒σ is considered as a variable of type σ. In
theRlist example, l, h and t can be seen as variables, while F is a meta-variable.

3 Splitting the system

To give some formal backing to the intuitive notion of a first order rule, we
partition the signature F into two groups: symbols which have some higher
order potential (i.e., they have a non-base type, there is a rule where they are
not given all arguments allowed by their type, or they match on or rewrite to
such symbols) and symbols which do not. The first group, potentially higher
order symbols, is denoted PHO and the second one, consisting of truly first order
symbols, is denoted TFO. Using this partitioning, we obtain the first order rules
by uncurrying the rules which only contain symbols in TFO.

Splitting the symbols Let A be the set consisting of those function symbols
f : σ1⇒ . . .⇒σn⇒ ι (with ι ∈ B) such that one of the σi is functional, or there is
a rule f s1 · · · sm → r where m < n or the rule contains any abstraction, meta-
variable with arguments or functional (meta-)variable. We define PHO recursively:
PHO contains all symbols in A and, if there is a rule f l→ r where some li or r
contains a symbol in PHO, then also f ∈ PHO. Let TFO = F \ PHO. A term is truly
first order if it consists only of function symbols in TFO and base-type variables.

Example 2. InRlist we have A = {map}. Since the symbol map only occurs in the
map-rules, we have PHO = {map} and hence TFO = {nil, cons, append, reverse,
shuffle, mirror}. Should we add a symbol up : list⇒list and a rule up l→
map (λx.s x) l, then A would still be {map}, but PHO would also include {up}.
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Splitting the rules We say that a rule f l1 · · · ln → r is truly first order if
f ∈ TFO and potentially higher order otherwise; write RTFO for the set of rules
of the first kind and RPHO for the second. Note that if a rule is truly first order
then both sides are truly first order terms.

Example 3. The truly first order rules RTFO of Rlist are those whose left-hand
side has a head symbol from {append, reverse, shuffle, mirror}. The poten-
tially higher order rules RPHO are those with map as the head symbol.

We can safely assume that in the truly first order rules l → r, all variables in r
also occur in l: if this is not the case, the system is obviously non-terminating.

Splitting infinite chains A term rewrite system (first or higher order) is non-
terminating iff there exists a (minimal) infinite chain s1, t1, s2, t2, . . . where:

– each si →R,top ·� ti
– each ti →∗R,in si+1

– the strict subterms of each of the ti are terminating

This observation is at the heart of any dependency pair approach. Now note that
if ever head(ti) ∈ TFO then for all j > i also head(sj), head(tj) ∈ TFO:

Lemma 4. If head(ti) ∈ TFO then also head(si+1), head(ti+1) ∈ TFO.

Proof. Write ti = f u1 · · ·un with f ∈ TFO. As all rules of the form f l1 · · · lm → r
have n = m, a →R,in-step on ti reduces one of the uj . Thus si+1 has the same
head symbol and its immediate subterms are terminating (as they are reducts
from the immediate subterms of ti). Let si+1 = lγ with l → r ∈ RTFO and rγ �

ti+1. Let p be the smallest subterm of r such that pγ�ti+1; since r is a truly first
order term p is either a variable (which, as assumed, also occurs in l), or has the
form g p1 · · · pk with g ∈ TFO. In the former case, si+1�γ(p)�ti+1 is terminating
because the strict subterms of si+1 are, contradiction. Thus g p1 · · · pkγ � ti+1

but (by the choice of p) no pjγ � ti+1; we conclude: head(ti+1) = g ∈ TFO. ut
Corollary 5. If there is an infinite chain, there is one using either only TFO-
rules, or only PHO-rules, for the topmost steps. In the first case, all ti have base
type as well (since f s1 · · · sm : σ⇒τ does not top-reduce if f ∈ TFO).

4 Simplifying the first order part

Using some dependency pair approach, we could now investigate the two possible
forms of chains separately. But does this help us significantly? A priori we cannot
use first order results to prove non-existence of (minimal infinite) TFO-chains,
since even in TFO-chains a step involving higher order symbols might be done in
the →∗R,in-reduction. However, note that the rules in RTFO do not match on the
PHO-symbols and that, by minimality, any higher order subterm can be assumed
to be terminating. Therefore, as we will see, such subterms are mostly harmless.

Splitting with orthogonal rules Orthogonality is a common property in term
rewriting with many nice consequences, including confluence. In first order or-
thogonal systems, termination using an innermost rewriting strategy (which is
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often easier to prove) implies general termination [16].
Orthogonality is not defined for all higher order formalisms; however, where

defined it implies confluence, and coincides with the first order definition on first
order rules (for an overview of such results, see [34, Section 11.6.2]).

We actually use slightly less than orthogonality: we will show that, if R has
unique normal forms and RTFO is overlay, then the potentially higher order rules
can be omitted when studying TFO-chains. It is not in general decidable whether
a system has unique normal forms, but orthogonality of R, which implies both
unique normal forms and RTFO being overlay, is easy to check automatically.

Roughly, the idea is as follows: by unicity of normal forms and the overlay
property, the subterms of all si in a minimal infinite TFO-chain can be assumed
to be normalised. As topmost TFO-steps cannot create PHO-redexes, higher order
subterms anywhere in the chain are normalised, and can be replaced by variables.

We say RTFO is overlay if for all l → r, u → v ∈ RTFO, substitutions γ, δ and
non-empty contexts C: if l = C[l′] with l′γ = uδ, then l′ is a variable.

In Lemmas 6–8 we will assume that all terminating terms s have a unique
normal form, and that RTFO is overlay. Let ν(s) denote the normal form s↓R of
s and, if s = f s1 · · · sn, then ν′(s) = f ν(s1) · · · ν(sn).

Lemma 6 (TFO-steps cannot create PHO-redexes). If all higher order sub-
terms of s are R-normalised – that is, if, when s� q either q = f q1 · · · qn with
f ∈ TFO, or q is in R-normal form – then the same holds for the reducts of s.

Proof. Suppose s has this property and s →R t; we use induction on the size
of s. Since s is not in normal form, s = f s1 · · · sn with f ∈ TFO. If s →R,top t,
therefore, s = lγ, t = rγ with l → r ∈ RTFO; since r contains no higher order
symbols, and higher order subterms of any γ(x) are normalised, the property
holds for rγ. Otherwise t = f s1 · · · s′i · · · sn with si →R s′i; by the induction
hypothesis all higher order subterms of s′i are R-normalised, and by assumption
the same holds for the other sj . ut
Lemma 7 (Normalising Chains). If there exists a minimal infinite chain
s1 →RTFO,top ·� t1 →∗R,in s2 →RTFO,top ·� t2 →∗R,in . . . there exists also a minimal
infinite chain ν′(s1)→RTFO,top ·� q1 →∗RTFO,in

ν′(s2)→RTFO,top ·� q2 →∗RTFO,in
. . .

Proof. For given i, let l → r ∈ RTFO, a subterm p of r and a substitution γ be
such that si = lγ and ti = pγ; let γ↓ be the substitution mapping x to γ(x)↓R
for x in the domain of γ and write l = f l1 · · · ln. Since RTFO is overlay, l′γ↓

cannot be an instance of the left-hand side of a rule for any strict subterm l′ of
l, so each ljγ ↓R is exactly ljγ↓. Let qi = pγ↓; then ν′(si) = lγ↓ →RTFO,top ·� qi.

We can write p = g p1 · · · pm, si+1 = g v1 · · · vm and qi = g u1 · · ·um, where
each uj = pjγ

↓; since pjγ →∗R vj , we have uj ↓R= vj ↓R. Noting that all higher
order subterms of qi are R-normalised, Lemma 6 gives us that uj ↓RTFO

= uj ↓R.
Thus, qi →∗RTFO,in

g ν(u1) · · · ν(um) = ν′(ti) = ν′(si+1) as required. ut
Finally, to get rid of (normalised!) higher order subterms, introduce a variable

⊥ι for all base types ι. For base-type term s, define rep(s) = f rep(s1) · · · rep(sn)
if s = f s1 · · · sn with f ∈ TFO; otherwise rep(s) = ⊥ι. It follows easily that:
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Lemma 8 (Replacing higher order terms by variables). If all higher order
subterms of s are R-normalised, and s→RTFO

t, then rep(s)→RTFO
rep(t).

Proof. With induction on p it is evident that, for base-type terms p, always
rep(pγ) = pγrep, where γrep(x) = rep(γ(x)). Using induction on the position of
the redex in s, this provides the base case (s →RTFO,top t); the induction case,
s = f s1 · · · sn →RTFO,in f s1 · · · s′i · · · sn = t, holds by induction hypothesis. ut

We now have all the preparations to see that if there is an infinite chain with all
head symbols in TFO, there is one on first order terms and with first order rules.

Theorem 9. Let (F ,R) be a higher order rewrite system with unique normal
forms and let RTFO be overlay. Then →R is terminating if and only if:

– there is no minimal infinite chain using only PHO-rules in the →R,top-steps,
and

– RTFO is terminating on truly first order terms

Proof. Suppose (F ,R) is terminating. Then RTFO is also terminating (since
RTFO ⊆ R), and there is no minimal infinite chain at all (since termination
of →R implies termination of →R ∪�), let alone using only PHO-rules.

Suppose both properties hold; by Corollary 5, →R is terminating if in ad-
dition there is no minimal infinite chain using only TFO-rules in the →top-steps.
Towards a contradiction, suppose that such a chain exists. By Lemma 7 there is a
chain which uses only TFO-rules, ν′(s1)→RTFO,top ·� q1 →∗RTFO,in

ν′(s2)→RTFO,top

· � . . .; by Lemma 6 (strict subterms of ν′(s1) are normalised) higher order
subterms are normalised in all terms in the chain. Therefore, by Lemma 8,
rep(ν′(s1))→RTFO,top ·� rep(q1)→∗RTFO,in

rep(ν′(s2))→RTFO,top ·� . . . is an infi-
nite RTFO-chain on truly first order terms, contradicting termination of RTFO. ut

Thus, given an orthogonal system (or at least, a system where RTFO is overlay,
and some property guarantees unicity of normal forms), we can split the ter-
mination proof into two parts: first, some dependency pair approach, where the
dependency pairs for the first order rules can be omitted, and second, proving
RTFO terminating on truly first order terms.

For the latter part, note that only base-type terms top-reduce, and a base-
type, truly first order term corresponds exactly to a purely functional term: we
define uncurry(f s1 · · · sn) = f(uncurry(s1), . . . , uncurry(sn)). The system is
terminating if and only if its uncurried version (a many-sorted TRS) is termi-
nating (using [25, Theorem 5], or with a straightforward induction to show that
uncurry(s)→Runcurry

TFO
uncurry(t) if and only if s→RTFO

t).
Since RTFO is a first order overlay TRS with unique normal forms, it is ter-

minating if it is innermost terminating: by [16] this holds for a locally confluent
overlay TRS, and by e.g. [34] an innermost terminating (so weakly normalising)
TRS with unique normal forms is confluent. Since [10] shows that innermost
termination is persistent (a many-sorted TRS is innermost terminating if and
only if it is innermost terminating without regarding types), we can send the
resulting TRS to any first order termination prover without losing generality,
whether or not this prover is type-conscious.
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Example 10. Rlist is terminating iff the following TRS is terminating:

append(nil, l)→ l
append(cons(h, t), l)→ cons(h, append(t, l))

reverse(nil)→ nil
reverse(cons(h, t))→ append(reverse(t), cons(h, nil))

shuffle(nil)→ nil
shuffle(cons(h, t))→ cons(h, shuffle(reverse(t)))

mirror(nil)→ nil
mirror(cons(h, t))→ append(cons(h, mirror(t)), cons(h, nil))

and there are no infinite chains using for top-steps only the two map-rules.
Termination of RTFO cannot be demonstrated with HORPO, even combined

with dependency pairs and argument filterings (since the first order recursive
path orderings with these techniques cannot handle it). However, a first order
approach using e.g. dependency pairs and a polynomial interpretation to the
natural numbers has no trouble with the resulting first order rules.

As for the higher order part, using the static dependency pair approach from
[32] there is one dependency pair map] (λx.F (x)) (cons x y)→ map] (λx.F (x)) y
with an empty set of usable rules; HORPO easily solves this.

Splitting the rules in a finitely branching system The requirements for
Theorem 9 are essential; consider for example the following system, where the
higher order part lacks the “unique normal forms” property:

f x b→ g x x h (λx.F (x))→ F (a)
g x a→ f x x h (λx.F (x))→ F (b)

Although RTFO (which consists of the two rules on the left) is terminating and
orthogonal, there is an infinite chain with all top-steps in RTFO:

f (h (λx.x)) b→ g (h (λx.x)) (h (λx.x))→ g (h (λx.x)) a
→ f (h (λx.x)) (h (λx.x))→ f (h (λx.x)) b

This happens because the first order part is duplicating, and h (λx.x) a reduces
both to a and to b (the F in the corresponding rules is a meta-variable, so a
β-step is implied). Note that the role of the higher order part could be taken over
by a pair of first order rules, c(x, y)→ x, c(x, y)→ y: RTFO is not Cε-terminating.
Following a technique originally due to Gramlich [15], and occurring in definitions
for usable rules for full termination [14,18,32], we will see that absence of minimal
infinite chains forRTFO holds ifRTFO (seen as a first order TRS) is Cε-terminating.

Roughly, the idea is thus: in a finitely branching system, any term s which is not
headed by a symbol in TFO can be replaced by the list s′ := c t1 (c t2 . . . (c tn⊥))
of its immediate reducts; by the two c-rules, s′ still reduces to all reducts of s.
Doing this replacement everywhere in a term does not affect the applicability
of first order rules. Thus, in a term f s1 · · · sn where all si are terminating, the
transformation can be repeated until only first order symbols, c and ⊥ remain.
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In the following definitions and Lemma 11, let R be finitely branching.
For all base types ι, let ⊥ι be a variable of type ι and let cι : ι⇒ ι⇒ ι be

a new function symbol. Let RCTFO := RTFO ∪ {cι x y → x, cι x y → y | ι ∈ B}.
Now, for terminating base-type terms s we define ψ(s) and A(s) with a shared
induction on →R ∪�, as follows:

– ψ(f s1 · · · sn) = f ψ(s1) · · ·ψ(sn) if f ∈ TFO; ψ(s) = A(s) for other s
– A(s) = Dι({t | s →R t}) (if s : ι), where Dι is a function on finite sets of

terminating terms, defined by: Dι(X) = ⊥ι if X = ∅, and cι ψ(t) Dι(X \{t})
if X is nonempty and t is its smallest element (ordered lexicographically).

Note that {t | s→R t} is finite by the assumption that R is finitely branching.

Lemma 11. If s→R t with s a terminating base-type term, then ψ(s)→∗RC
TFO
ψ(t).

Proof. First note that:

1. for truly first order terms q and substitutions γ whose domain includes
FV (q), if qγ is terminating then ψ(qγ) = qγψ, where γψ(x) = ψ(γ(x))
for x in the domain of γ. This follows immediately with induction on q.

2. Dι(X)→∗RC
TFO
ψ(q) for any q ∈ X, by a straightforward induction on the size

of X. Therefore A(s)→∗RC
TFO
ψ(t) if s→R t.

We prove Lemma 11 by induction on the size of s. If head(s) /∈ TFO, then by
(2), ψ(s) = A(s) →∗RC

TFO
ψ(t). Otherwise, let s = f s1 · · · sn with f ∈ TFO; all si

have base type, so if a step is done in one of the si, we can apply the induction
hypothesis. If s →R,top t then s = lγ, t = rγ for some l → r ∈ RTFO and
substitution γ. Using (1): ψ(s) = ψ(lγ) = lγψ →RC

TFO
rγψ = ψ(rγ) = ψ(t). ut

Theorem 12. A finitely branching higher order term rewrite system (F ,R) is
terminating if:

– there is no infinite chain using only PHO-rules in the →R,top-steps, and
– RCTFO is terminating on truly first order terms

Proof. By Corollary 5, it suffices if termination of RCTFO implies that there is
no minimal infinite chain using only TFO-rules in the →R,top-steps. So suppose
there is such a chain s1 →RTFO,top · � t1 →∗R,in s2 . . . We must see that RCTFO is
non-terminating or, equivalently, that there is an infinite→RC

TFO
·�-reduction, on

truly first order terms. For a term u = f u1 · · ·un with all uj terminating, let
ψ′(u) = f ψ(u1) · · ·ψ(un). Then each ψ′(ti) →∗RC

TFO
ψ′(si+1) by Lemma 11, and

ψ′(si) = ψ′(liγi) = liγ
ψ
i →RTFO,top · � piγ

ψ
i = ψ′(ti) by Observation (1) from its

proof. Thus, ψ′(s1) →RTFO,top · � ψ′(t1) →∗RC
TFO,in

. . . gives the required infinite
reduction. ut
Note that, unlike Theorem 9, Theorem 12 is not an equivalence. Even if R is
terminating, RCTFO may not be. Consequently, if proving termination of RTFO fails,
a (sufficiently advanced) higher order approach might still succeed.

As before, we can uncurry the resulting system to obtain a many-sorted TRS.
This time, however, dropping types may result in losing termination.
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Example 13. Consider the system with six function symbols,

0 : nat avg : nat⇒nat⇒nat fun : (nat⇒nat)⇒nat
s : nat⇒nat check : nat⇒nat apply : nat⇒nat⇒nat

and the following rules:

avg 0 0→ 0 avg x (s (s (s y)))→ s (avg (s x) y)
avg 0 (s 0)→ 0
avg 0 (s 0)→ s 0 apply (fun (λx.F (x))) y → F (check y)

avg 0 (s (s 0))→ s 0 check 0→ 0
avg (s x) y → avg x (s y) check (s x)→ s (check x)

The symbol fun signifies an encoding of a function in the natural numbers, and
apply decodes it. To avoid losing termination, the apply function employs a
check that the function is applied only on a constructor ground term.

This system does not satisfy the requirements from [20], nor can the static
framework from [32] be applied. However, we can use the dynamic approach
from [26]. Thus, by Theorem 12 (not Theorem 9, because the first order part
does not have unique normal forms), it suffices to show termination of the TRS:

avg(0, 0)→ 0 avg(s(x), y)→ avg(x, s(y)) c(x, y)→ x
avg(0, s(0))→ 0 avg(x, s(s(s(y))))→ s(avg(s(x), y)) c(x, y)→ y
avg(0, s(0))→ s(0) check(0)→ 0

avg(0, s(s(0)))→ s(0) check(s(x))→ s(check(x))

And additionally find a higher order reduction pair which satisfies l ≥ r for all
rules, and moreover apply] (fun (λx.F (x))) y > F (check(y)).

For the first part, all rules are strictly oriented with a polynomial interpre-
tation of f0 = 1, fs(x) = x+ 1, favg(x, y) = 3x+ 2y, fcheck(x) = 2x, fc(x, y) =
x+y+1. For the latter part, consider an argument filtering π(check x) = checkπ,
π(s x) = x, π(avg x y) = avgπ. It suffices to find a reduction pair such that:

apply] (fun (λx.F (x))) y > F (checkπ) checkπ ≥ 0 avgπ ≥ avgπ
apply (fun (λx.F (x))) y ≥ F (checkπ) checkπ ≥ checkπ avgπ ≥ 0

Which is satisfied with HORPO, using a precedence fun >F checkπ, avgπ >F 0.

Discussion The restriction to finitely branching systems cannot be dropped,
as might be demonstrated with a higher order adaptation of [30, Example 4.6].
However, in practice it is no great problem: a system given by a finite set of rules,
even polymorphic rules, is finitely branching in common higher order formalisms.

5 Experiments

We have implemented the contributions of this paper in the higher order termi-
nation tool WANDA [24], using a combination of dynamic and static dependency
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pairs. WANDA is a participant in the higher order category of the annual Interna-
tional Termination Competition.3 Here, termination tools compete for power on
benchmarks from several categories, with examples from theTermination Prob-
lem Database (TPDB). This database is a collection of termination problems
from research papers and applications that has been accumulated over the years.4

In the competition of 2010, WANDA could prove termination of 7 out of
the 12 randomly chosen examples from the TPDB in the category Higher-Order
Rewriting - Union Beta, coming a close second to THOR, which could handle the
same examples plus Mixed_HO_10/prefixsum.xml (in the mean time WANDA
can also deal with this example). This shows that WANDA is among the state-
of-the-art higher order termination provers.

We have coupled WANDA with the first order termination tool AProVE [12] as
a black-box to analyse termination of the first order TRSs generated by WANDA.
To assess our contributions empirically, we have conducted experiments on an
Intel Xeon CPU 5140 with four cores clocked at 2.33 GHz, investigating full
termination of in total 152 higher order rewrite systems. As in the termination
competition, the proof attempt is aborted after a timeout of 60 seconds.

The Higher Order category in the current TPDB (v8.0) is not very rich in
examples (there are only 40 benchmarks). Therefore, we additionally consider
higher order termination (union beta) for the 110 (originally untyped) applicative
TRSs of the TPDB which could automatically be assigned a simple type.5 We
assume λ-abstraction is allowed in term formation, even though the rules do not
use it. Of course, this solves a different problem than the one originally intended;
thus these results should not be compared to first order tools analysing the same
examples as untyped applicative systems. Additionally, we tested the systems
from Examples 1 and 13. We did not include examples from the Haskell category,
because WANDA’s type system cannot yet deal with the polymorphism present.

WANDAProVE WANDA without first order back-end

YES 110 100
NO 10 10

MAYBE 25 38
TIMEOUTS 7 4

Avg. runtime 5.17 s 2.90 s

Fig. 1. Experimental results of WANDA with and without AProVE as first order prover

Our experiments, which are summarised in Figure 1, show that WANDA com-
bined with AProVE can deal with all examples where plain WANDA succeeds,
and 10 more. Out of these 10 additional examples, 8 stem from the applicative
benchmarks from the TPDB; the other 2 are the examples used in this paper.

On the benchmarks available in the higher order category of TPDB v8.0, the
number of termination proofs is unchanged. This is not surprising since each of
3 See also http://termination-portal.org/wiki/Termination_Competition.
4 For further information we refer to http://termination-portal.org/wiki/TPDB.
5 A variation of these examples has by now been accepted for the next TPDB version.
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these benchmarks focusses on the higher order aspect, so improvements on the
side of the first order aspect can be expected to have only little impact. Runtime
increases moderately from an average of 2.90 seconds to 5.17 seconds, which
is still far from the timeout of 60 seconds per example, whereas termination
proving power increases by 10%.

For details on our experiments and for access to our example suites, we refer
to http://aprove.informatik.rwth-aachen.de/eval/WANDAProVE/.

6 Discussion

Overview of the technique Using Theorems 9 and 12 we can use a first order
termination prover as a “black box” for a higher order tool, as follows:

1. determine TFO and PHO as described in Section 3, as well as RTFO;
2. if RTFO is overlay and R has unique normal forms, let R′ be the uncurried

form of RTFO; if the system does not satisfy these properties (or we cannot
determine whether it does) let R′ be the uncurried form of RCTFO;

3. feed R′ into a first order termination prover (ignoring the types, unless a
prover for many-sorted TRSs is used);

4. if this returns NO and no cι-rules were added to R′, return NO;
if it returns YES, continue with a dependency pair approach which omits
the dependency pairs headed by symbols in TFO;
otherwise continue with a direct approach for the complete system.

Note that, if the first order prover fails, this algorithm does not abort, but
attempts to prove termination of the first order rules along with the rest. It is
arguably not very likely that this will be more successful, but a higher order tool
may be able to take steps which a type-oblivious first order tool cannot.

Dependency pairs While we have not explicitly used dependency pairs except
in the examples, the notion of a minimal infinite chain naturally suggests the use
of dependency pairs. Several approaches have been suggested for various forms of
higher order rewriting [2,31,32,27]. Theorems 9 and 12 provide a way to remove
some (perhaps most!) of the dependency graph components of realistic higher
order systems, by delegating these to a first order termination prover.

Contribution The approach outlined in this paper allows (automatic) termi-
nation provers to use first order techniques to deal with first order dependency
pairs. If we work on finitely branching HRSs with static dependency pairs, The-
orem 12 is a direct result of the usable rules approach in [32], but our result
holds on all common formalisms for higher order rewriting and any kind of
dependency pair framework. Moreover, for orthogonal systems the result from
Theorem 9 is strictly stronger than the theory obtained from this usable rules ap-
proach. Our experiments reveal a notable increase of termination proving power
by this successful combination of a higher order termination prover with a first
order termination prover as a back-end. Therefore, we expect that it will become
essential for successful higher order termination provers to either use first order
techniques immediately or enlist an external first order termination prover.
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Future Work It might be possible to extend the use of first order provers
further by identifying groups of dependency pairs where the higher order aspect
is not actively used (such as a dependency pair map](λx.F (x), cons(h, t)) →
map](λx.F (x), t)); dropping types, and transforming an abstraction into a single
variable, such pairs might also be handled with first order techniques.
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anonymous referees and Femke van Raamsdonk, which helped improve the paper.
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